International Journal of Statistics and Applications

International Journal of Statistics and Applications is a fully refereed international journal, which publishes original research papers and survey articles in all areas of statistics and applications. It is a broad based journal covering all branches of statistical sciences and their applications in medical, agricultural, econometric, physical or social sciences and industry, commerce and government and other scientific disciplines.


ICV 2015: 75.12; ICV 2016: 83.70 h5-index: 7, h5-median: 8
(Based on Google Scholar Metrics(June 2017))

Editor-in-chief: Rosaria Lombardo
p-ISSN: 2168-5193
e-ISSN: 2168-5215

Website: http://journal.sapub.org/statistics




Latest Issue: Volume 12, Number 3 (2022)
Skip Navigation Links.
Collapse &nbsp;<u>2022</u> 2022
 2022, Volume 12, Number 3
 2022, Volume 12, Number 2
 2022, Volume 12, Number 1
Expand &nbsp;<u>2021</u> 2021
Expand &nbsp;<u>2020</u> 2020
Expand &nbsp;<u>2019</u> 2019
Expand &nbsp;<u>2018</u> 2018
Expand &nbsp;<u>2017</u> 2017
Expand &nbsp;<u>2016</u> 2016
Expand &nbsp;<u>2015</u> 2015
Expand &nbsp;<u>2014</u> 2014
Expand &nbsp;<u>2013</u> 2013
Expand &nbsp;<u>2012</u> 2012
Expand &nbsp;<u>2011</u> 2011

Volume 12, Number 3, 2022

  • Articles
Survival Analysis of Neonatal Jaundice Patients in Ahmadu Bello University Teaching Hospital, Shika Zaria
Enesi Latifat O., Turkur D., Dikko H. G.
pp. 55-62
DOI: 10.5923/j.statistics.20221203.01   390 Views  155 Downloads
This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.
  Abstract   References   Full-Text PDF   Full-Text HTML
Comparison of the Autoregressive Vector VAR with the Dynamic Error Correction Vector DVECM for Modeling COVID-19 Deaths
Ahmed Razzaq Abed, Ayad Habeeb Shamil
pp. 63-76
DOI: 10.5923/j.statistics.20221203.02   151 Views  47 Downloads
This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.
  Abstract   References   Full-Text PDF   Full-Text HTML
Using Principal Component Analysis to Build Socioeconomic Status Indices
Wilson da C. Vieira, José A. Ferreira Neto, Mariane P. B. Roque, Bianca D. da Rocha
pp. 77-82
DOI: 10.5923/j.statistics.20221203.03   198 Views  90 Downloads
This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.
  Abstract   References   Full-Text PDF   Full-Text HTML