[1] | L.Mishnaevsky Jr, Micromechanical analysis of nanocomposites using 3D voxel based material model, Composites Science & Technology, 72 (2012) 1167–1177 |
[2] | L. Mishnaevsky Jr., Micromechanics of hierarchical materials: a brief overview, Reviews on Advanced Materials Science, 30 (2012) 60-72 |
[3] | R.D. Peng, H.W. Zhou, H.W. Wang, L. Mishnaevsky Jr. Modeling of nano-reinforced polymer composites: Microstructure effect on the Young’s modulus, Computational Materials Science, 60 (2012) 19–31 |
[4] | L. Mishnaevsky Jr., P. Brøndsted , R. Nijssen, D. J. Lekou and T. P. Philippidis, Materials of large wind turbine blades: Recent results in testing and modelling, Wind Energy, Vol. 15, No.1, pp, 83–97, 2012 |
[5] | H.S. Toft, K. Branner, L. Mishnaevsky Jr., J.D. Sørensen, Uncertainty modeling and code calibration for composite materials, J Composite Materials (accepted) |
[6] | L.Mishnaevsky Jr, Micromechanical modelling of wind blade materials, Chapter 15, In: Wind turbine blade design and materials, Eds, Edited by: P. Brøndsted, and R. Nijssen, Woodhead, 2012 (in print) |
[7] | L. Mishnaevsky Jr, Composite materials for wind energy applications: Micromechanical modelling and future directions, Computational Mechanics http://dx.doi.org/10.1007/s00466-012-0727-5 |
[8] | H.W. Zhou, H.Y. Yi, D.J. Xue, Z.Q. Duan, C.H. Zhang, L. Mishnaevsky Jr, Influence of fibers’ orientation angle on failure mechanism of glass fiber reinforced polymer composites, Scientia Sinica Physica, Mechanica & Astronomica (accepted) |
[9] | L. Mishnaevsky Jr., Hierarchical composites: Analysis of damage evolution based on fiber bundle model, Composites Sci & Technol, 71 (2011) 450–460 |
[10] | H. Qing, L. Mishnaevsky Jr., Fatigue modelling of materials with complex microstructures, Computational Materials Science, Vol.50, N.5, 2011, pp. 1644-1650 |
[11] | L. Mishnaevsky Jr, 2011, Composite materials in wind energy technology, in Encyclopedia of Life Support Systems (EOLSS), UNESCO, Eolss Publishers, Oxford |
[12] | H. Qing, L. Mishnaevsky Jr, A 3D multilevel model of damage and strength of wood: Analysis of microstuctural effects, Mechanics of Materials, 43 (2011) 487–495 |
[13] | H.W. Wang, H.W. Zhou, R.D. Peng, L.Mishnaevsky Jr., Nanoreinforced polymer composites: 3D FEM modeling with effective interface concept, Composites Scie & Technol, Vol. 71, No. 7, 2011, pp- 980-988 |
[14] | L. Mishnaevsky Jr., et al, Small wind turbines with timber blades for developing countries: Materials choice, development, installation and experiences, Renewable Energy, Vol.36, No. 8, 2011, pp. 2128-2138 |
[15] | V.I. Kushch, S.V. Shmegera P. Brøndsted, L. Mishnaevsky Jr Numerical simulation of progressive debonding in fiber reinforced composite under transverse loading, Int. J. Eng. Sci., Vol. 49, No.1, 2011, pp. 17-29 |
[16] | A.S. Abhilash, S.P. Joshi, A.Mukherjee, L. Mishnaevsky Jr., Micromechanics of diffusion induced damage evolution in reinforced polymers, Composites Sci & Technol, Vol. 71, No. 3, 2011, pp. 333-342 |
[17] | V.I. Kushch, S.V. Shmegera and L. Mishnaevsky Jr, Explicit modelling the progressive interface damage in fibrious composite: analytical vs. Numerical approach, Composites Science and Technology, Vol.71, No.7, 2011, pp. 989-997 |
[18] | V.I. Kushch, S.V. Shmegera and L. Mishnaevsky Jr, Elastic interaction of partially debonded circular inclusions. II. Application to fibrous composite, Int J Solids and Structures, Vol. 48, No. s 16-17, 2011, pp. 2413-2421 |
[19] | H. Qing, L. Mishnaevsky Jr., 3D constitutive model of anisotropic damage for unidirectional ply based on physical failure mechanisms, Computational Materials Science, 50 (2010) 479–486 |
[20] | R. Sinha, P. Acharya, P. Freere, R. Sharma, P. Ghimire and Leon Mishnaevsky, Jr. Selection of Nepalese timber for small wind turbine blade construction, J Wind Engineering, Vol. 34, No. 3, 2010, pp. 263-276 |
[21] | L. Mishnaevsky Jr, D. Wood, Editorial, J Wind Engineering, Vol. 34, No. 3, 2010, pp. i-iv |
[22] | V.I. Kushch, S.V. Shmegera, L. Mishnaevsky Jr. Elastic interaction of partially debonded circular inclusions. I. Theoretical solution, Int J Solids and Structures, Vol. 47, No. 14-15, 2010, pp. 1961-1971 |
[23] | H. Qing, L. Mishnaevsky Jr., 3D multiscale micromechanical model of wood: From annual rings to microfibrils, Int J Solids and Structures, Vol. 47, No. 9, 1 2010, pp. 1253-1267 |
[24] | H.W. Zhou, L. Mishnaevsky Jr, P. Brøndsted, J. Tan, L. Gui, SEM in situ laboratory investigations on damage growth in GFRP composite under three-point bending tests, Chinese Science Bulletin, 2010 Vol.55 No.12: 1199−1208 (Cover Story) |
[25] | L. Mishnaevsky Jr and P. Brøndsted, Statistical modelling of compression and fatigue damage of unidirectional fiber reinforced composites, Composites Sci & Technol, Vol. 69, 3-4, 2009, pp. 477-484 |
[26] | H. Qing, and L. Mishnaevsky Jr, Unidirectional high fiber content composites: Automatic 3D FE model generation and damage simulation, Computational Materials Science, Vol. 47, 2, 2009, pp. 548-555 |
[27] | H. Qing, and L. Mishnaevsky Jr, 3D hierarchical computational model of wood as a cellular material with fibril reinforced, heterogeneous multiple layers, Mechanics of Materials, Vol. 41, 9, 2009, pp. 1034-1049 |
[28] | L. Mishnaevsky Jr and P. Brøndsted, Micromechanisms of damage in unidirectional fiber reinforced composites: 3D computational analysis, Composites Sci & Technol, Vol. 69, No.7-8, 2009, pp. 1036-1044 |
[29] | L. Mishnaevsky Jr, P.Freere, R. Sharma, P.Brøndsted, H. Qing, J. I. Bech, R. Sinha, P. Acharya, R. Evans, Strength and reliability of wood for the components of low-cost wind turbines: Computational and experimental analysis and applications, J Wind Engineering, Vol. 33, No. 2, 2009 PP 183–196 |
[30] | H. W. Wang, H.W. Zhou, L. Mishnaevsky Jr., P. Brøndsted, L.N. Wang, Single fibre and multifibre unit cell analysis of strength and cracking of unidirectional composites, Computational Materials Science, Vol. 46, No. 4, 2009, Pages 810-820 |
[31] | V.I. Kushch, S.V. Shmegera and L. Mishnaevsky Jr., Statistics of microstructure, peak stress and interface damage in fiber reinforced composites. J Mechanics of Materials and Structures Vol. 4 (2009), No. 6, 1089–1107 |
[32] | H. Qing, and L. Mishnaevsky Jr, Moisture-related mechanical properties of softwood: 3D micromechanical modeling, Computational Materials Science, Vol. 46, No. 2, 2009, pp.310-320 |
[33] | L. Mishnaevsky Jr and P. Brøndsted, Micromechanical modeling of damage and fracture of unidirectional fiber reinforced composites: A review, Comput Materials Science, Vol. 44, No. 4, 2009, pp. 1351-1359 |
[34] | V.I. Kushch, I. Sevostianov, L. Mishnaevsky Jr. Effect of crack orientation statistics on effective stiffness of mircocracked solid, Int J Solids and Structures, Vol. 46, No. 6, 2009, pp. 1574-1588 |
[35] | L. Mishnaevsky Jr and P. Brøndsted, Three-dimensional numerical modelling of damage initiation in UD fiber-reinforced composites with ductile matrix, Materials Science &Engineering: A, Vol.498, No. 1-2, 2008, pp. 81-86 |
[36] | L. Mishnaevsky Jr, H. Qing, Micromechanical modelling of mechanical behaviour and strength of wood: State-of-the-art review, Computational Materials Science, Vol. 44, No. 2, 2008, pp. 363-370 |
[37] | V.I. Kushch, S.V. Shmegera and L. Mishnaevsky Jr., Meso cell model of fiber reinforced composite: Interface stress statistics and debonding paths, Int J Solids and Structures, 45: 9, 2008, pp. 2758-2784 |
[38] | V.I. Kushch, I. Sevostianov, L. Mishnaevsky Jr, Stress concentration and effective stiffness of aligned fiber reinforced composite with anisotropic constituents, Int J Solids Structures, 45: 18-19, 2008, 5103-5117 |
[39] | L. Mishnaevsky Jr, A Simple method and program for the analysis of the microstructure-stiffness interrelations of composite materials, Journal of Composite Materials, Vol. 41, No. 1, 73-87 (2007) |
[40] | L. Mishnaevsky Jr, P. Brøndsted, Modeling of fatigue damage evolution on the basis of the kinetic concept of strength, Int. J. Fracture, (2007) 144 , 149-158 |
[41] | L. Mishnaevsky Jr, Functionally gradient metal matrix composites: numerical analysis of the microstructure-strength relationships, Composites Sci. & Technology, 2006, 66/11-12, pp 1873-1887 |
[42] | L. Mishnaevsky Jr, Computational analysis of the effects of microstructures on damage and fracture in heterogeneous materials, Key Engineering Materials, Vol. 306-308, pp. 489-49, 2006 |
[43] | L. Mishnaevsky Jr, Microstructural effects on damage in composites: Computational Analysis, Journal of Theoretical and Applied Mechanics, No. 3, Vol 44, 2006, pp. 533-552 |
[44] | L. Mishnaevsky Jr, Automatic voxel based generation of 3D microstructural FE models and its application to the damage analysis of composites, Matls Science & Engineering A, Vol. 407, No. 1-2, 2005, pp.11-23 |
[45] | L. Mishnaevsky Jr, Three-dimensional numerical testing of microstructures of particle reinforced composites, Acta Materialia, 2004, Vol. 52/14, pp.4177-4188 |
[46] | A. Trondl, D. Gross, L. Mishnaevsky Jr., N. Huber, 3D FEA of Size Effects in Deformation of Thin Metallic Films, PAMM (Proceedings in Applied Mathematics and Mechanics), 6, pp. 517–518 (2006) |
[47] | L. Mishnaevsky Jr and D. Gross, Deformation and failure in thin films/substrate systems: Methods of theoretical analysis, Applied Mechanics Reviews, 2005 , Vol. 58, No. 5, pp. pp. 338-353 |
[48] | L. Mishnaevsky Jr, K. Derrien and D. Baptiste, Effect of microstructures of particle reinforced composites on the damage evolution: probabilistic and numerical analysis, Composites Sci. & Technology, Vol. 64, No 12 , 2004, pp. 1805-1818 |
[49] | L. Mishnaevsky Jr, U. Weber and S. Schmauder, Numerical analysis of the effect of microstructures of particle-reinforced metallic materials on the crack growth and fracture resistance, Int. J. Fracture, 125: 33-50, 2004 |
[50] | M. Levesque, K. Derrien, L. Mishnaevsky Jr, M. Gilchrist and D. Baptiste, A Micromechanical Model for Non-Linear Viscoelastic Particle Reinforced Polymeric Composite Materials – Undamaged State, Composites Part A, 35 (2004) 905-913 |
[51] | L. Mishnaevsky Jr., S. Schmauder, 2001, Continuum mesomechanical finite element modeling in materials development: a state-of-the-art review, Applied Mechanics Reviews, 54, 1, 49-69 |
[52] | L. Mishnaevsky Jr, N. Lippmann, S. Schmauder and P. Gumbsch, In-situ observations of damage evolution and fracture in AlSi cast alloys, Eng. Fract. Mech., Vol. 63, Nr. 4, 1999, pp. 395-411 |
[53] | L. Mishnaevsky Jr and T. Shioya, Optimization of materials microstructures: information theory approach, Journal of the School of Engineering, The University of Tokyo, Vol. 48, 2001, pp. 1-13 |
[54] | L. Mishnaevsky Jr, Determination for the time to fracture of solids, Int. J. Fracture, Vol.79, No.4, 1996, pp.341-350 |
[55] | L. Mishnaevsky Jr, Methods of the theory of complex systems in modelling of fracture: a Brief review, Eng. Fract. Mech., Vol.56, No.1, pp.47-56, 1997 |
[56] | L. Mishnaevsky Jr, Lippmann N; Schmauder S, Computational modeling of crack propagation in real microstructures of steels and virtual testing of artificially designed materials Int J Fracture, Vol. 120 No. 4 pp. 581-600, 2003 |
[57] | L. Mishnaevsky Jr and S. Schmauder, Damage evolution and heterogeneity of materials: model based on fuzzy set theory, Eng. Fract. Mech., Vol.57, No.6, pp.625-636, 1997 |
[58] | L. Mishnaevsky Jr, N. Lippmann and S. Schmauder, Micromechanisms and modelling of crack initiation and growth in tool steels: Role of Primary Carbides, Zeitschrift f. Metallkunde, 94, 2003, 6, pp. 676-681 |
[59] | L. Mishnaevsky Jr, A New approach to design of drilling tools, Int. J. Rock Mech. & Min. Sci., Vol.33, No.1, pp.97-102 |
[60] | L. Mishnaevsky Jr, Mathematical Modelling of Wear of Cemented Carbide Tools in Cutting Brittle Materials. Int.J. Machine Tools and Manufacture, Vol.35, No.5,1995, pp.717-724 |
[61] | L. Mishnaevsky Jr, Investigation of cutting of brittle materials, Int. J. Machine & Manufacture, Vol.34, No.4, pp.499-505, 1994 |