American Journal of Computational and Applied Mathematics

American Journal of Computational and Applied Mathematics is a peer-reviewed international journal. This journal publishes significant research papers from all branches of applied mathematical and computational sciences. It publishes original papers of high scientific value in all areas of computational and applied mathematics.


Nawab Hussain

Editorial Board Member of American Journal of Computational and Applied Mathematics

Professor, Department of Mathematics, King Abdulaziz University Jeddah, Saudi Arabia

Research Areas

Functional Analysis (Fixed Point and Approximation Techniques and Applications)

Education

2002Ph.D.Bahauddin Zakariya University Multan, Pakistan
1992M.Phil.Quaid-i-Azam University Islamabad, Pakistan
1988M.Sc.Bahauddin Zakariya University Multan, Pakistan
1985B.Sc.Islamia University, Bahawalpur, Pakistan

Experience

2011-presentProfessor, Department of Mathematics, King Abdulaziz University, Jeddah, Saudi
2007-2011Associate Professor, Department of Mathematics, King Abdulaziz University, Jeddah, Saudi Arabia
2004-2007Assistant Professor, Department of Mathematics, King Abdulaziz University, Jeddah, Saudi Arabia
2002-2004Assistant Professor, CASPAM, B. Z. University, Multan, Pakistan
1994-2002Lecturer, CASPAM, B. Z. University, Multan, Pakistan

Academic Achievement

Gold Medal on the basis of first position in B.Sc. from Islamia University, Bahawalpur, Pakistan
Gold Medal on the basis of first position in M.Sc. from B. Z. University, Multan, Pakistan
Merit Cash award on the basis of first position in B.Sc. from Ministry of Education, Islamabad, Pakistan
Merit Cash award on the basis of first position in B.Sc. from Islamia Univeristy, Bahawalpur, Pakistan
Pakistan Atomic Energy Commission (PAEC) Talent Scholarship for the studies of M. Phil. Mathematics

Publications: Journals

[1]  N. Hussain, Asymptotically pseudo-contractions, Banach operator pairs and best simultaneous approximations, Fixed Point Theory and Applications, Volume 2011, Article ID 812813 11 pages doi:10.1155/2011/812813.
[2]  N. Hussain, and A. Alotaibi, Coupled coincidences for multi-valued nonlinear contractions in partially ordered metric spaces, Fixed Point Theory and Applications 2011, 2011:81 (18 November 2011)
[3]  N. Hussain, M.A. Khamsi and A. Latif, Banach operator pairs and common fixed points in Modular Function Spaces, Fixed Point Theory and Applications 2011, 2011:75, 12 pp.
[4]  N. Hussain and M. H. Shah, KKM mappings in cone b-metric spaces, Computers and Mathematics with Applications, 62(2011), 1677-1684.
[5]  N. Hussain and M. Abbas, Common fixed point results for two new classes of hybrid pairs in symmetric spaces, Applied Mathematics and Computation, 218 (2011), 542-547.
[6]  M. Abbas, N. Hussain, and B.E.Rhoades, Coincidence point theorems for multivalued f-weak contraction mappings and applications, RACSAM-Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, Volume 105, Number 2(2011), 261-272, DOI: 10.1007/s13398-011-0036-4
[7]  N. Hussain, M.A. Khamsi and A. Latif, Banach operator pairs and common fixed points in Hyperconvex Metric Spaces, Nonlinear Analysis: Theory, Methods & Applications, 74(2011), 5956-5961.
[8]  N. Hussain and H. K. Pathak, Subweakly biased pairs and Jungck contractions with applications, Numerical Functional Analysis and Optimization, 32(10)(2011), 1067-1082.
[9]  M. H. Shah and N. Hussain, Nonlinear contractions in partially ordered quasi b-metric spaces, Commun. Korean Math. Soc., 26 (2011), No. 0, pp...., DOI 10.4134/CKMS.2011.26.0.001.
[10]  N. Hussain, A. Rafiq, B. Damjanovic and R. Lazovic, On rate of convergence of various iterative schemes, Fixed Point Theory and Applications 2011, 2011:45 doi:10.1186/1687-1812-2011-45.
[11]  N. Hussain, M.A. Khamsi and A. Latif, Common fixed points for JH-operators and occasionally weakly biased pairs under relaxed conditions, Nonlinear Analysis: Theory, Methods & Applications, 74 (2011) 2133-2140.
[12]  N. Hussain, M. H. Shah and M. A. Kutbi, Coupled coincidence point theorems for nonlinear contractions in partially ordered quasi-metric spaces with a Q-function, Fixed Point Theory and Applications, Volume 2011, Article ID 703938, 21 pages doi:10.1155/2011/703938
[13]  N. Hussain, M.H. Shah, and S. Radenovic, Fixed points of weakly contractions through occasionally weak compatibility, Journal of Computational Analysis and Applications, 13(2011), 532-543.
[14]  L. ´Ciri´c, M. Abbas, R. Saadati, and N. Hussain, Common fixed points of almost generalized contractive mappings in ordered metric spaces, Applied Mathematics and Computation, 217 (2011) 5784-5789.
[15]  Yeol Je Cho, M. H. Shah, and N. Hussain, Coupled fixed points of weakly F-contractive mappings in topological spaces, Applied Mathematics Letters, 24 (2011), 1185–1190.
[16]  Y. J. Cho, N. Hussain and H. K. Pathak, Approximation of nearest common fixed points of asymptotically I-nonexpansive mappings in Banach spaces, Commun. Korean Math. Soc., 26(2011), 483-498.
[17]  M. H. Shah, Suzana Simic, N. Hussain, A. Sretenovic, and S. Radenovic, Common fixed points theorems for occasionally weakly Compatible pairs on cone metric type spaces, Journal of Computational Analysis and Applications, (2011, in press).
[18]  N. Hussain, H. K. Pathak and S. Tiwari, Application of Fixed Point Theorems To Best Simultaneous Approximation in Ordered Semi-Convex Structure, J. Nonlinear Sci. Appl. (2011, in Press)
[19]  N. Hussain, A.R. Khan and Ravi P. Agarwal, Krasnosel’skii and Ky Fan type fixed point theorems in ordered Banach spaces, Journal of Nonlinear and Convex Analysis, 11(3), (2010), 475-489.
[20]  N. Hussain, A. Amini-Harandi and Y. J. Cho, Approximate endpoints for setvalued contractions in metric spaces, Fixed Point Theory and Applications, Volume 2010, Article ID 614867, 13 pages
[21]  M.A. Khamsi and N. Hussain, KKM mappings in metric type spaces, Nonlinear Analysis: Theory, Methods & Applications, 73 (2010) 3123-3129.
[22]  H.K. Pathak and N. Hussain, Common fixed points for P-operator pair with applications, Applied Mathematics and Computation 217 (2010) 3137-3143.
[23]  L. ´Ciri´c, N. Hussain, and N. Cakic, Common fixed points for Ciric type f-weak contraction with applications, Publ. Math. Debrecen, 76/1-2 (2010), 31-49.
[24]  R. Espinola and N. Hussain, Common fixed points for multimaps in metric spaces, Fixed Point Theory and Applications, Volume 2010, Article ID 204981, 14 pages, 2010.
[25]  M. H. Shah, N. Hussain and A. R. Khan, Common fixed points of weakly contractive and strongly expansive mappings in topological spaces, Journal of Inequalities and Applications, Volume 2010, Article ID 746045, 15 pages
[26]  I. Beg, N. Hussain and S. H. Khan, Strong convergence theorems for common fixed points of Banach operator pair, Indian J. Math., 52(3), (2010), 461-478.
[27]  N. Hussain, M.A. Kutbi and V. Berinde, Dotson’s convexity, Banach operator pair and best simultaneous approximations, Math. Commun., 15(2), (2010), 377-386.
[28]  N. Hussain and M. A. Khamsi, On asymptotic pointwise contractions in metric spaces, Nonlinear Analysis: Theory, Methods & Applications 71 (2009), 4423– 4429.
[29]  N. Hussain and Y.J. Cho, Weak contractions, common fixed points and invariant approximations, J. Inequalities and Appl., Volume 2009, Article ID 390634, 10 pages.
[30]  N. Hussain and F. Akbar, Generalized I-nonexpansive maps and invariant approximation results, Southeast Asian Bull. Math., 33(2009), 275–284.
[31]  N. Hussain, V. Berinde and N. Shafqat, Common fixed point and approximation results for generalized -contractions, Fixed Point Theory, 10(2009), 111–124.
[32]  Lj. B. ´Ciri´c, N. Hussain, F. Akbar and J.S Ume, Common fixed points for Banach operator pairs from the set of best approximations, Bull. Belg. Math. Soc. Simon Stevin 16 (2009), 319-336.
[33]  N. Hussain, Comments on the papers "Arch Math. (Brno), 42 (2006), 51–58", "Thai J. Math., 3 (2005), 63–70" and "Math. Communications 13 (2008), 85–96", J. Nonlinear Sci. Appl. 2, No. 3, (2009), 168–173.
[34]  N. Hussain and M. A. Kutbi, Common fixed points in the set of best approximations, Internat. J. Pure and Applied Math., 56(2009), 487–496.
[35]  N. Hussain, Common fixed points in best approximation for Banach operator pairs with ´Ciri´c type I-contractions, J. Math. Anal. Appl., 338(2008), 1351- 1363.
[36]  H.K. Pathak and N. Hussain, Common fixed points for Banach operator pairs with applications, Nonlinear Analysis: Theory, Methods & Applications, 69 (2008) 2788-2802.
[37]  S.H. Khan and N. Hussain, Convergence theorems for nonself asymptotically nonexpansive mappings, Computers and Mathematics with Applications, 55 (2008) 2544-2553.
[38]  N. Hussain, M. Abbas and J. K. Kim, Common fixed point and invariant approximation in Menger convex metric spaces, Bull. Korean Math. Soc. 45(2008), 671-680.
[39]  I. Beg and N. Hussain, Invariant approximation in Menger convex metric space, Nonlinear Funct. Anal. and Appl., 13(2008), 695-704.
[40]  A.R. Khan, A.A. Domlo and N. Hussain, Coincidences of Lipschitz type hybrid maps and invariant approximation, Numer. Funct. Anal. Optimiz., 28(9- 10)(2007), 1165-1177.
[41]  N. Hussain, B.E.Rhoades and G. Jungck, Common fixed point and invariant approximation results for Gregus type I-contractions, Numer. Funct. Anal. Optimiz., 28(9-10)(2007), 1139-1151.
[42]  N. Hussain, A. Latif and S. Al-Mezel, Noncommuting maps and invariant approximations, Demonstratio Mathematica, 40 No. 4 (2007), 895-905.
[43]  S.A.Al-Mezel and N. Hussain, On common fixed point and approximation results of Gregus type, International Mathematical Forum, Vol. 2, 37(2007), 1839-1847.
[44]  Donal O’Regan and N. Hussain, Generalized I-contractions and pointwise Rsubweakly commuting maps, Acta Math. Sinica 23, No. 8(2007), 1505-1508.
[45]  G. Jungck and N. Hussain, Compatible maps and invariant approximations, J. Math. Anal. Appl. 325(2007), 1003-1012.
[46]  N. Hussain, Coincidence points for multivalued maps on non-starshaped domain, Demonstratio Math. 39(3)(2006), 579-584.
[47]  N. Hussain, Generalized I-nonexpansive maps and invariant approximation results in p-normed spaces, Analysis in Theory and Appl. 22( 2006), 72-80.
[48]  N. Hussain, Common fixed point and invariant approximation results, Demonstratio Math. 39(2)(2006), 389-400.
[49]  N. Hussain and B. E. Rhoades, Cq-commuting maps and invariant approximations, Fixed Point Theory Appl. 2006(2006), Article ID 24543, 9 pp.
[50]  N. Shahzad and N. Hussain, Deterministic and random coincidence results for f-nonexpansive maps, J. Math. Anal. Appl. 323(2006), 1038-1046.
[51]  N. Hussain and G. Jungck, Common fixed point and invariant approximation results for noncommuting generalized (f, g)-nonexpansive maps, J. Math. Anal. Appl. 321(2006), 851-861.
[52]  N. Hussain, and V. Berinde, Common fixed point and invariant approximation results in certain metrizable topological vector spaces, Fixed Point Theory Appl. 2006 (2006), Article ID 23582, 13 pp.
[53]  A.R. Khan, F. Akbar, N. Sultana and N. Hussain, Coincidence and invariant approximation theorems for generalized f-nonexpansive multivalued mappings, Internat. J. Math. Math. Sci. 2006(2006), Article ID 17637, 18 pp.
[54]  N. Hussain, Donal O’Regan and Ravi P. Agarwal, Common fixed point and invariant approximation results on non-starshaped domains, Georgian Math. J. 12(2005), 659-669.
[55]  A.R. Khan, A. Latif, A. Bano and N. Hussain, Some results on common fixed points and best approximation, Tamkang J. Math. 36(2005), 33-38.
[56]  A.R. Khan and N. Hussain, Random coincidence point theorem in Frechet spaces with applications, Stoch. Anal. and Appl. 22(2004), 155-167.
[57]  I. Beg, A. R. Khan and N. Hussain, Approximation of -nonexpansive random multivalued operators on Banach spaces, J. Aust. Math. Soc. 76(2004), 51-66.
[58]  A. R. Khan, N. Hussain and A. B. Thaheem, Some generalizations of Ky Fan’s best approximation theorem, Analysis in Theory and Appl. 20(2004), 189-198.
[59]  N. Hussain and A.R. Khan, Common fixed point results in best approximation theory, Applied Math. Letters 16(2003), 575-580.
[60]  I. Beg, N. Hussain and A.R. Khan, Fixed point, almost fixed point and best approximation of nonexpansive multivalued mapping in Banach spaces, Advances Math. Sci. Appl. 13(2003), 83-111.
[61]  N. Hussain and A.R.Khan, Common fixed points and best approximation in p-normed spaces, Demonstratio Math. 36( 2003), 675-681.
[62]  A. R. Khan and N. Hussain. Characterizations of random approximations in locally convex spaces, Arch. Math.(BORNO) 39(2003), 271-275.
[63]  A.R. Khan, A.B. Thaheem and N. Hussain, Random fixed points and random Approximations, Southeast Asian Bull. Math. 27(2003), 289-294.
[64]  N. Hussain and A. R. Khan, Applications of the best approximation operator to-nonexpansive maps in Hilbert spaces, Numer. Funct. Anal. Optimiz. 24 (3-4)(2003), 327-338.
[65]  N. Hussain and A. R. Khan, Random fixed points for -nonexpansive multivalued maps, Random Operators and Stoch. Equations 11(2003), 243-254.
[66]  A. R. Khan, A. B. Thaheem and N. Hussain, A stochastic version of Ky Fan’s best approximation theorem, J. Appl. Math. Stoch. Anal. 16(2003), 275-282.
[67]  A. R. Khan and N. Hussain, Random fixed point theorems for -nonexpansive operators in Frechet spaces, J. Korean Math. Soc. 39(2002), 51-60.
[68]  A.R. Khan and N. Hussain, Random approximations and random fixed points for -nonexpansive maps, Math. Sci. Research J. 6(2002), 174-182.
[69]  A.R. Khan, A. B. Thaheem and N. Hussain, Random fixed points and random approximations in nonconvex domains, J. Appl. Math. Stoch. Anal. 15(2002), 263-270.
[70]  A. R. Khan, A. Latif , N. Hussain and A. Bano, Coincidence point results in locally convex spaces, Internat. J. Pure and Appl. Math. 3(2002), 413-423.
[71]  A. R. Khan, A. Bano and N. Hussain, Common fixed points in best approximation theory, Internat. J. Pure Appl. Math. 2(2002), 411-426.
[72]  A. R. Khan and N. Hussain, Iterative approximation of fixed points of nonexpansive maps, Scien. Math. Japon., 54(2001), 503-511.
[73]  A.R. Khan and N. Hussain, Random fixed points for -nonexpansive random operators, J. Appl. Math. and Stoch. Anal. 14(2001), 341-349.
[74]  A. R. Khan and N. Hussain, An extension of a theorem of Sahab, Khan and Sessa, Internat. J. Math. and Math. Sci., 27(2001), 701-706.
[75]  A.R. Khan, N. Hussain and L. A. Khan, A note on Kakutani type fixed point theorems, Internat. J Math. and Math. Sci. 24(2000), 231-235.
[76]  A.R. Khan, N. Hussain and A.B.Thaheem, Applications of fixed point theorems to invariant approximation, Approx. Theory and Appl. 16(2000), 48-55.
[77]  A. R. Khan and N. Hussain, Best approximation and fixed point results, Indian J. Pure and Appl. Math. 31(2000), 983-987.
[78]  A. R. Khan and N. Hussain, Fixed point and best approximation theorems for -nonexpansive maps, Punjab Univ. J. Math. 33(2000), 135-144.
[79]  G. Mustafa and N. Hussain, Random coincidence point theorems for generalized contractive type random multivalued operators on polish spaces, J. Pure and Applied Sciences 19(2000), 17-23.
[80]  A.R. Khan, N. Hussain and M. Akram, On open mapping and closed graph theorems, Punjab Univ. J. Math. 31(1998), 95-102.
[81]  G. Mustafa and N. Hussain, Random coincidence points of random multivalued operators on polish spaces, J. Pure and Applied Sciences, 17(1998), 58-61.
[82]  A.R. Khan, N. Hussain and M. Aslam, Mann iterative construction of fixed points in locally convex spaces, J. Natural Sci. and Math. 36(1997), 155-159.
[83]  A.R. Khan, M. Aslam and N. Hussain, Some best approximation results in locally convex spaces, Approx. Theory and Appl. 12(1996), 29-36.
[84]  A.R. Khan, N. Hussain and M.A. Shahid, Strong uniqueness in metrizable topological vector spaces, Bull. Malaysian Math. Soc. (Second series) 17(1994), 21-27.