[1] | D. Pham, T. Tran, A domain decomposition method for solving the hypersingular integral equation on the sphere with spherical splines, Numerische Mathematik DOI 10.1007/s00211-011-0404-1. |
[2] | D. Pham, T. Tran, A. Chernov, Pseudodifferential equations on the sphere with spherical splines, Mathematical Models and Methods in Applied Science 21, (2011) 1933-1959. |
[3] | D. Pham, T. Tran, S. Crothers, An overlapping additive Schwarz preconditioner for the Laplace-Beltrami equation using spherical splines, Advances in Computational Mathematics, DOI 10.1007/s10444-011-9200-9 (2011). |
[4] | A. R. Shaik, N. H. Tran, S. S. Rahman, T. Tran, Numerical simulation of fluid-rock coupling heat transfer in naturally fractured geothermal system, Applied Thermal Engineering (to appear). |
[5] | A. R. Shaik, N. H. Tran, S. S. Rahman, T. Tran, Estimating pressure losses in interconnected fracture systems: An integrated tensor approach, International Journal of Geomechanics, DOI:10.1061/(ASCE)GM.1943-5622.0000099 (2011). |
[6] | Q.T. Le Gia, E.P. Stephan, T. Tran, Solution to the Neumann problem exterior to a prolate spheroid by radial basis functions, Advances in Computational Mathematics 34(1) (2011), 83-103. |
[7] | T. Tran, Q.T. Le Gia, I.H. Sloan, E.P. Stephan, Preconditioners for pseudodifferential equations on the sphere with radial basis functions, Numerische Mathematik, 115(1) (2010), 141-163. |
[8] | Q. T. Le Gia, T. Tran, An overlapping additive Schwarz preconditioner for interpolation on the unit sphere by spherical basis functions, Journal of Complexity, 26(5) (2010), 552-573. |
[9] | T. Tran, Q. T. Le Gia, I. H. Sloan, and E. P. Stephan, Boundary integral equations on the sphere with radial basis functions: Error analysis, Applied Numerical Mathematics, 59 (2009), 2857-27871. |
[10] | Q. T. Le Gia, I. H. Sloan, T. Tran, Overlapping additive Schwartz preconditioners for elliptic PDEs on the unit sphere, Mathematics of Computation, 78(1) (2009), 79-101. |
[11] | T. D. Pham, T. Tran, Solutions to pseudodifferential equations using spherical radial basis functions, Bulletin of the Australian Mathematical Society, 79 (2009), 473-485. |
[12] | T. Tran, Additive Schwarz preconditioners for the h-p version boundary element approximation to the hypersingular operator in three dimensions, International Journal of Computer Mathematics, 84 (2007), 1417-1437. |
[13] | T. Tran and T.B. Duong, A posteriori error estimates with the finite element method of lines for a Sobolev equation, Numer. Meth. PDE 21 (2005), 521-535. |
[14] | A. Teimoori, Z. Chen, S.S. Rahman and T. Tran, Effective permeability calculation using boundary element method in naturally fractured reservoirs, Petroleum Science and Technology, 23 (2005), 693-709. |
[15] | M. Maischak, E. P. Stephan and T. Tran, A Multiplicative Schwarz Algorithm for the Galerkin Boundary Element Approximation of the Weakly Singular Integral Operator in Three Dimensions, Int. J. Pure & Appl. Maths. 12 (2004), 1-21. |
[16] | T. Tran, E. P. Stephan, An overlapping additive Schwarz preconditioner for boundary element approximations to the Laplace screen and Lam´e crack problems, J. Numer. Math., 12 (2004), 311-330. |
[17] | T. Tran and T.B. Duong, A Complete Analysis for Some A Posteriori Error Estimates with the Finite Element Method of Lines for a Nonlinear Parabolic Equation, J. Numer. Funct. Anal. Optim. 23 (2002), 891-909. |
[18] | T. Tran and E.P. Stephan, Two-level Additive Schwarz Preconditioners for the h-p Version of the Galerkin Boundary Element Method, Computing 67 (2001), 57-82. |
[19] | I.H. Sloan and T. Tran, A Tolerant Qualocation Method for Variable-Coefficient Elliptic Equations on Curves, Journal of Integral Equations & Applications 13 (2001), 73-98. |
[20] | M. Maischak, E. P. Stephan and T. Tran, Multiplicative Schwarz Algorithms for the Galerkin Boundary Element Method, SIAM Journal on Numerical Analysis 38 (2000), 1243-1268. |
[21] | R. Kress and T. Tran, Inverse Scattering for a Locally Perturbed Half-Plane, Inverse Problems 16 (2000), 1541-1559. |
[22] | T. Tran, Overlapping Additive Schwarz Methods for First Kind Boundary Integral Equations, Journal of Integral Equations & Applications 12 (2000), 177-207. |
[23] | T. Tran and E.P. Stephan, Additive Schwarz Algorithms for the p Version of the Galerkin Boundary Element Method, Numerische Mathematik 85 (2000), 433-468. |
[24] | E. P. Stephan and T. Tran, Domain Decomposition Algorithms for Indefinite Weakly Singular Integral Equations: the h and p Versions, IMA Journal of Numerical Analysis 20 (2000), 1-24. |
[25] | M. Ainsworth, W. McLean, and T. Tran, Diagonal Scaling of Stiffness Matrices in the Galerkin Boundary Element Method, ANZIAM J. 42 (2000), 141-150. |
[26] | M. Ainsworth, W. McLean, and T. Tran, The Conditioning of Boundary Element Equations on Locally Refined Meshes and Preconditioning by Diagonal Scaling, SIAM Journal on Numerical Analysis 36 (1999), 1901-1932. |
[27] | T. Tran, E. P. Stephan and S. Zaprianov, Wavelet-Based Preconditioners for Boundary Integral Equations, Advances in ComputationalMathematics 9 (1998), 233-249. |
[28] | T. Tran and I. H. Sloan, Tolerant Qualocation-A Qualocation Method for Boundary Integral Equations with Reduced Regularity Requirement, Journal of Integral Equations & Applications 10 (1998), 85-115. |
[29] | E. P. Stephan and T. Tran, Domain Decomposition Algorithms for Indefinite Hypersingular Integral Equations: the h and p Versions, SIAM Journal of Scientific Computing 19 (1998), 1139-1153. |
[30] | N. Heuer, E. P. Stephan and T. Tran, A Multilevel Additive Schwarz Method for the h-p Version of the Galerkin Boundary Element Method, Mathematics of Computation 67 (1998), 501-518. |
[31] | T. Tran, E.P. Stephan, and P. Mund, Hierarchical Basis Preconditioners for First Kind Integral Equations, Applicable Analysis 65 (1997), 353-372. |
[32] | W. McLean and T. Tran, A Preconditioning Strategy for Boundary Element Galerkin Methods, Numerical Methods for PDE's 13 (1997), 283-301. |
[33] | M. Maischak, E. P. Stephan and T. Tran, Domain Decomposition for Integral Equations of the First Kind: Numerical Results, Applicable Analysis 63 (1996), 111-132. |
[34] | T. Tran and E. P. Stephan, Additive Schwarz Methods for the h Version Boundary Element Method, Applicable Analysis 60 (1996), 63-84. |
[35] | T. Tran, Local Error Estimates for the Galerkin Method Applied to Strongly Elliptic Integral Equations on Open Curves, SIAM Journal on Numerical Analysis 33 (1996), 1484-1493. |
[36] | E. P. Stephan and T. Tran, Localisation and Post Processing for the Galerkin Boundary Element Method Applied to Three-Dimensional Screen Problems, Journal of Integral Equations & Applications 8 (1996), 457-481. |
[37] | T. Tran, The K-Operator and the Galerkin Method for Strongly Elliptic Equations on Smooth Curves: Local Estimates, Mathematics of Computation 64 (1995), 501-513. |
[38] | T. Tran, The K-Operator and the Qualocation Method for Strongly Elliptic Equations on Smooth Curves, Journal of Integral Equations & Applications 5 (1993), 405-428. |
[39] | D. D. Ang and T. Tran, A Nonlinear Pseudoparabolic Equation, Proceedings of the Royal Society of Edinburgh 114A (1990), 119-133. |