American Journal of Computational and Applied Mathematics

American Journal of Computational and Applied Mathematics is a peer-reviewed international journal. This journal publishes significant research papers from all branches of applied mathematical and computational sciences. It publishes original papers of high scientific value in all areas of computational and applied mathematics.


Ming     Mei    

Editorial Board Member of American Journal of Computational and Applied Mathematics

Professor, McGill University, Canada

Research Areas

Viscose Hyperbolic Conservation Laws, Parabolic Equations, Reaction-Diffusion Equations, Kdv-Type Equations, Navier-Stokes Equations, Euler Equations

Education

1993-1996Ph.DDepartment of Mathematics, Faculty of Sciences, Kanazawa University, Japan
1985-1988M.ScDepartment of Mathematics, Jiangxi Normal University, Nanchang, Jiangxi, China
1981-1985B.ScDepartment of Mathematics, Jiangxi Normal University, Nanchang, Jiangxi, China

Experience

2007-presentAdjunct Professor, McGill University, Canada
2005-presentTenured Full-time Faculty, Champlain College--St.-Lambert, Canada
2006-2007Research Associate Professor, Concordia University, Canada
2002-2006Assistant Professor, Concordia University, Canada
2001-2002CRM-Postdoctoral Fellow, McGill University, Canada
2000-2001Postdoctoral Fellow, University of Alberta, Canada
1999-2000FWF-Postdoctoral Fellow, Vienna University of Technology, Austria
1998-1999Lecturer, Kanazawa University, Japan
1996-1998JSPS-Postdoctoral Fellow, Kanazawa University, Japan
1988-1993Lecturer, East China Institute of Technology, China

Publications: Conferences/Workshops/Symposiums/Journals/Books

[1]  F.-M. Huang, M. Mei and Y. Wang, Large time behavior of solutions to n-dimensional bipolar hydrodynamic model for semiconductors, SIAM J. Math. Anal. 43, (2011), in press.
[2]  F. Huang, M. Mei, Y. Wang, and H. Yu, Asymptotic convergence to stationary waves for unipolar hydrodynamic model of semiconductors, SIAM J. Math. Anal. 43, No.1 (2011).
[3]  F. Huang, M. Mei, Y. Wang, and H. Yu, Asymptotic convergence to planar stationary waves for multi-dimensional unipolar hydrodynamic model of semiconductors, J. Differential Equations, 250 (2011), in press.
[4]  M. Mei and Z.-X. Yu, Asymptotics and uniqueness of travelling waves for non-monotone delayed systems on 2D lattices, Canadian Math. Bulletin, (2011), in press.
[5]  M. Mei, C. Ou and X.-Q. Zhao, Global stability of monostable traveling waves for nonlocal time-delayed reaction-diffusion equations, SIAM J. Math. Anal. 42, No.6 (2010), 2762--2790.
[6]  M. Mei, Best asymptotic profile for hyperbolic p-system with damping, SIAM J. Math. Anal. 42, (2010), 1-23.
[7]  H. Ma and M. Mei, Best asymptotic profile for linear damped p-system with boundary effect, J. Differential Equations, 249 (2010), 446--484.
[8]  C.-K. Lin, C.-T. Lin and M. Mei, Asymptotic Behavior of Solution to Nonlinear Damped p-System with Boundary Effect, International Journal of Numerical Analysis and Modelling, Series B, 1 (2010), 70--92.
[9]  C.-K. Lin and M. Mei, On travelling wavefronts of the Nicholson's blowflies equation with diffusion, Proc. Royal Soc. Edinburgh (A), 140A (2010), 135--152.
[10]  M. Mei, Hyperbolic damped p-system and diffusion phenomena, RIMS lecture series of "Mathematical Analysis in Fluid and Gas Dynamics",RIMS Kôkyûroku 1690, Kyoto University, Japan, 2010.
[11]  D. Wei, J. Y. Wu and M. Mei, Remark on Critical Speed of Traveling Wavefronts for Nicholson's Blowflies Equation with Diffusion, Acta Math. Sci., 30B (5), (2010), 1561—1566.
[12]  M. Mei, Nonlinear diffusion waves for hyperbolic p-system with nonlinear damping, J. Differential Equations, 247 (2009), 1275--1269.
[13]  M. Mei, C.-K. Lin, C.-T. Lin and J. W.-H. So, Traveling Wavefronts For Time-Delayed Reaction-Diffusion Equation: (I) Local Nonlinearity, J. Differential Equations, 247 (2009), 495--510.
[14]  M. Mei, C.-K. Lin, C.-T. Lin and J. W.-H. So, Traveling Wavefronts For Time-Delayed Reaction-Diffusion Equation: (II) Nonlocal Nonlinearity, J. Differential Equations, 247 (2009), 511--529.
[15]  M. Mei, Stability of Traveling Wavefronts for Time-Delay Reaction-Diffusion Equations, Discrete and Continuous Dynamical Systems, Supplement (2009), 526—535.
[16]  M. Mei and Y. S. Wong, Novel stability results for travelling wavefronts in an age-structured reaction-diffusion population model, Mathematical Biosciences and Engineering, 6 (2009), 743--752.
[17]  M. Mei and J. M-W. So, Stability of strong traveling waves for a non-local time-delayed reaction-diffusion equation, Proc. Royal Soc. Edinburgh (A). 138 (2008), 551--568.
[18]  D. Wei, J. Wu and M. Mei, A more effective iteration method for solving algebraic equations, Applied Mathematical Sciences, 2 (2008), no. 28, 1387--1391.
[19]  L.-P. Liu, M. Mei and Y.-S. Wong, Stationary solutions of phase transition in a coupled viscouelastic system,''Nonlinear Analysis Research Trends'', Ed. by N. Roux, Nova Sci. Publishers, Inc. 2008, p.p. 277--293.
[20]  G. Li, M. Mei and Y.-S. Wong, Nonlinear stability of travelling wavefronts in an age-structured reaction-diffusion population model, Mathematical Biosciences and Engineerings, 5, No. 1, (2008), 85--100.
[21]  J.-Y. Wu, D. Wei and M. Mei, Analysis on the critical speed of traveling waves, Applied Math. Letters, 20 (2007) 712--718.
[22]  M. Gander, M. Mei and G. Schmidt, Phase transition for a relaxation model of mixed type with periodic boundary condition, Appl. Math. Res. eXpress, Vol. 2007, Article ID: abm006, Oxford Univ. Press, 1-34, 2007.
[23]  M. Mei, Y. S. Wong and L.-P. Liu, Phase transitions in a coupled viscoelastic system with periodic initial-boundary condition: (I) existence and uniform boundedness, Disc. Cont. Dyn. Syst.-B, 7 (2007) 825--837.
[24]  M. Mei, Y. S. Wong and L.-P. Liu, Phase transitions in a couped viscoelastic system with periodic initial-boundary condition: (II) Convergence, Discrete and Continuous Dynamical Systems--B, 7 (2007) 839--857.
[25]  L.-P. Liu, M. Mei and Y. S. Wong, Asymptotic behavior of solutions to the Rosenau-Burgers equation with a periodic initial boundary, Nonlinear Analysis, 65 (2007) 2527--2539.
[26]  P. Marcati, M. Mei and B. Rubino, Optimal convergence rates to diffusion waves for solutions of the hyperbolic conservation laws with damping, J. Math. Fluid Mech. 7 (2005).
[27]  M. Mei, J.M.-H. So, M. Li and S.S. Shen, Asymptotic stability of travelling waves for Nicholson's blowflies equation with diffusion, Proc. Royal Soc. Edinburgh, A 134 (2004) 579--594.
[28]  L.-P. Liu and M. Mei, A better asymptotic profile of Rosenau-Burgers equation, Appl. Math. Comput. 131 (2002) 147--170.
[29]  H.-L. Li, P. Markowich and M. Mei, Asymptotic behaviour of solutions of the hydrodynamic model of semiconductors, Proc. Royal Soc. Edinburgh, A 132 (2002) 359--378.
[30]  H.-L. Li, P. Markowich and M. Mei, Asymptotic behavior of subsonic entropy solutions of the isentropic Euler-Poisson equations, Quart. Appl. Math. (2002) 773--796.
[31]  L. Hsiao, H.-L. Li and M. Mei, Convergence rates to superposition of two travelling waves of the solutions to a relaxation hyperbolic conservation laws with boundary effects, Math. Models Methods Appl. Sci. 11 (2001) 1143--1168.
[32]  P. Marcati and M. Mei, Convergence to nonlinear diffusion waves for solutions of the initial boundary problem to the hyperbolic conservation laws with damping, Quart. Appl. Math. 58 (2000) 763--784.
[33]  M. Mei and C. Schmeiser, Asymptotic profile of solution for the BBM-Burgers equation, Funkcial. Ekvac. 44 (2001) 151--170.
[34]  S. Kinami, M. Mei and S. Omata, Convergence to diffusion waves of the solutions for Benjamin-Bona-Mahony-Burgers equations, Appl. Anal. Vol.75 No.3-4 (2000).
[35]  M. Mei and B. Rubino, Convergence to traveling waves with decay rates for solutions of the initial boundary problem to a nonconvex relaxation model, J. Differential Equations, 159 (1999) 138--185.
[36]  M. Mei, L^q-decay rates of solutions for Benjamin-Bona-Mahony-Burgers equations, J. Differential Equations, 158 (1999) 314--340.
[37]  A. Matsumura and M. Mei, Convergence to travelling fronts of solutions of the p-system with viscosity in the presence of a boundary, Arch. Rational Mech. Anal. 146 (1999) 1--22.
[38]  M. Mei, Asymptotic behavior of solutions for a degenerate hyperbolic system of viscous conservation laws, Z. Angew. Math. Phys. 50 (1999) 617--637.
[39]  M. Mei, Remark on stability of shock profiles for nonconvex scalar viscous conservation laws, Bull. Inst. Math. Acad. Sinica, 27 (1999) 213--226.
[40]  I-L. Chern and M. Mei, Asymptotic stability of critical viscous shock waves for a degenerate hyperbolic viscous conservation laws, Commun. Partial Differential Equations, 23 (1998) 869-886.
[41]  M. Mei and T. Yang, Convergence rates to travelling waves for a nonconvex relaxation model, Proc. Royal Soc. Edinburgh, 128A (1998) 1053-1068.
[42]  M. Mei, Large-time behavior of solution for generalized Benjamin-Bona-Mahony-Burgers equations, Nonlinear Analysis, TMA 33 (1998) 699-714.
[43]  A. Matsumura and M. Mei, Nonlinear stability of viscous shock profile for a non-convex system of viscoelasticity, Osaka J. Math. 34 (1997) 589-603.
[44]  M. Mei, Stability of traveling wave solutions for nonconvex equations of barotropic viscous gas, Osaka J. Math. 34 (1997) 303-318.
[45]  M. Mei and K. Nishihara, Nonlinear stability of travelling waves for one dimensional viscoelastic materials with non-convex nonlinearity, Tokyo J. Math. 20(1997) 241-264.
[46]  M. Mei, Long-time behavior of solution for Rosenau-Burgers equation (I), Appl. Anal. 63 (1996) 315-330.
[47]  M. Mei, Long-time behavior of solution for Rosenau-Burgers equation (II), Appl. Anal. 68 (1998) 333--356.
[48]  M. Mei, Stability of shock profiles for nonconvex scalar viscous conservation laws, Math. Models Methods Appl. Sci. 5 (1995) 279-296.
[49]  M. Mei and Y.-K. Xiao, Analyses for a mathematical model of the pattern formation on shells of molluscs, Appl. Math.-JCU 10B (1995) 411-418.
[50]  F. Huang and M. Mei, Global solutions to the initial value problems for higher-dimensional nonlinear fourth-order parabolic equations. (Chinese) Appl. Math.-JCU, 8 (1993), no. 1, Ser. A, 45-52.
[51]  M. Mei, Smooth solutions to initial value problems for a class of coupled reaction-diffusion systems. (Chinese) J. Xinjiang Univ. Natur. Sci. 10 (1993), no. 2, 28-35.
[52]  M. Mei and Y.-K. Xiao, Monotonic decay of solutions to neutron transport problems with nonlocal boundary constraints. (Chinese) Math. Appl. (Wuhan) 5 (1992), no. 4, 109-112.
[53]  M. Mei,Global smooth solutions of the Cauchy problem for higher-dimensional generalized pulse transmission equations. (Chinese) Acta Math. Appl. Sinica 14 (1991), no. 4, 450-461.
[54]  M. Mei, Maximum principles and asymptotic properties of nonnegative solutions to the Maxwell-Boltzmann equation. (Chinese) J. Math. (Wuhan) 10 (1990), no. 3, 341-348.
[55]  M. Mei, On nonlinear coupled reaction-diffusion equations, Acta Math. Sci. 9 (1990) 341--348.