[1] | F.-M. Huang, M. Mei and Y. Wang, Large time behavior of solutions to n-dimensional bipolar hydrodynamic model for semiconductors, SIAM J. Math. Anal. 43, (2011), in press. |
[2] | F. Huang, M. Mei, Y. Wang, and H. Yu, Asymptotic convergence to stationary waves for unipolar hydrodynamic model of semiconductors, SIAM J. Math. Anal. 43, No.1 (2011). |
[3] | F. Huang, M. Mei, Y. Wang, and H. Yu, Asymptotic convergence to planar stationary waves for multi-dimensional unipolar hydrodynamic model of semiconductors, J. Differential Equations, 250 (2011), in press. |
[4] | M. Mei and Z.-X. Yu, Asymptotics and uniqueness of travelling waves for non-monotone delayed systems on 2D lattices, Canadian Math. Bulletin, (2011), in press. |
[5] | M. Mei, C. Ou and X.-Q. Zhao, Global stability of monostable traveling waves for nonlocal time-delayed reaction-diffusion equations, SIAM J. Math. Anal. 42, No.6 (2010), 2762--2790. |
[6] | M. Mei, Best asymptotic profile for hyperbolic p-system with damping, SIAM J. Math. Anal. 42, (2010), 1-23. |
[7] | H. Ma and M. Mei, Best asymptotic profile for linear damped p-system with boundary effect, J. Differential Equations, 249 (2010), 446--484. |
[8] | C.-K. Lin, C.-T. Lin and M. Mei, Asymptotic Behavior of Solution to Nonlinear Damped p-System with Boundary Effect, International Journal of Numerical Analysis and Modelling, Series B, 1 (2010), 70--92. |
[9] | C.-K. Lin and M. Mei, On travelling wavefronts of the Nicholson's blowflies equation with diffusion, Proc. Royal Soc. Edinburgh (A), 140A (2010), 135--152. |
[10] | M. Mei, Hyperbolic damped p-system and diffusion phenomena, RIMS lecture series of "Mathematical Analysis in Fluid and Gas Dynamics",RIMS Kôkyûroku 1690, Kyoto University, Japan, 2010. |
[11] | D. Wei, J. Y. Wu and M. Mei, Remark on Critical Speed of Traveling Wavefronts for Nicholson's Blowflies Equation with Diffusion, Acta Math. Sci., 30B (5), (2010), 1561—1566. |
[12] | M. Mei, Nonlinear diffusion waves for hyperbolic p-system with nonlinear damping, J. Differential Equations, 247 (2009), 1275--1269. |
[13] | M. Mei, C.-K. Lin, C.-T. Lin and J. W.-H. So, Traveling Wavefronts For Time-Delayed Reaction-Diffusion Equation: (I) Local Nonlinearity, J. Differential Equations, 247 (2009), 495--510. |
[14] | M. Mei, C.-K. Lin, C.-T. Lin and J. W.-H. So, Traveling Wavefronts For Time-Delayed Reaction-Diffusion Equation: (II) Nonlocal Nonlinearity, J. Differential Equations, 247 (2009), 511--529. |
[15] | M. Mei, Stability of Traveling Wavefronts for Time-Delay Reaction-Diffusion Equations, Discrete and Continuous Dynamical Systems, Supplement (2009), 526—535. |
[16] | M. Mei and Y. S. Wong, Novel stability results for travelling wavefronts in an age-structured reaction-diffusion population model, Mathematical Biosciences and Engineering, 6 (2009), 743--752. |
[17] | M. Mei and J. M-W. So, Stability of strong traveling waves for a non-local time-delayed reaction-diffusion equation, Proc. Royal Soc. Edinburgh (A). 138 (2008), 551--568. |
[18] | D. Wei, J. Wu and M. Mei, A more effective iteration method for solving algebraic equations, Applied Mathematical Sciences, 2 (2008), no. 28, 1387--1391. |
[19] | L.-P. Liu, M. Mei and Y.-S. Wong, Stationary solutions of phase transition in a coupled viscouelastic system,''Nonlinear Analysis Research Trends'', Ed. by N. Roux, Nova Sci. Publishers, Inc. 2008, p.p. 277--293. |
[20] | G. Li, M. Mei and Y.-S. Wong, Nonlinear stability of travelling wavefronts in an age-structured reaction-diffusion population model, Mathematical Biosciences and Engineerings, 5, No. 1, (2008), 85--100. |
[21] | J.-Y. Wu, D. Wei and M. Mei, Analysis on the critical speed of traveling waves, Applied Math. Letters, 20 (2007) 712--718. |
[22] | M. Gander, M. Mei and G. Schmidt, Phase transition for a relaxation model of mixed type with periodic boundary condition, Appl. Math. Res. eXpress, Vol. 2007, Article ID: abm006, Oxford Univ. Press, 1-34, 2007. |
[23] | M. Mei, Y. S. Wong and L.-P. Liu, Phase transitions in a coupled viscoelastic system with periodic initial-boundary condition: (I) existence and uniform boundedness, Disc. Cont. Dyn. Syst.-B, 7 (2007) 825--837. |
[24] | M. Mei, Y. S. Wong and L.-P. Liu, Phase transitions in a couped viscoelastic system with periodic initial-boundary condition: (II) Convergence, Discrete and Continuous Dynamical Systems--B, 7 (2007) 839--857. |
[25] | L.-P. Liu, M. Mei and Y. S. Wong, Asymptotic behavior of solutions to the Rosenau-Burgers equation with a periodic initial boundary, Nonlinear Analysis, 65 (2007) 2527--2539. |
[26] | P. Marcati, M. Mei and B. Rubino, Optimal convergence rates to diffusion waves for solutions of the hyperbolic conservation laws with damping, J. Math. Fluid Mech. 7 (2005). |
[27] | M. Mei, J.M.-H. So, M. Li and S.S. Shen, Asymptotic stability of travelling waves for Nicholson's blowflies equation with diffusion, Proc. Royal Soc. Edinburgh, A 134 (2004) 579--594. |
[28] | L.-P. Liu and M. Mei, A better asymptotic profile of Rosenau-Burgers equation, Appl. Math. Comput. 131 (2002) 147--170. |
[29] | H.-L. Li, P. Markowich and M. Mei, Asymptotic behaviour of solutions of the hydrodynamic model of semiconductors, Proc. Royal Soc. Edinburgh, A 132 (2002) 359--378. |
[30] | H.-L. Li, P. Markowich and M. Mei, Asymptotic behavior of subsonic entropy solutions of the isentropic Euler-Poisson equations, Quart. Appl. Math. (2002) 773--796. |
[31] | L. Hsiao, H.-L. Li and M. Mei, Convergence rates to superposition of two travelling waves of the solutions to a relaxation hyperbolic conservation laws with boundary effects, Math. Models Methods Appl. Sci. 11 (2001) 1143--1168. |
[32] | P. Marcati and M. Mei, Convergence to nonlinear diffusion waves for solutions of the initial boundary problem to the hyperbolic conservation laws with damping, Quart. Appl. Math. 58 (2000) 763--784. |
[33] | M. Mei and C. Schmeiser, Asymptotic profile of solution for the BBM-Burgers equation, Funkcial. Ekvac. 44 (2001) 151--170. |
[34] | S. Kinami, M. Mei and S. Omata, Convergence to diffusion waves of the solutions for Benjamin-Bona-Mahony-Burgers equations, Appl. Anal. Vol.75 No.3-4 (2000). |
[35] | M. Mei and B. Rubino, Convergence to traveling waves with decay rates for solutions of the initial boundary problem to a nonconvex relaxation model, J. Differential Equations, 159 (1999) 138--185. |
[36] | M. Mei, L^q-decay rates of solutions for Benjamin-Bona-Mahony-Burgers equations, J. Differential Equations, 158 (1999) 314--340. |
[37] | A. Matsumura and M. Mei, Convergence to travelling fronts of solutions of the p-system with viscosity in the presence of a boundary, Arch. Rational Mech. Anal. 146 (1999) 1--22. |
[38] | M. Mei, Asymptotic behavior of solutions for a degenerate hyperbolic system of viscous conservation laws, Z. Angew. Math. Phys. 50 (1999) 617--637. |
[39] | M. Mei, Remark on stability of shock profiles for nonconvex scalar viscous conservation laws, Bull. Inst. Math. Acad. Sinica, 27 (1999) 213--226. |
[40] | I-L. Chern and M. Mei, Asymptotic stability of critical viscous shock waves for a degenerate hyperbolic viscous conservation laws, Commun. Partial Differential Equations, 23 (1998) 869-886. |
[41] | M. Mei and T. Yang, Convergence rates to travelling waves for a nonconvex relaxation model, Proc. Royal Soc. Edinburgh, 128A (1998) 1053-1068. |
[42] | M. Mei, Large-time behavior of solution for generalized Benjamin-Bona-Mahony-Burgers equations, Nonlinear Analysis, TMA 33 (1998) 699-714. |
[43] | A. Matsumura and M. Mei, Nonlinear stability of viscous shock profile for a non-convex system of viscoelasticity, Osaka J. Math. 34 (1997) 589-603. |
[44] | M. Mei, Stability of traveling wave solutions for nonconvex equations of barotropic viscous gas, Osaka J. Math. 34 (1997) 303-318. |
[45] | M. Mei and K. Nishihara, Nonlinear stability of travelling waves for one dimensional viscoelastic materials with non-convex nonlinearity, Tokyo J. Math. 20(1997) 241-264. |
[46] | M. Mei, Long-time behavior of solution for Rosenau-Burgers equation (I), Appl. Anal. 63 (1996) 315-330. |
[47] | M. Mei, Long-time behavior of solution for Rosenau-Burgers equation (II), Appl. Anal. 68 (1998) 333--356. |
[48] | M. Mei, Stability of shock profiles for nonconvex scalar viscous conservation laws, Math. Models Methods Appl. Sci. 5 (1995) 279-296. |
[49] | M. Mei and Y.-K. Xiao, Analyses for a mathematical model of the pattern formation on shells of molluscs, Appl. Math.-JCU 10B (1995) 411-418. |
[50] | F. Huang and M. Mei, Global solutions to the initial value problems for higher-dimensional nonlinear fourth-order parabolic equations. (Chinese) Appl. Math.-JCU, 8 (1993), no. 1, Ser. A, 45-52. |
[51] | M. Mei, Smooth solutions to initial value problems for a class of coupled reaction-diffusion systems. (Chinese) J. Xinjiang Univ. Natur. Sci. 10 (1993), no. 2, 28-35. |
[52] | M. Mei and Y.-K. Xiao, Monotonic decay of solutions to neutron transport problems with nonlocal boundary constraints. (Chinese) Math. Appl. (Wuhan) 5 (1992), no. 4, 109-112. |
[53] | M. Mei,Global smooth solutions of the Cauchy problem for higher-dimensional generalized pulse transmission equations. (Chinese) Acta Math. Appl. Sinica 14 (1991), no. 4, 450-461. |
[54] | M. Mei, Maximum principles and asymptotic properties of nonnegative solutions to the Maxwell-Boltzmann equation. (Chinese) J. Math. (Wuhan) 10 (1990), no. 3, 341-348. |
[55] | M. Mei, On nonlinear coupled reaction-diffusion equations, Acta Math. Sci. 9 (1990) 341--348. |