[1] | A.S. Wood, S. Kutluay, A heat balance integral model of the thermistor,Int. J. Heat Mass Transfer, 38-10 (1995) 1831-1840. |
[2] | S. Kutluay, A.R. Bahadır, A. Özdeş, The numerical solution of one-phase classical stefan problem, J. Comput. Appl. Math.,81(1997) 135-144. |
[3] | S. Kutluay, A.R. Bahadır, A. Özdeş, A variety of Finite Difference Methods to the Thermistor with a New Modified Electrical Conductivity, Appl. Math. Comput., 106(2-3)(1999)205-213. |
[4] | S. Kutluay, A.R. Bahadır, A. Özdeş, Various Methods to the Thermistor Problem with a Bulk Electrical Conductivity, Int. J. Numer. Meth. Engng. 45(1999)1-12. |
[5] | S. Kutluay, A.R. Bahadır, A. Özdeş, Numerical Solution of one-dimensional Burgers equation: explicit and exact-explicit finite difference methods, J. Comput. Appl. Math. 103(1999)251-261. |
[6] | S. Kutluay, A.R. Bahadır, A. Özdeş, A Small Time Solutions for the Korteweg-DeVries Equation, Appl. Math. Comput., 107 (2000) 203-210. |
[7] | S. Kutluay, A. Esen, A lumped Galerkin method for solving the Burgers equation, Int. J. Comput. Math., 81(11) (2004) 1433-1444. |
[8] | S. Kutluay, A. Esen, A B-spline finite element method for the thermistor problem with the modified electrical conductivity, Appl. Math. Comput., 156 (2004) 621-632. |
[9] | S. Kutluay, A. Esen, A linearized numerical scheme for Burgers-like equations, Appl. Math. Comput., 156 (2004) 295-305. |
[10] | S. Kutluay, A. Esen, İ. Dağ, Numerical solutions of the Burgers' equation by the least-squares quadratic B-spline finite element method, J. Comput. Appl. Math., 167 (2004) 21-33. |
[11] | S. Kutluay, A. Esen, An Isotherm migration formulation for one-phase Stefan problem with a time dependent Neumann condition, Appl. Math. Comput.,150 (2004) 59-67. |
[12] | A. Esen, S. Kutluay, A numerical solution of the Stefan problem with a Neumann-type boundary condition by enthalpy method, Appl. Math. Comput., 148 (2004) 321-329. |
[13] | S. Kutluay, A.S. Wood, Numerical solutions of the thermistor problem with a ramp function electrical conductivity, Appl. Math. Comput.,148(1) (2004) 145-162. |
[14] | S. Kutluay, Numerical schemes for one-dimensional Stefan-like problems with a forcing term, Appl. Math. Comput., 168 (2) (2005) 1159-1168. |
[15] | S. Kutluay, A. Esen, Finite element approaches to the PTC thermistor problem, Appl. Math. Comput., 163(1) (2005) 147-162. |
[16] | S. Kutluay, A. Esen, Finite element solution of the thermistor problem with a ramp electrical conductivity, Appl. Math. Comput., 161(3) (2005) 897-913. |
[17] | S. Kutluay, A. Esen, Numerical solutions of the thermistor problem by spline finite elements, Appl. Math. Comput.,162(1) (2005) 475-489. |
[18] | T. Öziş, A. Esen, S. Kutluay, Numerical solution of Burgers' equation by quadratic B-spline finite elements, Appl. Math. Comput., 165 (2005) 237-249. |
[19] | S. Özer, S. Kutluay, An analytical-numerical method for solving the Korteweg-de Vries equation, Appl. Math. Comput., 164 (2005) 789-797. |
[20] | A. Esen, S. Kutluay, Application of a lumped Galerkin method to the regularized long wave equation,Appl. Math. Comput., 174 (2) (2006) 833-845. |
[21] | S. Kutluay, A. Esen, A finite difference solution of the regularized long wave equation, Math. Probl. Eng., (2006), Art.No.85743 2006, 14 pages. |
[22] | S. Kutluay, A.S. Wood and A.Esen, A heat balance integral solution of the thermistor problem with a modified electrical conductivity, Appl. Math. Model., 30 (4) (2006) 386-394. |
[23] | A. Esen, S. Kutluay, A linearized implicit finite-difference method for solving the equal width wave equation,Int. J. Comput. Math., 83 (3) (2006) 319-330. |
[24] | A. Esen, S. Kutluay, Solitary wave solutions of the modified equal width wave equation, Communications in Nonlinear Science and Numerical Simulations,13(8) (2008) 1538-1546. |
[25] | A. Esen, S. Kutluay, New solitary solutions for the generalized RLW equation by He's Exp-function method, Int.J.Nonlinear Science & Numerical simulation, 10(5) (2009) 551-556. |
[26] | S. Kutluay, A. Esen, Exp-function method for solving the generalized improved KdV equation, Int.J.Nonlinear Science & Numerical Simulation, 10(6) (2009) 717-725. |
[27] | A. Esen, S. Kutluay, Application of the the Exp-function method to solve the two dimensional sine-Gordon equation, Int. J. Nonlinear Science & Numerical Simulation, 10(10) (2009) 1355-1359. |
[28] | S. Kutluay, A. Esen and O. Taşbozan, The (G'/G)-expansion method for some nonlinear evolution equations, Appl.Math.Comput., 217(1) (2010) 384-391. |
[29] | A. Özdeş, S. Kutluay, A.R. Bahadır, A. Şahin, A heat balance integral solution to Burger's equation in a space dimension, Balkan Physics Letters, 4 (4) (1996) 251-256. |