American Journal of Stem Cell Research

American Journal of Stem Cell Research is an international, peer-reviewed, worldwide, open access journal. It is dedicated to publishing high-quality manuscripts focusing on the biology and applications of stem cell research. The journal explains the special emphasis on basic translational and clinical research into stem cell therapeutics, including animal models and clinical trials.


Rachel Sarig

Editorial Board Member of American Journal of Stem Cell Research

Staff Scientist, Weizmann Institute of Science, Israel

Research Areas

Stem Cells, Differentiation, Reprogramming

Education

2000–2004PostDoctorDepartment of Biological Regulation, Weizmann Institute of Science
1995-2000Ph.DDepartment of Molecular Cell Biology, Weizmann, Institute of Science
1993-1994M.Med.ScBen-Gurion University Medical School
1990-1992B.ScBar-Ilan University, Faculty of Life Sciences

Experience

2011-presentDept. of Biological Regulation
2008-2010Dept. of Molecular Cell Biology
2004-presentStaff Scientist at the Weizmann Institute of Science
2004-2007Dept. of Molecular Cell Biology

Membership

Member of Editorial Board of World Journal of Stem
Member, Editorial Board of Stem Cell Discovery

Publications: Conferences/Workshops/Symposiums/Journals/Books

[1]  R. Sarig and B. Rager-Zismann (1995). Measles is here to stay. Harefua, 129: 51-54.
[2]  R. Sarig, V. Mezger-Lallemand, I. Gitelman, C. Davis, O. Fuchs, D. Yaffe and U. Nudel (1999). Targeted inactivation of Dp71, the major non-muscle product of the DMD gene: differential activity of the Dp71 promoter during development. Hum. Mol. Gen., 8(1): 1-10. Citations: 35.
[3]  R. Sarig, V. Mezger-Lallemand, S. Leibovitz, and U. Nudel (2000). Increased efficiency of homologous recombination in ES cells by cleavage at both ends of homology in the targeting vector. Transgenic Res. 9(2): 79-80
[4]  M. Grinberg, R. Sarig , Y. Zaltsman, D. Frumkin, N. Grammatikakis, E. Reuveny and A. Gross (2002). tBID homooligomerizes in the mitochondrial membrane to induce apoptosis. J. Biol. Chem. 277(14):12237-12245. Citations: 91.
[5]  Sarig R, Zaltsman Y, Marcellus RC, Flavell R, Mak TW, Gross A (2003). BID-D59A is a potent inducer of apoptosis in primary embryonic fibroblasts. J. Biol. Chem. 278(12):10707-15. Citations: 42.
[6]  Dalloz C*, Sarig R*, Fort P*, Yaffe D, Bordais A, Pannicke T, Grosche J, Mornet D, Reichenbach A, Sahel J, Nudel U, Rendon A (2003). (* equal contribution) Targeted inactivation of dystrophin gene product Dp71: Phenotypic impact in mouse retina. Hum. Mol. Genet. 12(13):1543-54. Citations: 56.
[7]  Kamer I*, Sarig R*, Zaltsman Y, Niv H, Oberkovitz G, Regev L, Haimovich G, Lerenthal Y, Marcellus RC, Gross A. (2005). (* equal contribution). Proapoptotic BID is an ATM effector in the DNA-damage response. Cell. 26;122(4):593-603. Citations: 96.
[8]  Sarig R, Baruchi Z, Fuchs O, Nudel U and Yaffe D. Regeneration and trans-differentiation potential of muscle derived stem cells propagated as myospheres (2006). Stem Cells, 24(7): 1769-78.
[9]  Kochupurakkal BS, Sarig R*, Fuchs O, Piestun D, Rechavi G, Givol D. (2007) (* equal contribution) Nanog inhibits the switch of myogenic cells towards the osteogenic lineage. Biochem Biophys Res Commun. 25;365(4):846-50.
[10]  Molchadsky A, Shats I, Goldfinger N, Pevsner-Fischer M, Olson M, Rinon A, Tzahor E, Lozano G, Zipori D, Sarig R and Rotter V. (2008) p53 serves as a "guardian" of mesenchymal differentiation programs, in a cell fate dependent manner. PLoS One, 2008;3(11):e3707
[11]  Aharoni R, Eilam R, Aizman E, Fuchs O, Arnon R, Yaffe D, Sarig R (2009) Transplanted myogenic progenitor cells express neuronal markers in the CNS and ameliorate disease in the mouse model of multiple sclerosis. J. Neuroimmunology 215(1-2):73-83.
[12]  Sarig R, Fuchs O, Tencer L, Panski A, Nudel U, Yaffe D (2010) Cloned myogenic cells can transdifferentiate in vivo into neuron-like cells. PLoS One. 21;5(1):e8814.
[13]  Brosh R , Sarig R, Bar Natan E, Molchadsky A, Madar S, Bornstein C, Buganim Y, Shapira T, Goldfinger N, Paus R and Rotter V (2010) p53-dependent Transcriptional Regulation of EDA2R and its Involvement Chemotherapy-induced Hair Loss. FEBS Lett. 584(11):2473-7.
[14]  Sarig R, Rivlin N, Brosh R, Bornstein C, Kamer I, Ezra O, Molchadsky A, Goldfinger N, Brenner O and Rotter V (2010) p53 plays a pivotal role in preventing malignant transformation of induced pluripotent stem cells. J. Exp. Med. 207(10):2127-40
[15]  Bornstein C, Brosh R, Molchadsky A, Madar S, Goldstein I, Goldfinger N, Sarig R and Rotter V (2011) SPATA18, a spermatogenesis-associated gene, is a transcriptional target of p53. Mol Cell Biol, 31(8):1679-89.
[16]  Rinon A, Molchadski A, Nathan E, Yovel G, Rotter V, Sarig R and Tzahor E (2011) p53 regulates cranial neural crest cell growth and epithelial-mesenchymal transition/delamination processes. Development, 138(9):1827-38.