[1] | J.C. Benjumea et al.. A method to obtain the Lie group associated with a nilpotent Lie algebra. Comput. Math. Appl. 51:9-10 (2006), 1493-1506. |
[2] | E.M. Fedriani and A.F. Tenorio. Technical Progress: an approach from Lie transformation group theory. J. Quant. Meth. Econ. Bus. Admin. 1 (2006), 5-24 (in Spanish). |
[3] | J.C. Benjumea et al. The Maximal Abelian Dimension of Linear Algebras formed by Strictly Upper Triangular Matrices. Theor. Math. Phys+ 152:3 (2007), 1225-1233. |
[4] | J.C. Benjumea et al. Minimal linear representations of low-dimensional nilpotent Lie algebras. Math. Scand. 102:1 (2008), 17-26. |
[5] | A.F. Tenorio. Solvable Lie Algebras and Maximal Abelian Dimensions. Acta Mathematica Universitatis Comenianae 77:1 (2008), 141-145. |
[6] | I. Hernández et al. Some applications of Lie Theory to Economics and Finance. J. Quant. Meth. Econ. Bus. Admin. 6 (2008), 74-94 (in Spanish). |
[7] | I. Hernández et al. Lie Theory: Applications for solving problems in Mathematical Finance and Economics. Appl. Math. Comput. 208:2 (2009), 446-452. |
[8] | M. Ceballos et al. The computation of abelian subalgebras in the Lie algebra of upper-triangular matrices. Analele Stiint. Univ. Ovidius Constanta 16:1 (2008), 59-66. |
[9] | J.C. Benjumea et al. Computing the law of a family of solvable Lie algebras. Int. J. Algebr.Comput. 19:3 (2009), 337-345. |
[10] | M. Ceballos et al. Algorithm to compute the maximal abelian dimension of Lie algebras. Computing 84 (2009), 231-239. |
[11] | M. Ceballos et al. Abelian subalgebras in some particular types of Lie algebras. Nonlinear Anal.-Theor. 71:12 (2009), e401-e408. |
[12] | M. Ceballos et al. Computing Matrix Representations of Filiform Lie Algebras. Lect. Notes Comput. Sc. 6244 (2010), 61-72. |
[13] | M. Ceballos et al. The computation of abelian subalgebras in low-dimensional solvable Lie algebras. WSEAS Trans. Math. 9:1 (2010), 22-31. |
[14] | M. Ceballos, J. Nez and A.F. Tenorio. Complete triangular structures and Lie algebras. Int. J. Comput. Math. 88:9 (2011), 1839-1851. |
[15] | J. Nez and A.F. Tenorio. A computational study of a family of nilpotent Lie algebras. J. Supercomputing. In press. |
[16] | M. Ceballos et al. Study of Lie algebras by using combinatorial structures. Linear Algebra Appl. In press. |
[17] | J.C. Benjumea et al. Maximal abelian dimensions in some families of nilpotent Lie algebras. Algebr. Representation Th. In press. |