[1] | Chou, Y.-M. and Polansky, A. M. (1993). Power of tests of some process capability indices. Communications in Statistics, Series B: Simulation and Computation, 22, 523–544. |
[2] | Polansky, A. M. and Schucany, W. R. (1997). Kernel smoothing to improve bootstrap confidence intervals. Journal of the Royal Statistical Society, Series B, 59, 821–838. |
[3] | Polansky, A. M. (1997). Inexact control variates for the iterated bootstrap. Journal of Statistical Computation and Simulation, 59, 83–99. |
[4] | Guerra, R., Polansky, A. M. and Schucany, W. R. (1997). Smoothed bootstrap confidence intervals with discrete data. Computational Statistics and Data Analysis, 26, 163–176. |
[5] | Chou, Y.-M., Polansky, A. M., and Mason, R. L. (1998). Transforming non-normal data to normality in statistical process control. Journal of Quality Technology, 30, 133–141. |
[6] | Polansky, A. M. (1998). A smooth nonparametric approach to process capability. Quality and Reliability Engineering International, 14, 43–48. |
[7] | Polansky, A. M., Chou, Y.-M. and Mason R. L. (1998). Estimating process capability indices for truncated distributions. Quality Engineering, 11, 257-265. |
[8] | Polansky, A. M. (1999). Upper bounds on the true coverage of bootstrap percentile type confidence intervals. American Statistician, 53, 362–369. |
[9] | Polansky, A. M., Chou, Y.-M., and Mason, R. L. (1999). An algorithm for fitting Johnson transformations to non-normal data. Journal of Quality Technology, 31, 345–350. |
[10] | Polansky, A. M. (2000). An algorithm for computing a smooth nonparametric process capability estimate. Journal of Quality Technology, 32, 284–289. |
[11] | Polansky, A. M. (2000). Stabilizing bootstrap-t confidence intervals for small samples. Canadian Journal of Statistics, 28, 501–516. |
[12] | Polansky, A. M. and Baker E. R. (2000). Multistage plug-in bandwidth selection for kernel distribution function estimates. Journal of Statistical Computation and Simulation, 65, 63–80. |
[13] | Polansky, A. M. (2000). A smooth nonparametric approach to multivariate process capability. Technometrics, 43, 199–211. |
[14] | Polansky, A. M. (2000). Bandwidth selection for the smoothed bootstrap percentile method. Computational Statistics and Data Analysis, 36, 333–349. |
[15] | Polansky, A. M. and Check, C. E. (2001). Tests for trends in environmental compliance. Journal of Agricultural, Biological and Environmental Statistics, 7, 452–468. |
[16] | Polansky, A. M. and Kirmani, S. N. U. A. (2002). Quantifying the capability of industrial processes. Handbook of Statistics: Statistics in Industry, Vol 22, 625–656. |
[17] | Polansky, A. M. (2003). Supplier selection based on bootstrap confidence regions of process capability indices. Reliability, Quality and Safety Engineering, 10, 1–14. |
[18] | Polansky, A. M. (2003). Selecting the best treatment in designed experiments. Statistics in Medicine, 22, 3461–3471. |
[19] | Polansky, A. M. (2005). A general framework for constructing control charts. Quality and Reliability Engineering International, 21, 633–653. |
[20] | Polansky, A. M. (2005). Nonparametric estimation of distribution functions of non-standard mixtures. Communications in Statistics-Theory and Methods, 34, 1711–1724. |
[21] | Polansky, A. M. (2006). Permutation methods for comparing process capabilities. Journal of Quality Technology, 38, 254–266. |
[22] | Polansky, A. M. (2007). Detecting change-points in Markov chains. Computational Statistics and Data Analysis, 51, 6013–6026. |
[23] | Polansky, A. M. (2007). Nonparametric process capability indices. Encyclopedia of Statistics in Quality and Reliability, Volume III, 1462–1466. |
[24] | Chou, Y.-M. and Polansky, A. M. (2007). Process capability indices for non-normal distributions. Encyclopedia of Statistics in Quality and Reliability, Volume III, 1459–1462. |
[25] | Polansky, A. M. (2007). Sampling from virtual populations. Encyclopedia of Statistics in Quality and Reliability, Volume IV, 1715–1719. |
[26] | Kirmani, S. N. U. A. and Polansky, A. M. (2009). Multivariate process capability via Lowner ordering. Linear Algebra and Its Applications, 430, 2681–2689. |
[27] | Frobish, D., Ebrahimi, N. and Polansky, A. M. (2009). Parametric estimation of change-points for panel count data in recurrent events models. Journal of Statistics and Applications, to appear. |
[28] | Polansky, A. M. (2009). Using the smoothed bootstrap for statistical inference for Markov chains. The Pakistani Journal of Statistics, 25, 553-570. |
[29] | Polansky, A. M. (2010). Ordered inference using observed confidence levels. Computational Statistics and Data Analysis, 54, 233-244. |