International Journal of Optoelectronic Engineering

International Journal of Optoelectronic Engineering is a peer-reviewed journal mainly publishing the innovative academic thesis, the research note, the research letter in the field of optics and electronics. The journal aims at providing an emerging platform for publication of original research so that the engineers can exchange and share professional, technical and academic knowledge on any aspect of optoelectronic engineering discipline.


Hongfei Liu

Editorial Board Member of International Journal of Optoelectronic Engineering

Research Scientist, Institute of Materials Research and Engineering, Singapore

Research Areas

Semiconductor Science and Technology

Education

2002-2004Postdoctoral researcherThe Optoelectronics Research Center (ORC), Tampere University of Technology, Finland
2001-2002Postdoctoral scientistThe Physics Department, University of Wisconsin-Milwaukee, Milwaukee, USA
1996-2001Ph.DThe Institute of Physics, Chinese Academy of Sciences, Beijing 100080, People's Republic of China
1996B.ScThe Department of Electrical Engineering, Xi'an JiaoTong University, Xi'an 710049, People's Republic of China

Experience

2011-presentScientist III at the Institute of Materials Research and Engineering (IMRE), Singapore
2009-2011Adjunct Assistant Professor at the Department of Materials Science and Engineering, National University of Singapore
2006-2011Senior Research Engineer at the Institute of Materials Research and Engineering (IMRE), Singapore
2004-2006Department of Electrical and Computer Engineering, National University of Singapore
2004-2004Visiting scientist at the Institute of Solid State Physics, Jena University,Germany

Membership

2005-current: Member of Materials Research Society, Singapore (MRS-S)

Publications: Conferences/Workshops/Symposiums/Journals/Books

[1]  Effects of annealing on structural and optical properties of InGaN/GaN multiple quantum wells at emission wavelength of 490 nm H. F. Liu*, W. Liu, A. M. Yong, X. H. Zhang, S. J. Chua, and D. Z. Chi, J. Appl. Phys., 110, 06xxxx in press (2011).
[2]  Deposition and characterizations of ZnO thin films on Al2O3 (0001) substrates with III-arsenide intermediating layers H. F. Liu*, S. J. Chua, G. X. Hu, and H. Gong, Open Appl. Phys. J. 4, 41 (2011).
[3]  Metal-nanoparticles-coating-induced enhancement and weakening of resonant Raman scattering in ZnO: Effect of surface-electric field H. F. Liu*, A. Huang, S. Tripathy, and S. J. Chua, J. Raman Spectrosc. Rapid communication, in press, online: April 2011.
[4]  Influence of phosphorus doping and post-growth annealing on electrical and optical properties of ZnO/c-sapphire thin films grown by sputtering H. F. Liu* and S. J. Chua, J. Cryst. Growth, 324, 31 (2011).
[5]  Anomalous temperature-dependency of phonon linewidths probed by Raman scattering from β-FeSi2 thin films H. F. Liu*, A. Huang, and D. Z. Chi, J. Appl. Phys., 109, 083538 (2011).
[6]  Fabrication and transfer of nanoporous alumina thin films for templating applications: Metal dots array deposition and porous ZnO film growth H. F. Liu*, E. S. Lim, P. K. H. Tung, and N. Xiang, Thin Solid Films 519, 3050, (2011).
[7]  Thermal annealing of nanocrystallite Fe3S4 films deposited on Si substrates by dc-magnetron sputtering at room temperature H. F. Liu*, A. Huang, and D. Z. Chi, J. Phys. D: Appl. Phys., 43, 455405 (2010).
[8]  Epitaxial growth and chemical lift-off of GaInN/GaN heterostructures on c-and r-sapphire substrates employing ZnO sacrificial templates H. F. Liu*, W. Liu, and S. J. Chua, J. Vac. Sci. Technol. A, 28, 590 (2010).
[9]  Phosphorus doping behavior in ZnO thin films: effects of doping concentration and post-growth thermal annealing H. F. Liu* and S. J. Chua, Appl. Phys. Lett., 96, 091902 (2010). No. 15 of the Top 20 Most Downloaded Articles during the month.
[10]  Evolution of resonant Raman scattering spectra of ZnO crystallites upon post-growth thermal annealing H. F. Liu*, S. J. Chua, G. X. Hu, and H. Gong, J. Cryst. Growth., 312, 527 (2010).
[11]  Effects of low-temperature-buffer, rf-power, and annealing on structural and optical properties of ZnO/Al2O3 (0001) thin films grown by RF-magnetron sputtering H. F. Liu* and S. J. Chua, J. Appl. Phys., 106, 032511 (2009).
[12]  Surface optical phonon and A1(LO) in ZnO submicron crystals: effects of morphology and dielectric coating H. F. Liu*, S. Tripathy, G. X. Hu, and H. Gong, J. Appl. Phys., 105, 053507 (2009).
[13]  Growth mechanism and optical properties of In2O3 nanorods synthesized on ZnO/GaAs(111) substrate H. F. Liu*, G. X. Hu, and H. Gong, J. Cryst. Growth., 311, 268 (2009).
[14]  Effect of oxygen on low-temperature growth and band alignment of ZnO/GaN heterostructures H. F. Liu*, G. X. Hu, H. Gong, K. Y. Zang, and S. J. Chua, J. Vac. Sci. Technol. A 26, 1462 (2008). No. 3 of the Top 20 Most Downloaded Articles during the month.
[15]  Observation of interfacial reactions and recrystallization of extrinsic phases in epitaxial grown ZnO/GaAs heterostructures H. F. Liu*, A. S. W. Wong, G. X. Hu, and H. Gong, J. Cryst. Growth., Priority communication, 310, 4305 (2008).
[16]  Effects of substrate on the structure and orientation of ZnO thin-film grown by RF-magnetron sputtering H. F. Liu*, S. J. Chua, G. X. Hu, H. Gong, and N. Xiang, J. Appl. Phys., 102, 083529 (2007). No. 18 of the Top 20 Most Downloaded Articles during the month.
[17]  Annealing effects on electrical and optical properties of ZnO thin-film samples deposited by RF-magnetron sputtering on GaAs (001) substrates H. F. Liu*, S. J. Chua, G. X. Hu, H. Gong and N. Xiang, J. Appl. Phys., 102, 063507 (2007).
[18]  Radio-frequency magnetron sputtering and wet thermal oxidation of ZnO thin film H. F. Liu*, S. J. Chua, G. X. Hu, H. Gong and N. Xiang, J. Appl. Phys., 102, 043530 (2007).
[19]  On overannealing of GaIn(N)As/Ga(N)As multiple quantum wells grown by molecular beam epitaxy H. F. Liu*, S. J. Chua and N. Xiang, J. Appl. Phys., 102, 013504 (2007).
[20]  Influence of GaNAs strain compensation layers upon annealing of GaIn(N)As/GaAs quantum wells H. F. Liu* and N. Xiang, Thin Solid Film 515, 4462 (2007).
[21]  Anneal-induced structural changes of GaIn(N)As/Ga(N)As multiple quantum wells grown by molecular beam epitaxy H. F. Liu*, N. Xiang, H. L. Zhou, S. J. Chua, P. Yang, and H. Moser, J. Crystal Growth 301-302 548 (2007).
[22]  Growth temperature-and thermal anneal-induced crystalline reorientation of aluminum on GaAs (100) grown by molecular beam epitaxy H. F. Liu*, S. J. Chua and N. Xiang, J. Appl. Phys., 101, 053510 (2007).
[23]  Growth of InAs on micro-and nano-scale patterned GaAs (001) substrates by molecular beam epitaxy H. F. Liu*, N. Xiang and S. J. Chua, Nanotechnology, 17, 5278 (2006).
[24]  Effect of indium segregation on the optical and structural properties of GaInNAs/GaAs quantum well at emission wavelength of 1.3-μm H. F. Liu*, V. Dixit, and N. Xiang, J. Appl. Phys., 100, 083518 (2006).
[25]  Raman scattering probe of anharmonic effects due to temperature and compositional disorder in GaNxAs1-x H. F. Liu*, N. Xiang, S. Tripathy, and S. J. Chua, J. Appl. Phys., 99, 103503 (2006).
[26]  Influence of N incorporation on In content in GaInNAs/GaNAs quantum wells grown by plasma-assisted molecular beam epitaxy H. F. Liu*, N. Xiang, and S. J. Chua, Appl. Phys. Lett., 89, 71905 (2006).
[27]  Structural and optical properties of GaInAs/GaAs and GaInNAs/GaNAs multiple quantum-wells upon post-growth annealing H. F. Liu*, N. Xiang, S. J. Chua, and M. Pessa, Appl. Phys. Lett., 88, 181912 (2006).
[28]  Influence of GaNAs strain compensation layers on the properties of GaIn(N)As/GaAs quantum wells upon annealing H. F. Liu* and N. Xiang, J. Appl. Phys., 99, 53508 (2006). It has been selected for the March 20, 2006 issue of Virtual Journal of Nanoscale Science & Technology.
[29]  Anneal-induced interdiffusion in 1.3-μm GaInNAs/GaAs quantum well structures grown by molecular beam epitaxy H. F. Liu*, V. Dixit, and N. Xiang, J. Appl. Phys., 99, 13503 (2006).
[30]  Annealing behavior of N-bonding configurations in GaN0.023As0.997 ternary alloy grown on GaAs (001) substrate by molecular beam epitaxy H. F. Liu*, N. Xiang, and S. J. Chua, J. Crystal Growth, 290, 24 (2006).
[31]  Effect of rapid thermal annealing on the properties of GaNAs thin films grown by molecular beam epitaxy H. F. Liu*, N. Xiang, S. J. Chua, and S. Tripathy, J. Crystal Growth, 288, 44 (2006).
[32]  Temperature dependence of Raman spectrum of GaNAs ternary alloys grown by molecular beam epitaxy H. F. Liu*, N. Xiang, S. Tripathy, and S. J. Chua, Thin Solid Film, 515, 759 (2006).
[33]  In-situ annealing effect on the surface and microscopic structure of near-surface GaInNAs/GaAs quantum wells grown by MBE H. F. Liu*, S. Karirinne, C. S. Peng, T. Jouhti, J. Konttinen and M. Pessa, J. Crystal Growth 263, 171 (2004).
[34]  Influence of Nitride and Oxide cap layers upon the annealing of 1.3-mm GaInNAs/GaAs quantum wells H. F. Liu*, C. S. Peng, J. Likonen, T. Jouhti, S. Karirinne, and M. Pessa, J. Appl. Phys. 95, 4102 (2004).
[35]  Annealing effect on the optical and structural properties of 1.3-mm GaInNAs/GaAs quantum-well samples capped with dielectric layers H. F. Liu*, C. S. Peng, E.-M. Pavelescu, T. Jouhti, S. Karirinne, J. Konttinen, M. Pessa Appl. Phys. Lett., 84, 478 (2004).
[36]  Structure and optical properties of near-surface GaInNAs/GaAs quantum well at emission wavelength of 1.3 mm H. F. Liu*, C. S. Peng, E.-M. Pavelescu, S. Karirinne, T. Jouhti, M. Valden and M. Pessa, Appl. Phys. Lett., 82, 2428 (2003).
[37]  Effect of rapid thermal annealing on the structural characteristics of cubic GaN epilayers grown on GaAs (001) by MBE H. F. Liu*, H. Chen, Zhiqiang Li, Li Wan, Q. Huang, Junming Zhou, J. Crystal Growth, 222, 503 (2001).
[38]  MBE growth and Raman studies of cubic and hexagonal GaN films on (001)-oriented GaAs substrates H. F. Liu*, H. Chen, Zhiqiang Li, Li Wan, Q. Huang, Junming Zhou, N. Yang, Kun Tao, Y.J. Han, Y. Luo, J. Crystal Growth, 218, 191 (2000).
[39]  Epitaxial growth of cubic and hexagonal GaN films on GaAs (001) substrates by MBE Liu Hongfei*, Chen Hong, Li Zhiqiang, Wan Li, Huang Qi, Zhou Junming, Luo Yi, HanYanjun, ACTA PHYSICA SINICA, 49, 1132 (2000).
[40]  Growth and properties of hexagonal GaN on GaAs (001) substrate by RF-molecular beam epitaxy using an AlAs nucleation layer Hongfei Liu*, H. Chen, Zhiqiang Li, Li Wan, Q. Huang, Junming Zhou, N. Yang, Kun Tao, Y.J. Han, Y. Luo, J. Crystal Growth, 212, 391 (2000).
[41]  Thermal annealing effect on 1.3 mm GaInNAs/GaAs quantum well structure capped with dielectric films H. F. Liu*, C. S. Peng, J. Likonen, J. Konttinen, V.D.S. Dhaka, N. Tkachenko, and M. Pessa, IEE Proc.-Optoelectron., 151, 267 (2004).
[42]  Epitaxial growth and characterization of GaN films on (001) GaAs substrates by RF-MBE H. F. Liu*, H. Chen, Z. Q. Li, L. Wan, Q. Huang, and J. M. Zhou, J. Crystal Growth, 227-228, 390 (2001).
[43]  Method for high-quality single crystal GaN-based nanobelts H. F. Liu*, W. Liu, S. J. Chua, and C. B. Soh, Singapore Patent, SG201104702-4, filed on July 04, 2011.