American Journal of Condensed Matter Physics

American Journal of Condensed Matter physics is a peer reviewed, scientific journal, which publishes papers that contain fundamental condensed matter science.


Aswini Ghosh

Editorial Board Member of American Journal of Condensed Matter Physics

Professor, Indian Association for the Cultivation of Science, India

Research Areas

Disordered Condensed Matter Physics: Structure, Relaxation Dynamics and Scaling

Education

1993Marie Curie FellowInstitute of Ceramics and Glass, Madrid, Spain
1987-1991Postdoctoral Research Associate Mahendralal Sircar Unit, Indian Association for the Cultivation of Science, Kolkata, India.
1987Doctor of Philosophy University of Jadavpur, Kolkata, India
1978Master of Science University of Kalyani, India
1976Bachelor of ScienceUniversity of Calcutta, India

Experience

1991-1994Lecturer in the Department of Solid State Physics, Indian Association for the Cultivation of Science, Kolkata, India
2005-2008Professor in the Department of Solid State Physics, Indian Association for the Cultivation of Science, Kolkata, India
1999-2005Reader in the Department of Solid State Physics, Indian Association for the Cultivation of Science, Kolkata, India
1994-1999Senior Lecturer in the Department of Solid State Physics, Indian Association for the Cultivation of Science, Kolkata, India
1991-1994Lecturerin the Department of Solid State Physics, Indian Association for the Cultivation of Science, Kolkata, India
1991Lecturer in the Materials Science

Publications: Conferences/Workshops/Symposiums/Journals/Books

[1]  Broadband conductivity spectra of fast ion conducting silver selenite glasses: Dependence on power law and scaling, B. Deb, S. Bhattacharya and A. Ghosh, EPL (accepted)
[2]  Crystallization kinetics in selenium molybdate molecular glasses, B. Deb and A. Ghosh, EPL, 95, 26002 (2011).
[3]  Tunneling conductivity of lithiated transition metal oxide cathode Li0.9[Ni1/3Mn1/3Co1/3]O1.95, S. Kabi and A. Ghosh, Eur. Phys. J. B, 79, 377 (2011).
[4]  Correlation of structure and electrical conductivity of CdI2 doped silver borophosphate glass and nanocomposite, S. Kabi and A. Ghosh, J. Phys. Chem. C, 115, 9670 (2011).
[5]  Silver ion dynamics in Ag2S doped silver molybdate glass-nanocomposites: correlation of conductivity and scaling with structure, B. Deb and A. Ghosh, J. Phys. Chem. C, 115, 14141 (2011).
[6]  Poly Ethylene Oxide (PEO)-LiI Polymer Electrolytes Embedded with CdO Nanoparticles, A. Karmakar and A. Ghosh, J. Nanoparticle. Res. 13, 2989 (2011).
[7]  Ac conductivity and relaxation in CdO doped PEO-LiI nanocomposite electrolyte A. Karmakar and A. Ghosh, J. Appl. Phys., 110, 034101 (2011).
[8]  Dynamics of Ag+ ions and immobile salt effect in CdI2 doped silver phosphate glasses S. Kabi and A. Ghosh, Solid State Ionics, 187, 39 (2011).
[9]  Structural study of Ag2S doped silver molybdate glass-nanocomposites, B. Deb and A. Ghosh, J. Alloys. Comp. 509, 2256 (2011).
[10]  Structure and dielectric constant of silver molybdophosphate mixed network former glasses, B. Deb and A. Ghosh, J. Alloys. Comp. 509, 8251 (2011).
[11]  Dielectric permittivity and electric modulus of polyethylene oxide (PEO)-LiClO4 composite electrolytes, A. Karmakar and A. Ghosh, Current Appl. Phys. (2011) DOI:10.1016/j.cap.2011.08.017
[12]  Dielectric and conductivity relaxation in superionic AgI-Ag2O-SeO2 glasses B. Deb and A. Ghosh, J. Appl. Phys., 108, 074104 (2010).
[13]  Polaron conduction in Lix[Ni1/3Mn1/3Co1/3]O2-δ (x=1, 0.9 and δ= 0, 0.05) cathodes, S. Kabi and A. Ghosh, J. Appl. Phys. 107, 103715 (2010).
[14]  A comparison of ion transport in different Poly Ethylene Oxide (PEO)-lithium salt composite electrolytes, A.Karmakar and A. Ghosh, J. Appl. Phys. 107, 104113 (2010).
[15]  Relaxation dynamics in superionic molybdate glass-nanocomposites embedded with α-AgI nanoparticless S. Bhattacharya and A. Ghosh, J. Phys. Chem. C, 114, 5745 (2010).
[16]  Synthesis and characterization of AgI-Ag2O-SeO2 glass-nanocomposites embedded with β-AgI and Ag2SeO3 nanocrystals, B. Deb and A. Ghosh, J. Nanosci. Nanotechnol. 10, 6752 (2010).
[17]  Optical and other structural properties of some zinc vanadate semiconducting glasses, Ghosh, S. Bhattacharya and A. Ghosh, J. Alloys Compd. 490, 480 (2010).
[18]  Tunneling of large polarons in zinc vanadate semiconducting glasses, A. Ghosh, S. Bhattacharya and A. Ghosh, J. Phys: Condens. Matter, 21, 145802 (2009).
[19]  Electrical relaxation in CdI2 doped silver vanadate superionic glasses, A. Ghosh, D. Dutta, S. Kabi and A. Ghosh, J. Appl. Phys., 105, 064107 (2009).
[20]  Role of Ag2S nanoparticles on the dynamics of silver ions in silver-ultraphosphate glass nanocomposites, D. Dutta and A. Ghosh, J. Phys. Chem. C, 113, 9040 (2009).
[21]  Growth of a-AgI nanoparticles and b-AgI nanowires in superionic selenite glasses, S. Bhattacharya and A. Ghosh, Adv. Sci. Lett., 2, 55 (2009).
[22]  Electrical properties of nanocrystalline magnetite with large non-stiochiometry near Verwery transition, P. Brahma, S. Dutta, D. Dutta, S. Banerjee, A. Ghosh and D. Chakravorty, J. Magn. Magn. Mater. 321, 1045 (2009).
[23]  Observation of microwave plasmons in one-dimensional conjugated polymer chain, B. Mondal, D. Majumdar, A. Ghosh and S. K. Saha, Appl. Phys. Lett., 94, 183109 (2009).
[24]  Metallic silver nanowire of high aspect ratio: Formation and mechanism D. Dutta and A. Ghosh, Adv. Sci. Lett., 2, 381 (2009).
[25]  Correlation of ion dynamics and structure in superionic glasses and nanocomposites, D. Dutta and A. Ghosh, J. Non-Cryst. Solids, 355, 1930 (2009).
[26]  Correlation of ion dynamics and structure in superionic silver tellurite glasses, D. Dutta and A. Ghosh, J. Chem. Phys. 128, 044511 (2008).
[27]  Effect of ZnO nanoparticles on the structure and ionic relaxation in PEO-LiI polymer electrolytes, S. Bhattacharya and A. Ghosh, J. Nanosci. Nanotechnol., 8, 1922 (2008).
[28]  Frequency dependent conductivity of cadmium vanadate glassy semiconductor, A. Ghosh, S. Bhattacharya, D. P. Bhattacharya and A. Ghosh, J. Phys.: Condens. Matter, 20, 035203 (2008).
[29]  Hopping conduction in zinc vanadate semiconducting glasses, A. Ghosh, S. Bhattacharya, D. P. Bhattacharya and A. Ghosh, J. Appl. Phys., 103, 083703 (2008)
[30]  Relaxation dynamics in superionic glass-nanocomposites, S. Bhattacharya and A. Ghosh, J. Am. Ceram. Soc., 91, 753 (2008).
[31]  Dielectric properties and phase transition of zinc tris(thiourea) sulfate single crystal, S. Moitra, S. Bhattacharya, T. Kar and A. Ghosh, Physica B, 403, 3244 (2008).
[32]  Silver molybdate nanoparticles, nanowires and nanorods embedded in glass-nanocomposites, S. Bhattacharya and A. Ghosh, Phys. Rev. B., 75, 092103 (2007).
[33]  Dynamics of Li+ ions in strontium metaphosphate glasses, A. Dutta and A. Ghosh, J. Chem. Phys. 127, 144504 (2007).
[34]  Relaxation dynamics of Ag4Te3O8 glass nanocomposites embedded with Ag2S nanoparticles, D. Dutta and A. Ghosh, J. Chem. Phys., 127, 044708 (2007).
[35]  Electrical conductivity and relaxation in mixed alkali tellurite glasses S. Ghosh and A. Ghosh, J. Chem. Phys., 126, 184509 (2007).
[36]  Electrical transport properties of semiconducting lithium molybdate glass-nanocomposites, S. Bhattacharya and A. Ghosh, J. Chem. Phys., 127, 194709 (2007).
[37]  Optical and other structural properties of cadmium vanadate glasses, A. Ghosh, S. Bhattacharya and A. Ghosh, J. Appl. Phys., 101, 083511 (2007).
[38]  DC electrical properties of cadmium vanadate glassy semiconductors: a comparison with traditional glasses, A. Ghosh, S. Bhattacharya, D. P. Bhattacharya and A. Ghosh, J. Phys: Condens. Matter, 19, 106222 (2007).
[39]  Giant dielectric permittivity in aligned silver nanowires grown within (AgI)-(AgPO3) glass, P. K. Mukherjee, D. Dutta, S. Bhattacharya, A. Ghosh and D. Chakravorty, J. Phys. Chem. C, 111, 3914 (2007).
[40]  Relaxation in mixed alkali fluoride glasses, S. Ghosh and A. Ghosh, J. Non-Cryst. Solids, 353, 1287 (2007).
[41]  Structural and optical properties of lithium barium bismuthate glasses, A. Dutta and A. Ghosh, J. Non-Cryst. Solids, 353, 1333 (2007).
[42]  Conductivity relaxation in iodomolybdate glass-nanocomposites embedded with ZnO nanoparticles and a-AgI nanocrystals. S. Bhattacharya and A. Ghosh, J. Nanosci. Nanotechnol. 7, 3684 (2007).
[43]  Relaxation dynamics of Ag+ ions in superionic glass nanocomposites embedded with ZnO nanoparticles, S. Bhattacharya and A. Ghosh, Phys. Rev. B, 74, 184308 (2006).
[44]  Dynamics of Ag+ ions in Ag2S doped superionic AgPO3 glasses, S. Bhattacharya, D. Dutta and A. Ghosh, Phys. Rev. B, 73, 104201 (2006).
[45]  Dynamics of lithium ions in bismuthate glasses: Influence of strontium ions, Dutta and A. Ghosh, J. Chem. Phys., 125, 054508 (2006).
[46]  Transport properties of CdS nanowire embedded poly (3-hexyl thiophene) nanocomposites, S. Bhattacharya, S. Malik, A. K. Nandi and A. Ghosh, J. Chem. Phys., 125, 174717 (2006).
[47]  Formation of ZnO nanoparticles and -AgI nanocrystals embedded in superionic glass nanocomposites, S. Bhattacharya and A. Ghosh, Appl. Phys. Lett., 88, 133122 (2006).
[48]  Electrical properties of ion conducting molybdate glasses, S. Bhattacharya and A. Ghosh, J. Appl. Phys., 100, 114119 (2006).
[49]  Relaxation of silver ions in superionic borate glasses, S. Bhattacharya and A. Ghosh, Chem. Phys. Lett., 424, 295 (2006).
[50]  Mixed mobile ion effect and relaxation dynamics in fluoride glasses S. Ghosh and A. Ghosh, Phys. Chem. Glasses: European J. Glass Sci. and Technol. Part.B, 47, 206 (2006).
[51]  Relaxation dynamics in disordered superionic materials, Ghosh and S. Bhattacharya, in "Condensed Matter at the Leading Edge" (Nova Science Publishers, New York, USA, 2006), p. 310-325.
[52]  Structure and relaxation dynamics in superionic glasses, A. Ghosh and S. Bhattacharya, in "Materials Science and Technology: Fundamentals and Characterization", Vol. 1 (American Ceramic Society, USA, 2006) p. 337-344.
[53]  Relaxation dynamics in superionic glasses, A. Ghosh and S. Bhattacharya, in "Solid State Ionics and Its Applications", Vol. 1 (Macmillan India Ltd., New Delhi, India, 2006) p. 148-166.
[54]  Effect of alkaline earth ions on the dynamics of lithium ions in bismuthate glasses, Dutta and A. Ghosh, Phys. Rev. B, 72, 224203 (2005).
[55]  Dynamics of Ag+ ions in binary tellurite glasses, D. Dutta and A. Ghosh, Phys. Rev. B, 72, 024201 (2005).
[56]  Relaxation dynamics in AgI doped silver vanadate superionic glasses, S. Bhattacharya and A. Ghosh, J. Chem. Phys. 123, 124514 (2005).
[57]  Dynamics of lithium ions in calcium bismuthate glasses, Dutta and A. Ghosh, J. Chem. Phys., 122, 234510 (2005).
[58]  Transport properties of AgI doped silver molybdate superionic glass nanocomposites, S. Bhattacharya and A. Ghosh, J. Phys.: Condens. Matter, 17, 5655 (2005).
[59]  Mixed mobile ion effect in fluorozincate glasses, S. Ghosh and A. Ghosh, J. Phys.: Condens. Matter, 17, 3463 (2005).
[60]  Ion dynamics and mixed mobile ion effect in fluoride glasses, S. Ghosh and A. Ghosh, J. Appl. Phys., 97, 123525 (2005).
[61]  Relaxation of silver ions in fast ion conducting molybdate glasses, S. Bhattacharya and A. Ghosh, Solid State Ionics, 176, 1243 (2005).
[62]  Ionic conductivity of Li2O-BaO-Bi2O3 glasses, Dutta and A. Ghosh, J. Non-Cryst. Solids, 351, 203 (2005).
[63]  Conductivity spectra in fast ion conducting glasses: Mobile ions contributing to transport processes, S. Bhattacharya and A. Ghosh, Phys. Rev. B, 70, 172203 (2004).
[64]  Ionic dynamics in mixed alkali cadmium fluoride glasses, S. Ghosh and A. Ghosh, J. Chem. Phys. 121, 9611 (2004).
[65]  Li+ ion migration in strontium bismuthate glasses, Dutta and A. Ghosh, J. Phys.: Condens. Matter, 16, 7895 (2004).
[66]  Ionic relaxation in AgI-Ag2¬O-TeO¬2 glasses, D. Dutta and A. Ghosh, J. Phys.: Condens. Matter, 16, 2617 (2004).
[67]  Ionic conductivity and relaxation dynamics in fast ion conducting borate glasses, S. Bhattacharya and A. Ghosh, Defect and Diffusion Forum, 229, 29 (2004).
[68]  ac relaxation in silver vanadate glasses, S. Bhattacharya and A. Ghosh, Phys. Rev. B, 68, 224202 (2003).
[69]  Comment on ac conductivity of alkali tellurite glasses: Deviations from Summerfield scaling, A. Ghosh and S. Bhattacharya, Phys. Rev. Lett., 91, 049601 (2003).
[70]  Relaxation dynamics of charge carriers in some mixed alkali fluoride glasses, S. Ghosh and A. Ghosh, J. Chem. Phys. 119, 9106 (2003).
[71]  Environment of lead cations in oxide glasses probed by x-ray diffraction, U. Hoppe, R. Kranold, A. Ghosh, C. Landron, J. Neuefeind and P. Jovari, J. Non-Cryst. Solids, 328, 146 (2003).
[72]  Conductivity relaxation in some fast ion conducting AgI-Ag2O-V2O5 glasses, S. Bhattacharya and A. Ghosh, Solid State Ionics, 161, 61 (2003).
[73]  Glass and glass-transition, Ghosh, Ind. Sci. Cruiser, 17, 36 (2003).
[74]  Mixed mobile ion effect in fluoride glasses, S. Ghosh and A. Ghosh, Phys. Rev. B 66, 132204 (2002).
[75]  Polaron transport in semiconducting silver vanadate glasses, S. Bhattacharya and A. Ghosh, Phys. Rev. B 66, 132203 (2002).
[76]  Correlation of relaxation dynamics and conductivity spectra with cation constriction in ion-conducting glasses, Pan and A. Ghosh, Phys. Rev. B 66, 012301 (2002).
[77]  Conductivity relaxation in mixed alkali fluoride glasses, S. Ghosh and A. Ghosh, J. Phys: Condens. Matter, 14, 2531 (2002).
[78]  Structure and optical properties of lithium bismuthate glasses, Pan and A. Ghosh, J. Mater. Res., 17, 1941 (2002).
[79]  X-ray and neutron scattering studies of the structure of strontium vanadate glasses, U. Hoppe, R. Kranold, A. Ghosh, J. Neuefeind and D.T. Bowron, Phys. Chem. Glasses, 43C, 1 (2002).
[80]  Electrical conductivity and conductivity relaxation in mixed alkali fluoride glasses, S. Ghosh and A. Ghosh, Solid State Ionics, 149, 67 (2002).
[81]  New fast-ion-conducting glasses in the system of xAgI-(1-x)[0.30AgO1/2-0.35Bi¬2O3-0.35PbO], Pan and A. Ghosh, J. Mater. Sci. Lett., 21, 395 (2002).
[82]  Relaxation dynamics of charge carriers in fluoroaluminozincate glasses, M. Sural and A. Ghosh, Phys. Rev. B 64, 144203 (2001).
[83]  Conductivity spectra of sodium fluorozirconate glasses. A. Ghosh and M. Sural, J. Chem. Phys. 114, 3243 (2001).
[84]  Ac conductivity of strontium vanadate glasses, S. Sen and A. Ghosh, J. Phys: Condens. Matter, 13, 1973 (2001)
[85]  Ionic conductivity and relaxation in ZrF4-BaF2-YF3 glasses: effect of substitution of BaF2 by NaF, M. Sural and A. Ghosh, J. Non-Cryst. Solids, 291, 127 (2001).
[86]  Electrical transport properties of a supramolecular assembly, Pan, A. Ghosh, S.Chowdhury and D. Datta, Inorg. Chem. Com. 4, 507 (2001).
[87]  Transport mechanism in amorphous Bi2CuO4: its temperature dependence, A. Ghosh and M. Sural, Solid State Commun. 117, 349 (2001).
[88]  Scaling of the conductivity spectra in ionic glasses: Dependence on the structure, A. Ghosh and A. Pan, Phys. Rev. Lett., 84, 2188 (2000).
[89]  Relaxation dynamics of lithium ions in lead-bismuthate glasses, Pan and A. Ghosh, Phys. Rev. B 62, 3190 (2000).
[90]  Dependence of the conductivity on the concentration and the hopping frequency of charge carriers in fluoride glasses, M. Sural and A. Ghosh, Phys. Rev. B 61, 8610 (2000).
[91]  Dynamics of lithium ions in bismuthate glasses, Pan and A. Ghosh, J. Chem. Phys. 112, 1503 (2000).
[92]  A new family of lead-bismuthate glass with a large transmitting window, Pan and A. Ghosh, J. Non-Cryst Solids, 271, 157 (2000).
[93]  Electrical properties of semiconducting barium vanadate glasses, S. Sen and A. Ghosh, J. Appl. Phys. 87, 3355 (2000).
[94]  Structural properties of strontium vanadate glasses, S. Sen and A. Ghosh, J. Mater. Res. 15, 995 (2000).
[95]  Ionic conductivity and relaxation in ZnF2-AlF3-PbF2-LiF glasses, M. Sural and A. Ghosh, Solid State Ionics, 130, 259 (2000).
[96]  New fluoride glasses in the system ZnF2-AlF3-PbF2-LiF, M. Sural and A. Ghosh, J. Mater. Sci. Lett. 19, 41 (2000).
[97]  Ionic conductivity and relaxation dynamics in lithium tellurite glasses, Pan and A. Ghosh, Phys. Rev. B 60, 3224 (1999).
[98]  Polaronic transport properties of some vanadate glasses: Effect of alkali earth oxide modifiers, S. Sen and A. Ghosh, Phys. Rev. B 60, 15143 (1999).
[99]  Activation energy and conductivity relaxation in sodium tellurite glasses, Pan and A. Ghosh, Phys. Rev. B 59, 899 (1999).
[100]  A new scaling property of fluoride glasses: concentration and temperature independence of the conductivity spectra, A. Ghosh and M. Sural, Europhys. Lett. 47, 688 (1999).
[101]  Charge carrier transport with weak coupling in BaBiO3, A. Ghosh, Solid State Commun. 112, 45 (1999).
[102]  Dielectric and conductivity relaxation in lead vanadate glasses, S. Mandal and A. Ghosh, Philos. Mag. B, 79, 1175 (1999).
[103]  Semiconducting properties of magnesium vanadate glasses, S. Sen and A. Ghosh, J. Appl. Phys. 86, 2078 (1999).
[104]  Conductivity relaxation in ZrF4-BaF2-YF3-NaF glasses, M. Sural and A. Ghosh, J. Phys: Condens. Matter, 11, 3315 (1999).
[105]  Hopping conduction in calcium vanadate semiconducting glasses, S. Sen and A. Ghosh, J. Phys: Condens. Matter, 11, 8061 (1999).
[106]  Multiphonon hopping transport in strontium vanadate glasses, S. Sen and A. Ghosh, J. Phys: Condens. Matter, 11, 1529 (1999).
[107]  Structure and other physical properties of magnesium vanadate glasses, S. Sen and A. Ghosh, J. Non-Cryst. Solids, 256, 29 (1999).
[108]  Conductivity and relaxation in ZrF4-BaF2-YF3-LiF glasses: effect of substitution of BaF2 by LiF, M. Sural and A. Ghosh, Solid State Ionics, 126, 315 (1999).
[109]  Conductivity relaxation in zirconium fluoride glasses: effect of substitution of Zr4+ by Y3+ ions, M. Sural and A. Ghosh, Solid State Ionics, 120, 27 (1999).
[110]  Electrical conductivity and conductivity relaxation in ZrF4-BaF2-YF3-LiF glasses, M.Sural and A.Ghosh, J. Phys.: Condens. Matter, 10, 10577 (1998).
[111]  Transport properties of semiconducting Pb2Sr2CaCu3O8 glass, M.Sural and A.Ghosh, J. Phys.: Condens. Matter, 10, 9413 (1998).
[112]  Electrical properties of some alkaline earth vanadate glasses, A. Ghosh, M. Sural and S. Sen, J. Phys.: Condens. Matter, 10, 2578 (1998).
[113]  Multiphonon hopping transport in Bi2CuO4 single crystal, A. Ghosh and S. Hazra, Solid State Commun., 106, 677 (1998).
[114]  Electrical relaxation mechanism in unconventional bismuth cuprate glasses, S. Hazra and A. Ghosh, J. Appl. Phys., 84, 987 (1998).
[115]  Properties of unconventional lithium bismuthate glass, S. Hazra, S. Mandal and A. Ghosh, Phys. Rev. B 56, 8021 (1997).
[116]  Ac relaxation in some cuprate glasses, S. Hazra and A. Ghosh, Phys. Rev. B 55, 6278 (1997).
[117]  Comment on electrical and dielectric properties of Bi3Sr4Ca4Cu3Ox (3:4:4:3) glassy semiconductor, A. Ghosh, Phys. Rev. B 55, 2678 (1997).
[118]  Dielectric relaxation in lead iron oxide glass system, S. Mandal and A. Ghosh, J. Chem. Phys. 106, 6310 (1997).
[119]  Ac conductivity of bismuth cuprate glass, S. Hazra and A. Ghosh, J. Phys.: Condens. Matter, 9, 3981 (1997).
[120]  Transport mechanism in nonconventional bismuth cuprate glasses, S. Hazra, S. Mandal and A. Ghosh, J. Chem. Phys. 104, 10041 (1996).
[121]  Hopping conduction in unconventional lead cuprate glasses, S. Hazra and A. Ghosh, Phil. Mag. B, 74, 235 (1996).
[122]  Composition dependent ac electrical properties of lead vanadate glasses, S. Mandal and A. Ghosh, J. Phys. Soc. Jpn., 65, 818 (1996).
[123]  Electrical conduction in lead iron glasses, S. Mandal and A. Ghosh, J. Phys.: Condens. Matter, 8, 829 (1996).
[124]  Classical hopping in sol-gel cobalt silicate glasses, S. Hazra, A. Ghosh and D. Chakravorty, J. Phys.: Condens. Matter, 8, 10278 (1996).
[125]  Thermoelectric power of unconventional lead vanadate glasses, S. Mandal, D. Banerjee, R. Bhattacharya and A. Ghosh, J. Phys.: Condens. Matter, 8, 2865 (1996).
[126]  Structure and properties of unconventional glasses in the binary bismuth cuprate system, S. Hazra and A. Ghosh, Phys. Rev. B 51, 851 (1995).
[127]  Transport properties semiconducting ternary vanadate glasses, A. Ghosh, J. Chem. Phys. 102, 1385 (1995).
[128]  Transport properties of nonconventional lead cuprate glasses, S. Hazra and A. Ghosh, J. Chem. Phys. 103, 6270 (1995).
[129]  Structural properties of unconventional lead cuprate glasses, S. Hazra and A. Ghosh, J. Mater. Res., 10, 2374 (1995).
[130]  Electrical properties of sol-gel derived semiconducting cobalt silicate gel-glass, S. Hazra, A. Ghosh and D. Chakravorty, Solid State commun., 96, 507 (1995).
[131]  Ac electrical properties of lead iron oxide glasses, S. Mandal and A. Ghosh, J. Phys.: Condens. Matter, 7, 9543 (1995).
[132]  Structural studies of binary iron vanadate glass, S. Mandal S. Hazra, D. Das and A. Ghosh, J. Non-Cryst. Solids, 183, 315 (1995).
[133]  Glass formation domain and structural properties of nonconventional transition metal ion glass, A. Ghosh, Bull. Mater. Sci., 18, 53 (1995).
[134]  Electrical properties of lead vanadate glasses, S. Mandal and A. Ghosh, Phys. Rev. B 49, 3131 (1994).
[135]  Gel to glass conversion in cobalt silicate system, S. Hazra, A. Ghosh and D. Chakravorty, J. Mater. Sci. Lett. 13, 589 (1994).
[136]  Glass formation in PbO-Fe2O3 system with high PbO content, S. Mandal, S. Hazra and A. Ghosh, J. Mater. Sci. Lett. 13, 1054 (1994).
[137]  Structure and physical properties of glassy lead vanadates, S. Mandal and A. Ghosh, Phys. Rev. B 48, 9388 (1993).
[138]  Nonadiabatic polaron hopping in undoped and doped Bi2Sr2Ca2Cu3O10- glasses, A. Ghosh, Phys. Rev. B 48, 16081 (1993).
[139]  Complex ac conductivity of tellurium cuprate glassy semiconductors, A. Ghosh, Phys. Rev. B 47, 15537 (1993).
[140]  Electrical conduction in some sol-gel silicate glasses, A. Ghosh and D. Chakravorty, Phys. Rev. B 48, 5167 (1993).
[141]  Transport mechanism in semiconducting glassy silicon vanadates, A. Ghosh, J. Appl. Phys. 74, 3961 (1993).
[142]  Hopping transport in vanadium tellurite glasses containing antimony oxide, A. Ghosh, J. Phys. : Condens. Matter, 5, 4485 (1993).
[143]  Adiabatic hopping conduction in vanadium bismuth tellurite glasses, A. Ghosh, J. Phys. : Condens. Matter, 5, 8754 (1993).
[144]  Correlated barrier hopping in semiconducting tellurium molybdate glasses, A. Ghosh, Phys. Rev. B 45, 11318 (1992).
[145]  Polaron transport in iron vanadate glassy semiconductors, A. Ghosh, Phil. Mag. B, 63, 477 (1991).
[146]  Semiconducting properties of sol-gel derived vanadium silicate glasses, A. Ghosh and D. Chakravorty, Appl. Phys. Lett. 59, 855 (1991).
[147]  Transport properties of semiconducting CuO-Sb2O3-P2O5 glasses, A. Ghosh and D. Chakravorty, J. Phys. : Condens. Matter, 3, 3335 (1991).
[148]  Transport properties of vanadium germanate glassy semiconductors, A. Ghosh, Phys. Rev. B 42, 5665 (1990).
[149]  Ac conduction in iron bismuthate glassy semiconductors, A. Ghosh, Phys. Rev. B 42, 1388 (1990).
[150]  Frequency dependent conductivity in bismuth vanadate glassy semiconductors, A. Ghosh, Phys. Rev. B 41, 1479 (1990).
[151]  Electrical transport properties of molybdenum tellurite glassy semiconductors, A. Ghosh, Phil. Mag. B, 61, 87 (1990).
[152]  Hopping transport in the precursor glasses of the superconducting system Bi-Sr-Ca-Cu-O, A. Ghosh and D. Chakravorty, J. Phys. : Condens. Matter, 2, 649 (1990).
[153]  Electrical conductivity of semiconducting CuO-Bi2O3-P2O5 glasses, A. Ghosh and D. Chakravorty, J. Phys. : Condens. Matter, 2, 931 (1990).
[154]  Ac conduction in semiconducting CuO-Bi2O3-P2O5 glasses, A. Ghosh and D. Chakravorty, J. Phys. : Condens. Matter, 2, 5365 (1990).
[155]  Ac conductivity of amorphous Fe2O3-Bi2O3 oxide glasses, B.K. Chaudhuri, K. Som and A. Ghosh, Jpn. J. Appl. Phys. 29, 120 (1990).
[156]  Electrical properties of semiconducting amorphous copper tellurites, A. Ghosh, J. Phys. : Condens. Matter, 1, 7818 (1989).
[157]  Temperature dependent thermoelectric power of semiconducting bismuth vanadate glasses, A. Ghosh, J. Appl. Phys., 65, 227 (1989).
[158]  Transport properties of iron bismuthate glassy semiconductors, A. Ghosh, J. Appl. Phys., 66, 2425 (1989).
[159]  Dielectric properties of iron bismuthate glass, A. Ghosh, J. Mater. Sci. Lett., 8, 1055 (1989).
[160]  Memory switching in bismuth vanadate glass, A. Ghosh, J. Appl. Phys., 64, 2652 (1988).
[161]  Fundamental absorption edge in bismuth vanadate glasses, A. Ghosh, Phys. Status Solidi (a), 110, 652 (1988).
[162]  Anomalous conductivity and other properties of vanadium phosphate glasses with Bi2O3 or Sb2O3, A. Ghosh and B.K.Chaudhuri, J. Non-Cryst. Solids, 103, 82 (1988).
[163]  Effect of iron ion impurity on the ESR and electrical properties of bismuth vanadate glasses, A. Ghosh and B.K.Chaudhuri, J. Mater. Sci. Lett., 7, 357 (1988).
[164]  Preparation and characterisation of binary V2O5-Bi2O3 glasses, A. Ghosh and B.K.Chaudhuri, J. Mater. Sci., 22, 2369 (1987).
[165]  Conductivity minimum of the V2O5-P2O5 glasses containing Bi2O3 and Sb2O3, A. Ghosh and B.K.Chaudhuri, Key Engg. Mater., 13-15, 515 (1987).
[166]  Dc conductivity of V2O5-Bi2O3 glasses, A. Ghosh nd B.K.Chaudhuri, J. Non-Cryst. Solids, 83, 151(1986).
[167]  Dc conductivity of V2O5-P2O5-M2O3 (M = Bi and Sb) glasses, A. Ghosh and B.K.Chaudhuri and S. P. Sengupta, Ind. J. Phys. 60A, 401 (1986).
[168]  Low temperature DTA apparatus and the study of phase transition in some liquid and molecular crystals, Biswas, A. Ghosh and B. K. Chaudhuri, Ind. J. Cryog. 10, 137, (1985).
[169]  Adiabatic hopping in V2O5-Bi2O3 glasses, A. Ghosh and B.K.Chaudhuri, Ind. J. Phys. 58A, 62 (1984).