[1] | Lombardo R, Amenta P, Vivien M, Sabatier R (2011) Sensory Analysis via Multi-block Multivariate Additive PLS Splines. Journal of Applied Statistics doi:10.1080/02664763.2011.611239. |
[2] | Lombardo R (2011) The Analysis of Sensory and Chemical-Physical Variables via Multivariate Additive PLS Splines. Journal of Food and Quality Preference, 22:714-724, doi:10.1016/j.foodqual.2011.06.002. |
[3] | Lombardo, R., Durand J. F. and Faraj, A. (2011), Iterative design of experiments by non-linear PLS models. A case study: the reservoir simulator data to forecast oil production, Journal of Classification (in press, DOI: 10.1007/s00357-011) vol. 28, n1, pag 113-125. |
[4] | Lombardo R., Beh, E. J. and D'Ambra, A., (2011) Studying the dependence between ordinal-nominal categorical variables via orthogonal polynomials, Journal of Applied Statistics, 38, 2119-2132, DOI: 10.1080/02664763.2010.545118. |
[5] | Lombardo, R., (2011), Three-way association measure decompositions: the Delta index, Journal of Statistical Planning and Inference, 141, 1789-1799. |
[6] | Beh, E. J., Lombardo R. and Simonetti B., (2011), A European perception of food using two methods of correspondence analysis, Journal of Food and Quality Preference, 22, 226-231. |
[7] | Lombardo, R. and Beh, E. J., (2010) Simple and multiple correspondence analysis using orthogonal polynomials, Journal of Applied Statistics, 37, 2101-2116. |
[8] | Lombardo R. and Camminatiello, I., (2010) CATANOVA for two-way cross classified categorical data. Statistics: A Journal of Theoretical and Applied Statistics, 44, 57-71. |
[9] | Lombardo, R. and Meulman, J. (2010), Multiple correspondence analysis via polynomial transformations of ordered categorical variables, Journal of Classification, 27, 191-216. |
[10] | Lombardo, R., Tessitore, G. and van Rijckevorsel, J. L. A. (2009), Adaptive non-linear principal component and surface analysis, Journal of Advances and Applications in Statistics, 12, 85-98. |
[11] | Lombardo, R., Durand, J. F. and De Veaux, R. (2009), Model building in multivariate additive partial least squares splines via the GCV criterion, Journal of Chemometrics, 23, 605-617. |
[12] | Lombardo, R., Beh, E. J. and D'Ambra, L., (2007) Non-symmetric correspondence analysis with ordinal variables using orthogonal polynomials, Computational Statistics & Data Analysis, 52, 566-578. |
[13] | Lombardo, R. and Durand, J. F. (2005), Discriminant partial least-squares via splines: An application to evaluate patient satisfaction, Statistica & Applicazioni, 3, 77-85. |
[14] | D'Ambra, L., Lombardo, R. and Amenta, P. (2000), Multivariate co-inertia analysis for qualitative data by partial least squares, Journal of the Italian Statistical Society, 9, 23-37. |
[15] | Lombardo, R., Kroonenberg, P. and D'Ambra, L. (2000), Non-symmetric correspondence analysis: a simple tool in market share distribution, Journal of the Italian Statistical Society, 9, 107-126. |
[16] | Kroonenberg, P. and Lombardo, R. (1999), Non-symmetric correspondence analysis: A tool for analysing contingency tables with a dependence structure, Multivariate Behavioral Research, 34, 367-396. |
[17] | Kroonenberg, P. and Lombardo, R. (1998), Non-symmetric correspondence analysis: A tutorial, Kwantitatieve Methoden, 58, 57-83. |
[18] | Lombardo, R. and D'Ambra L. (1997), Internal and external decompositions for three-way contingency tables, Metron, 55, 171-184. |
[19] | Lombardo, R., Carlier, A. and D'Ambra, L. (1996), Non-symmetric correspondence analysis for three-way contingency tables, Methodologica, 4, 59-80. |