International Journal of Biological Engineering

International Journal of Biological Engineering is an international peer-reviewed multidisciplinary journal publishing original scientific research in all fields of biological pharmacy. Original research work that contributes significantly to further the scientific knowledge in biological pharmacy will be appreciated.


Siu-Tung Yau

Editorial Board Member of International Journal of Biological Engineering

Associate Professor, Cleveland State University, USA

Research Areas

Biosensing, Renewable Energy, Nanotech

Education

1991Ph.DElectrical Engineering, University of Illinois at Urbana-Champaign
1986M.ScElectrical Engineering, University of Illinois at Urbana-Champaign
1983B.ScElectrical Engineering, University of Southern California

Experience

2008-presentAdjunct staff, Department of Bioengineering, Lerner Institute of the Cleveland Clinic Foundation
2006-presentAssociate professor, Department of Electrical and Computer Engineering and Applied Biomedical Engineering Program (Also adjunct faculty of Department of Chemistry), Cleveland State University, Cleveland, OH
2001-2006Associate professor, Department of Physics and Astronomy, Hunter College, City University of New York, NY (also CUNY Graduate Center Faculty of Physics and Chemistry)

Publications: Conferences/Workshops/Symposiums/Journals/Books

[1]  Q. Liu, M. H. Nayfeh and S.-T. Yau, "A silicon nanoparticle-based polymeric nano-composite material for glucose sensing", Journal of Electroanalytical Chemistry 657, 172-175 (2011).
[2]  Y. Choi and S.-T. Yau, "Ultrasensitive Biosensing with Zepto-Molar Detection Limit and Resolution", Biosensor and Bioelectronics, 26, 3386-3390 (2011).
[3]  Q. Liu, M. H. Nayfeh, S.-T. Yau, "Brushed-on flexible supercapacitor sheets using a nanocomposite of polyaniline and carbon nanotubes", Journal of Power Sources 195 7480-7483(2010).
[4]  Q. Liu, M. H. Nayfeh and S.-T. Yau, "Supercapacitor electrodes based on polyaniline-silicon nanoparticle composite" Journal of Power Sources 195, 3956-3959 (2010).
[5]  Y. Choi and S.-T. Yau, "A Field-Effect Enzymatic Amplifying Detector with Pico-Molar Detection Limit", Analytical Chemistry 81, 7123-7126 (2009).
[6]  Y. Choi and S.-T. Yau, "A hybrid biofuel cell based on electrooxidation of glucose using ultra-small silicon nanoparticles", Biosensors & Bioelectronics 24, 3103-3107(2009). 2
[7]  Y. Choi, G. Wang, M. Nayfeh and S.-T. Yau, "Electrooxidation of organic fuels using ultrasmall silicon nanoparticles", Applied Physics Letters 93, 164103 (2008).
[8]  Gang Wang and Siu-Tung Yau "Spatial confinement induced enzyme stability for bioelectronic applications", Journal of Physical Chemistry C 111, 11921-11926 (2007).
[9]  G. Wang and S.-T. Yau "Preserved enzymatic activity of glucose oxidase immobilized on unmodified electrodes for glucose detection", Biosensors & Bioelectronics, 22, 2158-2164 (2007).
[10]  Y. Choi, G. Wang and S.-T. Yau, "An electronic composite material with room-temperature negative differential resistance", Applied Physics Letters, 89, 233116 (2006).
[11]  G. Wang, K. Mantey, M. Nayfeh and S.-T. Yau, "Amperometric Detection of Bio-Medically Important Substances Using Si29 Particles", Applied Physics Letters, 89, 243901 (2006).
[12]  G. Wang and S.-T. Yau, "Preserved enzymatic activity of glucose oxidase immobilized on an unmodified electrode", Electrochemistry Communications, 8, 987-992 (2006).
[13]  S.-T. Yau, Iris Thai, Ela Strauss, Narender Rana and Gang Wang., "Inlaying nanoscale surface recess structures with nanoscale objects", Journal of Nanoscience and Nanotechnology 6, 796-801 (2006).
[14]  G. Wang and S.-T. Yau, "Enzyme-Immobilized Si-SiO2 Electrode: Fast Electron Transfer with Preserved Enzymatic Activity", Applied Physics Letters 87, 253901 (2005).
[15]  S.-T. Yau and G. Qian, "A Prototype Protein Field-Effect Transistor", Applied Physics Letters 86, 103508 (2005).
[16]  E. Strauss, B. Thomas and S.-T. Yau, "Enhancing electron transfer at the cytochrome c-immobilized microelectrode and macroelectrode", Langmuir 20, 8768-8772 (2004).
[17]  N. Rana and S.-T. Yau, "Constructing low-dimensional assemblies of nanoparticles", Nanotechnology 15, 275-278 (2004).
[18]  A. Feeling-Taylor, S.-T. Yau, D. Petsev, R. Nagel, R. E. Hirsch and P. G. Vekilov, "Crystallization mechanisms of hemoglobin c in the R-state", Biophysical Journal 87, 1-9 (2004).
[19]  H. Lin, S.-T. Yau and P. G. Vekilov, "Dissipating step bunches during crystallization under transport control", Physical Review E 67, article # 031606 (2003).
[20]  M.D. Serrano, O. Galkin, S.-T. Yau, B.R. Thomas, R.L. Nagel, R. E.Hirsch, and P.G. Vekilov, "Are protein crystallization mechanisms relevant to understanding and control of polymerization of deoxyhemoglobin S?", Journal of Crystal Growth 232, 368-375 (2001).
[21]  S.-T. Yau, B.R. Thomas, and P.G. Vekilov, "Real time, in-situ, monitoring of apoferritin crystallization and defect formation with molecular resolution", Journal of Crystal Growth 232, 188-194 (2001).
[22]  S.-T. Yau and P.G. Vekilov, "Direct observation of nucleus structure and nucleation pathways", Journal of American Chemical Society 123, 1080-1089 (2001).
[23]  S.-T. Yau, B.R. Thomas, O. Galkin, O. Gliko, and P.G. Vekilov, "Molecular mechanisms of microheterogeneityinduced defect formation in ferritin crystallization", Proteins: Structure, Function, Genetics, 43, 343-352 (2001).
[24]  S.-T. Yau, D.N. Petsev, B.R. Thomas, and P.G. Vekilov, "Molecular-level thermodynamic and kinetic parameters for the self-assembly of apoferritin molecules into crystals", Journal of Molecular Biology, 303, 667-678 (2000).
[25]  S.-T. Yau and P. G. Vekilov, "Quasi-planar nucleus structure in apoferritin crystallalisation", Nature 406, 494-497 (2000).
[26]  S.-T. Yau, B. R. Thomas, and P. G. Vekilov, "Molecular mechanisms of crystallisation and defect formation", Physical Review Letters 85, 353-356 (2000).
[27]  S.-T. Yau, C. Zhang, and P.Innis, "Asymmetry and rectification of tunnel current in a nanometer metal-conjugated polymer-metal junction", Journal of Chemical Physics 112, 6774-6778 (2000). 3
[28]  S.-T. Yau, J.N. Barisci, and G. M. Spinks, "Tunneling spectroscopy and spectroscopic imaging of granular metallicity of polyaniline", Applied Physics Letters 74, 667-669 (1999).
[29]  S.-T. Yau, P. Mulvaney, Wen Xu, and G. Spinks, "Nonlinear single-electron tunneling through nanometre colloid particles at room temperature", Physical Review B 57(Rapid Communication), R15124-15127 (1998).
[30]  S.-T. Yau, H. B. Sun, P. J. Edwards, and P. Lynam, "Shot noise of sequential tunneling in a triple-barrier resonanttunneling diode", Physical Review B 55, 12880-12883 (1997).
[31]  S.-T. Yau, X. Zheng, and M. H. Nayfeh, "Nanolithography of Chemically Prepared Si with a Scanning Tunneling Microscope", Applied Physics Letters 59, 2457-2459 (1991).
[32]  S.-T. Yau, D. Saltz, and M. H. Nayfeh, "Laser-Assisted Deposition of Nanometer Structures Using a Scanning Tunneling Microscope", Applied Physics Letters 57, 2913-2915 (1990).
[33]  Q. Liu, M. H. Nayfeh and S.-T. Yau, "A silicon nanoparticle-based polymeric nano-composite material for glucose sensing", Journal of Electroanalytical Chemistry 657, 172-175 (2011).
[34]  Y. Choi and S.-T. Yau, "Ultrasensitive Biosensing with Zepto-Molar Detection Limit and Resolution", Biosensor and Bioelectronics, 26, 3386-3390 (2011).
[35]  Q. Liu, M. H. Nayfeh, S.-T. Yau, "Brushed-on flexible supercapacitor sheets using a nanocomposite of polyaniline and carbon nanotubes", Journal of Power Sources 195 7480-7483(2010).
[36]  Q. Liu, M. H. Nayfeh and S.-T. Yau, "Supercapacitor electrodes based on polyaniline-silicon nanoparticle composite" Journal of Power Sources 195, 3956-3959 (2010).
[37]  Y. Choi and S.-T. Yau, "A Field-Effect Enzymatic Amplifying Detector with Pico-Molar Detection Limit", Analytical Chemistry 81, 7123-7126 (2009).
[38]  Y. Choi and S.-T. Yau, "A hybrid biofuel cell based on electrooxidation of glucose using ultra-small silicon nanoparticles", Biosensors & Bioelectronics 24, 3103-3107(2009).
[39]  Y. Choi, G. Wang, M. Nayfeh and S.-T. Yau, "Electrooxidation of organic fuels using ultrasmall silicon nanoparticles", Applied Physics Letters 93, 164103 (2008).
[40]  Gang Wang and Siu-Tung Yau "Spatial confinement induced enzyme stability for bioelectronic applications", Journal of Physical Chemistry C 111, 11921-11926 (2007).
[41]  G. Wang and S.-T. Yau "Preserved enzymatic activity of glucose oxidase immobilized on unmodified electrodes for glucose detection", Biosensors & Bioelectronics, 22, 2158-2164 (2007).
[42]  Y. Choi, G. Wang and S.-T. Yau, "An electronic composite material with room-temperature negative differential resistance", Applied Physics Letters, 89, 233116 (2006).
[43]  G. Wang, K. Mantey, M. Nayfeh and S.-T. Yau, "Amperometric Detection of Bio-Medically Important Substances Using Si29 Particles", Applied Physics Letters, 89, 243901 (2006).
[44]  G. Wang and S.-T. Yau, "Preserved enzymatic activity of glucose oxidase immobilized on an unmodified electrode", Electrochemistry Communications, 8, 987-992 (2006).
[45]  S.-T. Yau, Iris Thai, Ela Strauss, Narender Rana and Gang Wang., "Inlaying nanoscale surface recess structures with nanoscale objects", Journal of Nanoscience and Nanotechnology 6, 796-801 (2006).
[46]  G. Wang and S.-T. Yau, "Enzyme-Immobilized Si-SiO2 Electrode: Fast Electron Transfer with Preserved Enzymatic Activity", Applied Physics Letters 87, 253901 (2005).
[47]  S.-T. Yau and G. Qian, "A Prototype Protein Field-Effect Transistor", Applied Physics Letters 86, 103508 (2005). 16. E. Strauss, B. Thomas and S.-T. Yau, "Enhancing electron transfer at the cytochrome c-immobilized microelectrode and macroelectrode", Langmuir 20, 8768-8772 (2004).
[48]  N. Rana and S.-T. Yau, "Constructing low-dimensional assemblies of nanoparticles", Nanotechnology 15, 275-278 (2004).
[49]  A. Feeling-Taylor, S.-T. Yau, D. Petsev, R. Nagel, R. E. Hirsch and P. G. Vekilov, "Crystallization mechanisms of hemoglobin c in the R-state", Biophysical Journal 87, 1-9 (2004).
[50]  H. Lin, S.-T. Yau and P. G. Vekilov, "Dissipating step bunches during crystallization under transport control", Physical Review E 67, article # 031606 (2003).
[51]  M.D. Serrano, O. Galkin, S.-T. Yau, B.R. Thomas, R.L. Nagel, R. E.Hirsch, and P.G. Vekilov, "Are protein crystallization mechanisms relevant to understanding and control of polymerization of deoxyhemoglobin S?", Journal of Crystal Growth 232, 368-375 (2001).
[52]  S.-T. Yau, B.R. Thomas, and P.G. Vekilov, "Real time, in-situ, monitoring of apoferritin crystallization and defect formation with molecular resolution", Journal of Crystal Growth 232, 188-194 (2001).
[53]  S.-T. Yau and P.G. Vekilov, "Direct observation of nucleus structure and nucleation pathways", Journal of American Chemical Society 123, 1080-1089 (2001).
[54]  S.-T. Yau, B.R. Thomas, O. Galkin, O. Gliko, and P.G. Vekilov, "Molecular mechanisms of microheterogeneityinduced defect formation in ferritin crystallization", Proteins: Structure, Function, Genetics, 43, 343-352 (2001).
[55]  S.-T. Yau, D.N. Petsev, B.R. Thomas, and P.G. Vekilov, "Molecular-level thermodynamic and kinetic parameters for the self-assembly of apoferritin molecules into crystals", Journal of Molecular Biology, 303, 667-678 (2000).
[56]  S.-T. Yau and P. G. Vekilov, "Quasi-planar nucleus structure in apoferritin crystallalisation", Nature 406, 494-497 (2000).
[57]  S.-T. Yau, B. R. Thomas, and P. G. Vekilov, "Molecular mechanisms of crystallisation and defect formation", Physical Review Letters 85, 353-356 (2000).
[58]  S.-T. Yau, C. Zhang, and P.Innis, "Asymmetry and rectification of tunnel current in a nanometer metal-conjugated polymer-metal junction", Journal of Chemical Physics 112, 6774-6778 (2000).
[59]  S.-T. Yau, J.N. Barisci, and G. M. Spinks, "Tunneling spectroscopy and spectroscopic imaging of granular metallicity of polyaniline", Applied Physics Letters 74, 667-669 (1999).
[60]  S.-T. Yau, P. Mulvaney, Wen Xu, and G. Spinks, "Nonlinear single-electron tunneling through nanometre colloid particles at room temperature", Physical Review B 57(Rapid Communication), R15124-15127 (1998).
[61]  S.-T. Yau, H. B. Sun, P. J. Edwards, and P. Lynam, "Shot noise of sequential tunneling in a triple-barrier resonanttunneling diode", Physical Review B 55, 12880-12883 (1997).
[62]  S.-T. Yau, X. Zheng, and M. H. Nayfeh, "Nanolithography of Chemically Prepared Si with a Scanning Tunneling Microscope", Applied Physics Letters 59, 2457-2459 (1991).
[63]  S.-T. Yau, D. Saltz, and M. H. Nayfeh, "Laser-Assisted Deposition of Nanometer Structures Using a Scanning Tunneling Microscope", Applied Physics Letters 57, 2913-2915 (1990).