Nanoscience and Nanotechnology

Nanoscience and Nanotechnology is an international and multidisciplinary peer-reviewed journal covering fundamental and applied research in all disciplines of science, engineering and medicine.

Jingbiao Cui

Editor-in-Chief of Nanoscience and Nanotechnology

Professor, Department of Physics, The University of Memphis, USA

Research Areas

Nanotechnology, Nanomaterials, Renewable Energy, Semiconductors, Surface Science


1999-2001 Postdoc University of Cambridge, UK
1997-1999 PostdocUniversity of Erlangen-Nurnberg, Germany
1993PhDUniversity of Science & Technology of China
1992M.S.University of Science & Technology of China
1989B.S.Anhui University, Hefei, China


2014Professor and Chair, The University of Memphis
2006–2013Assistant/Associate Professor, University of Arkansas at Little Rock
2003–2006Research Scientist/Associate, Dartmouth College
2001–2003Staff Scientist, Max-Planck-Institute for Solid State Research
1994–1997Lecturer, University of Science & Technology of China

Academic Achievement

Lead multi-million dollars research projects on nanotechnology
Serve as Associate Editor for physics books of Versita Publishing
Authored more than 100 scientific papers
Invented core-shell nanostructure based solar cells
Invented nanotube based memory devices
Pioneered research in electrochemical growth and doping of nanowires

Publications: Conferences/Workshops/Symposiums/Journals/Books

[1]  M.A. Thomas, J.B. Cui, “Controlling the Electrical and Optical Properties of ZnO: the Use of a Remote Plasma in Atomic Layer Deposition”, ACS Appl. Mater. Interfaces, DOI: 10.1021/am300458q, 2012.
[2]  S. AbdulAlmohsin, J.B. Cui, “Graphene enhanced P3HT and porphyrin modified ZnO nanowire arrays for hybrid solar cell applications”, J. Phys. Chem. C 116, 9433-9438 (2012).
[3]  K.Y. Wu, Z. Q. Sun, J. B. Cui, “Unique Approach toward ZnO Growth with Tunable Properties: Influence of Methanol in an Electrochemical Process”, Cryst. Growth Des. 12, 2864–2871 (2012).
[4]  S. AbdulAlmohsin, Z. Li, M. Mohammed, K.Y. Wu, J.B. Cui, “Electrodeposited polyaniline/multi-walled carbon nanotube composites for solar cell applications”, Synth. Met. 162, 931-935 (2012).
[5]  S.W. Shi, G. He, M. Zhang, X.P. Song, J. L. Li, X. X. Wang, J. B. Cui, and Z.Q. Sun, “The microstructural, optical and electrical properties of molybdenum doped ZnO films deposited by magnetron sputtering”, Sci. Adv. Mater. 4, 193-198 (2012).
[6]  M. A. Thomas, J. B. Cui, and F. Watanabe, “Structure and photoluminescence of metal oxide core-shell nanowire arrays”, ECS Trans. 45, 41-50 (2012).
[7]  M. A. Thomas and J. B. Cui, “The effects of an O2 plasma on the optical properties of atomic layer deposited ZnO,” ECS Trans. 45, 87-95 (2012).
[8]  K.Y. Wu, Q. Fang, W. Wang, M. Thomas, J.B. Cui, “On the origin of an additional Raman mode at 275 cm-1 in N-doped ZnO thin films”, J. Appl. Phys. 111, 06330-8 (2012).
[9]  M.A Thomas, W.W. Sun, J.B. Cui, “Investigation of p-type Ag-doped ZnO nanowires and doping mechanism”, J. Phys. Chem. C 116, 6383-6391 (2012).
[10]  J.B. Cui, “Zinc oxide nanowires”, Mater. Character. 64, 43-52 (2012). (Invited review).
[11]  J.B. Cui, “ZnO nanowirebphotonic structures” in Vistas in Nanofabrication (Ed by Faiz Rahman, Pan Stanford Publicating Pte. Ltd. 2012), pp 223.
[12]  S. AbdulAlmohsin, M. Mohammed, Z. Li, M. A. Thomas, K.Y. Wu, J. B. Cui, “Multi-walled carbon nanotubes as a new counter electrode for dye-sensitized solar cells”, J. Nanosci. Nanotechnol. 12, 2374-2379 (2012).
[13]  M.A. Thomas and J.B. Cui, “Core-shell nanowire arrays of metal oxides fabricated by atomic layer deposition”, J. Vac. Sci. Technol. A30, 01A116 (2012).
[14]  J. Li, X. Wang, S. Shi, X. Song, J. Lv, J.B. Cui, and Z. Sun, “Optical and Wetting Properties of CuAlO2 Films Prepared by Radio Frequency Magnetron Sputtering”, J. Am. Ceram. Soc. 95, 431-435 (2012).
[15]  K.Y. Wu, J.B. Cui, X.X. Kong, Y.J. Wang, “Temperature dependent upconversion luminescence of Yb/Er codoped NaYF4 nanocrystals”, J. Appl. Phys. 110, 053510 (2011).
[16]  J. B. Cui and U. Gibson, "All-Oxide Embedded-Nanowire Solar Cell," in Optical Nanostructures for Photovoltaics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper PWE2.
[17]  L. Jiang, Y. J. Zhu, J. B. Cui, “Cetyltrimethylammonium bromide Assisted Self-Assembly of NiTe2 Nanoflakes: Nanoflake Arrays and Their Photoluminescence Properties”, J. Solid State Chem. 183, 2358-2364 (2010).
[18]  S. W. Cao, Y. J. Zhu, and J. B. Cui, "Iron hydroxyl phosphate microspheres: microwave-solvothermal ionic liquid synthesis, morphology control and photoluminescent properties", J. Solid State Chem. 183, 1704-1709 (2010).
[19]  H. gB. Zeng, J. B. Cui, B. Q. Cao, U. J. Gibson, Y. Bando, and D. Golberg, “Electrochemical deposition of ZnO Nanowire Arrays: Organization, Doping, and Properties”, Sci. Adv. Mater. 2, 336-358 (2010).
[20]  H. R. Kandel, T. P. Chen, H. Seo, M. Iliev, P. Wadekar, J. B. Cui, Q. Chen, F. Watanabe, Z. Li, L. Yuan, D. Norman, S. Wang, “Fabrication,transport and Raman studies of pulsed laser deposited Al/Ga doped PBCO thin films”, in Microelectromechanical Systems – Materials and Devices III, Edited by J. Bagdahn, N. Sheppard, K. Turner, S. Vengallatore (Mater. Res. Soc. Symp. Proc. Volume 1222, Warrendale, PA, 2010), 1222-DD02-09.
[21]  M. A. Thomas and J. B. Cui, “Electrochemical route to p-type doping of ZnO nanowires”, J. Phys. Chem. Lett. 1, 1090-1094 (2010).
[22]  J. B. Cui and U.J. Gibson, “A simple two-step electrodeposition of Cu2O/ZnO nanopillar solar cells”, J. Phys. Chem. C114, 6408-6412 (2010).
[23]  L. Jiang, Y. J. Zhu, and J. B. Cui, “Nanostructures of metal tellurides (PbTe, CdTe, CoTe2, Bi2Te3, and Cu7Te4) with various morphologies: a general solvothermal synthesis and optical properties”, Europ. J. Inorg. Chem., 3005-3011 (2010).
[24]  J. B. Cui, M. A. Thomas, Y. C. Soo, H. Kandel, and T. P. Chen, “Effects of nitrogen on the growth and optical properties of ZnO thin films grown by pulsed laser deposition”, J. Phys. D: Appl. Phys. 42, 155407 (2009).
[25]  J. B. Cui and M. A. Thomas, “Power dependent photoluminescence of ZnO”, J. Appl. Phys. 106, 033518 (2009).
[26]  M. A. Thomas and J. B. Cui, “Investigations of acceptor related photoluminescence from electrodeposited Ag-Doped ZnO”, J. Appl. Phys. 105, 093533 (2009).
[27]  M. A. Thomas and J. B. Cui, “Electrochemical growth and characterization of Ag-doped ZnO nanostructures”, J. Vac. Sci. Technol. B 27, 1673-1677 (2009).
[28]  J. B. Cui, Y. C. Soo, H. Kandel, M. A. Thomas, T. P. Chen, and C. P. Daghlian, “Investigations of ZnO thin films deposited by a reactive pulsed laser ablation”, Sci. China E: Technol. Sci. 52 (1), 99-103 (2009).
[29]  T-P. Chen, K. Wu, Q. Li, B. Chen, S-Z. Wang, H. Kandel, Y-C. Soo, U. Tipparach, J. B. Cui, H-W. Seo, and C-J. Chen, “Structure and transport studies on nanometer YBCO/PBCGO multilayers”, Chin. Sci. Bul. 54, 2698-2702 (2009).
[30]  J. B. Cui, M. A. Thomas, H. Kandel, Y. C. Soo, T. P. Chen, “Low temperature doping of ZnO nanostructures”, Sci. China E: Technol. Sci. 52(2), 318-323 (2009).
[31]  J. B. Cui, “Structural and optical properties of periodically ordered ZnO nanowires”, Sci. China E: Technol. Sci. 52(2), 313-317 (2009).
[32]  Y. Xu, Z. Li, E. Dervishi, V. Saini, J. B. Cui, A. R. Biris, L. Dan, A. S. Biris, “Surface area and thermal stability effect of the MgO supported catalysts for the synthesis of carbon nanotubes”, J. Mater. Chem. 18, 5738 - 5745 (2008).
[33]  J. B. Cui, Y. C. Soo, A. Thomas, H. Kandel, T. P. Chen, and C. P. Daghlian, “Variable temperature photoluminescence of ZnO thin films deposited by reactive laser ablation”, J. Appl. Phys. 104, 043521 (2008).
[34]  J.B. Cui, “Defect control and its influence on exciton emission of electrodeposited ZnO nanorods”, Journal of Physical Chemistry C112, 10385-10388 (2008).
[35]  S. Ilican, M. Caglar, Y. Caglar, F. Yakuphanoglu, J. B. Cui, “Preparation of Sb-doped ZnO nanostructures and studies on some of their properties”, Physica E: Low-dimensional Systems and Nanostructures 41, 96-100 (2008).
[36]  J.B. Cui, Y. C. Soo, T.P. Chen, and U. Gibson, “Low temperature growth and characterization of Cl-doped ZnO nanostructures”, J. Phys. Chem. C 112, 4475-4479 (2008).
[37]  J.B. Cui, “Growth condition dependence of ZnO nanostructures by electrochemical process”, J. Mater. Sci.: Mater. Electron. 19, 908-914 (2008).
[38]  J. B. Cui, “Fabrication and characterization of ZnO photonic nanostructures”, in Electronic and Photonic Nanostructures, (Pan Stanford Publishers Singapore, Edited by F. Rahman, 2008), Chapter 15, pp251-265.
[39]  Y.H. Percival Zhang, S.Y. Ding, J. R. Mielenz, J. B. Cui, R. T. Elander, M. Laser, M. E. Himmel, J. R. McMillan, L. R. Lynd, “Fractionating recalcitrant lignocellulose at modest reaction conditions”, Biotech. and Bioeng. 97, 214-223 (2007).
[40]  J.B. Cui and U.J. Gibson, “Low temperature fabrication of single crystal ZnO nanopillar photonics bandgap structures”, Nanotechnology 18, 155302 (2007).
[41]  J.B. Cui and U.J. Gibson, “Two-dimensional organization of single crystal ZnO nanopillars”, in Zinc Oxide and Related Materials, edited by J. Christen, C. Jagadish, D.C. Look, T. Yao, F. Bertram (Mater. Res. Soc. Symp. Proc. 957, Warrendale, PA, 2007), 0957-K07-15.
[42]  Q. Zeng, I. Baker, J. B. Cui, and Z.C. Yan, “Structural and magnetic properties of nanostructured Mn-Al-C magnetic materials”, J. Mag. Mag. Mater. 308, 214-226 (2007).
[43]  J.B. Cui and U.J. Gibson, “Thermal modification of magnetism in Co-doped ZnO nanowires grown at low temperature”, Phys. Rev. B 74, 045416 (2006).
[44]  J.B. Cui, Q. Zeng, and U.J. Gibson, “Synthesis and magnetic properties of transition metal doped ZnO nanowires”, J. Appl. Phys. 99, 08M113 (2006).
[45]  Q. Zeng, I. Baker, Y. Sun, J. B. Cui, and C.P. Daghlian, “Thickness dependence of the microstructure and magnetic anisotropy of sputtered Fe50Ni50 thin films”, J. Appl. Phys. 99, 08M302 (2006).
[46]  Y.-H. P. Zhang, J. B. Cui, L.R. Lynd, and L.R. Kuang, “A transition from cellulose swelling to cellulose dissolution by o-phosphoric acid: evidences from enzymatic hydrolysis and supramolecular structure”, Biomacromolecules 7, 644 (2006).
[47]  J.B. Cui and U.J. Gibson, “Enhanced nucleation, growth rate and dopant incorporation of ZnO nanowires”, J. Phys. Chem. B 109, 22074 (2005).
[48]  J.B. Cui and U.J. Gibson, “Electrodeposition and room temperature ferromagnetic anisotropy of Co and Ni-doped ZnO nanowire arrays”, Appl. Phys. Lett. 87, 133108 (2005).
[49]  J.B. Cui, C. Daghlian, and U. J. Gibson, “Solubility and electrical transport properties of thiolated single walled carbon nanotubes”, J. Appl. Phys. 98, 144320 (2005).
[50]  J.B. Cui, C. Daghlian, and U. J. Gibson, “Gold nanoparticle mediated formation of aligned nanotube composite films”, J. Phys. Chem. B 109, 11456 (2005).
[51]  J.B. Cui, C. Daghlian, U. J. Gibson, R. Püsche, P. Geithner, and L. Ley, “Low temperature growth and field emission of ZnO nanowire arrays”, J. Appl. Phys. 97, 144315 (2005).
[52]  J.B. Cui, C.P. Daghlian, and U.J. Gibson, “Solubility and electrical response of single walled carbon nanotubes with thiolate mediated gold nanoparticle attachment”, in Functional Carbon Nanotubes, edited by D.L. Carroll, B. Weisman, S. Roth, and A. Rubio (Mater. Res. Soc. Symp. Proc. 858E, Warrendale, PA , 2004), HH13.24.
[53]  J.B. Cui, M. Burghard, and K. Kern. “Reversible sidewall osmylation of individual carbon nanotubes”, Nano Lett. 3, 613 (2003).
[54]  J.B. Cui, R. Sordan, M. Burghard, and K. Kern. “Carbon nanotube memory devices of high charge storage stability”, Appl. Phys. Lett. 81, 3260 (2002).
[55]  J.B. Cui, M. Burghard, and K. Kern. “Room temperature single electron transistor by local chemical modification of carbon nanotubes”, Nano Lett. 2, 117 (2002).
[56]  J.B. Cui and J. Robertson. “Field emission from CVD diamond surface with graphitic patches”, J. Vac. Sci. Technol. B20, 238 (2002).
[57]  J.B. Cui, and J. Robertson. “Control of field emission current of individual sites by a local resistor”, J. Vac. Sci. Technol. B20, 19 (2002).
[58]  J.B. Cui, J. Robertson, W.I. Milne. “Field emission site densities of nano-clustered carbon films deposited by a cathodic arc”, J. Appl. Phys. 89, 5707 (2001).
[59]  W.I. Milne, A. Ilie, J.B. Cui, A. Ferrari, J. Robertson. “Field emission from nano-cluster carbon films”, Diamond Rel. Mater. 10 (2), 260 (2001).
[60]  J.B. Cui, J. Robertson, W.I. Milne. “Improved electron emission of carbon films using a resistive layer”, J. Appl. Phys. 89(6), 3490 (2001).
[61]  J.B. Cui, J. Robertson and W.I. Milne. “The effect of electron transport on field emission from amorphous carbon films” Diamond Rel. Mater. 10, 584 (2001).
[62]  J.B. Cui, J. Robertson, W. I. Milne, “Field emission site densities of nanostructured Carbon” Mat. Res. Soc. Symp. Proc. 675, W6.5 (2001).
[63]  J.B. Cui, K.B.K. Teo, J.T.H. Tsai, J. Robertson and W.I. Milne. “The role of dc current limitations in Fowler-Nordheim electron emission from carbon films”, Appl. Phys. Lett. 77, 1831 (2000).
[64]  J.B. Cui, M. Stammler, J. Ristein, and L.Ley. “Role of hydrogen in field emission from CVD diamond and nano-crystalline diamond”, J. Appl. Phys. 88, 3667 (2000).
[65]  J. Ristein, J.B. Cui, R. Graupner, F. Maier, M. Riedel, and L. Ley. “The role of adsorbates and defects on diamond surface”, New Diam. Front. C. Tec. 10, 363 (2000).
[66]  J.B. Cui, J. Ristein, M. Stammler, B. Kleber, and L. Ley. “Hydrogen termination and electron emission from CVD diamond surfaces: a combined secondary electron emission, photoelectron emission microscope, photoelectron yield, and field emission study”, Diamond and Rel. Mater. 9, 1143 (2000).
[67]  J. Ristein, F. Maier, M. Riedel, J.B. Cui, and L. Ley. “Surface Electronic Properties of Diamond”, Phys. Stat. Sol. (a) 181, 65 (2000).
[68]  J.B. Cui, J. Ristein, and L. Ley. “Photoelectron emission characteristics of diamond near the band gap”, Diamond and Rel. Mater. 9, 1036 (2000).
[69]  J.B. Cui, J. Ristein, and L. Ley. “Low threshold electron emission from diamond”, Phys. Rev. B59, 16135 (1999).
[70]  J.B. Cui, R. Graupner, J. Ristein, and L. Ley. “Electron affinity and the band bending of diamond (111) surface” Diamond Rel. Mater. 8, 748 (1999).
[71]  L. Ley, R. Graupner, J.B. Cui, and J. Ristein. “Electronic properties of single crystalline diamond surfaces”, Carbon 37, 793 (1999).
[72]  J.B. Cui, J. Ristein, and L. Ley. “Dehydrogenation and the surface phase transition on diamond (111): kinetics and electronic structure”, Phys. Rev. B59, 5847 (1999).
[73]  N.G. Shang, R.C. Fang, Y. Liao, and J.B. Cui. “Deposition of (100) and (110)-Textured Diamond Films on Aluminum Nitride Ceramics via Hot-Filament Chemical-Vapor-Deposition”, Jpn J. Appl. Phys. 38, 1500 (1999).
[74]  J.B. Cui, J. Ristein, L. Ley. “Electron affinity of the bare and hydrogenated diamond (111) surface”, Phys. Rev. Lett. 81, 429 (1998).
[75]  J.B. Cui, N.G. Shang, and R.C. Fang. “Discharge induced nucleation enhancement of diamond via hot filament chemical vapor deposition”, J. Appl. Phys. 83, 6072 (1998).
[76]  J.B. Cui, K. Amtman, J. Ristein, and L. Ley. “Non-contact temperature measurement of diamond by Raman spectroscopy”, J. Appl. Phys. 83, 7929 (1998).
[77]  J.B. Cui, N.G. Shang, Y. Liao, et al. “Growth and characterization of diamond films deposited by dc discharge assisted hot filament chemical vapor deposition”, Thin Solid Films 334, 156 (1998).
[78]  N.G. Shang, R.C. Fang, J.B. Cui, et al. “Textured CVD diamond films grown on aluminum nitride (AlN) ceramics”, Thin Solid Films 334, 178 (1998).
[79]  N. Shang, R.C. Fang, S. Han, Y. Liao, J.B. Cui. “Transverse bias-enhanced nucleation of diamond in hot filament chemical vapor deposition”, Mat. Res. Innovat. 2, 79 (1998).
[80]  N.G. Shang, R.C. Fang, Y. Hang, and J.B. Cui. “Investigation of diamond films deposited on LaAlO3 single crystal substrates by hot filament chemical vapor deposition”, Chin. Phys. Lett. 15, 146(1998)
[81]  J.B. Cui and R.C. Fang. “Optical emission characterization of diamond growth process in an electron assisted hot filament reactor”, J. Appl. Phys. 81, 2856 (1997).
[82]  J.B. Cui, Y.R. Ma, J. Zhang et al. “Growth and characterization of diamond film on aluminum nitride”, Mat. Res. Bull. 31, 781 (1996).
[83]  J.B. Cui, Y.R. Ma, and R.C. Fang. “Species characterization for a dc biased hot filament growth of diamond using spatial resolved optical emission spectroscopy”, Appl. Phys. Lett. 69, 3170 (1996).
[84]  J.B. Cui and R.C. Fang. “Evidence of the role of bias in diamond growth by hot filament chemical vapor deposition”, Appl. Phys. Lett. 69, 3504 (1996).
[85]  J.B. Cui and R.C. Fang. “The influence of bias on gaseous composition and diamond growth in hot filament diamond growth process”, J. Phys. D: Appl. Phys. 29, 2759 (1996).
[86]  J.B. Cui and R.C. Fang. “Thermal diffusivity of diamond film with substrate”, Chin. Phys. Lett. 12, 477 (1995).
[87]  J.B. Cui and R.C. Fang. “Effect of substrate on thermal conductivity measurement of diamond films”, Advanced Materials'93, (ed. by Homma et al., Elsevier Science B.V. 1994), Vol.14B, p1545.
[88]  Z.Q. Sun, J.B. Cui, Y. Yu, and C.R. Liu. “Preparation and C-V characteristics of Al plasma-anodized film Ge structure”, Advances in Low Temperature Plasma Chemistry, Technology, Applications, Technomic Publication Co. Inc., Vol.4, 1992, p71.
[89]  R.C. Fang, Q.S. Li, and J.B. Cui. “Temperature dependence of photoluminescence in porous silicon”, Chin. Phys. Lett. 9, 438 (1992).
[90]  W.P. Zhang, J.B. Cui, S. Xue, Y.Z. Song. “Structure and optical properties of -C:H/-SiOX:H multilayered thin films”, SPIE Proc. 1519, 23 (1991).
[91]  J.B. Cui, W.P. Zhang, R.C. Fang. “Interface properties of -C:H/-SiOX:H multilayered thin films”, SPIE Proc. 1519, 419 (1991).