American Journal of Biomedical Engineering

American Journal of Biomedical Engineering provides a forum for the publication of the latest developments in biomedical engineering, and reflects the essential multidisciplinary nature of the subject. The journal publishes in-depth critical reviews, scientific papers and technical notes.

David Pennisi

Editorial Board Member of American Journal of Biomedical Engineering

Post-doctoral Fellow, School of Biomedical Sciences, The University of Queensland, Australia

Research Areas

Developmental Biology, Cardiovascular Biology, Genetic Engineering, Emerging Technologies in the Life Sciences


1996-2000Ph.DDepartment of Biochemistry and the Centre for Molecular and Cellular Biology, The University of Queensland, Brisbane, Australia
1990B.ScDepartment of Microbiology, The University of Queensland, Brisbane, Australia


2011-presentRESEARCH ACADEMIC, School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
2004-2010RESEARCH OFFICER, Melissa Little's laboratory, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
2000-2003POSTDOCTORAL FELLOW, Takashi Mikawa's laboratory, Department of Cell and Developmental Biology, Cornell University Medical College, New York, NY, USA


Australian and New Zealand Society for Cell and Developmental Biology
Society for Developmental Biology (USA)

Publications: Conferences/Workshops/Symposiums/Journals/Books

[1]  Pennisi, D., Chiu, H. S., Kinna, G., Wilkinson, L., Simmons, D., Little, M. (2011). Altered Development of Trophoblast Lineages During Placental Development in Mice Hypomorphic for Crim1. Manuscript in preparation. * Corresponding author.
[2]  Little, M. H., Georgas, K., Pennisi, D. J., and Wilkinson, L. (2010). Kidney development: two tales of tubulogenesis. Current Topics in Developmental Biology. 90: 193–229.
[3]  Wilkinson, L., Gilbert, T., Sipos, A., Toma, I., Pennisi, D. J., Peti-Peterdi, J., and Little, M. H. (2009). Loss of renal microvascular integrity in postnatal Crim1 hypomorphic transgenic mice. Kidney International. 76: 1161–1171.
[4]  Pennisi D. J.* and Mikawa T. (2009). FGFR-1 is required by epicardium-derived cells for myocardial invasion and correct coronary vascular lineage differentiation. Developmental Biology. 328: 148–159. * Corresponding author.
[5]  Wilkinson, L., Gilbert, T., Kinna, G., Ruta, L. A., Pennisi, D. J., Kett, M., and Little, M. H. (2007). Crim1KST264/KST264 mice implicate Crim1 in the regulation of vascular endothelial growth factor-A activity during glomerular vascular development. Journal of the American Society of Nephrology. 18: 1697–1708.
[6]  Pennisi, D. J., Wilkinson, L., Kolle, G., Sohaskey, M. L., Gillider, K., Piper, M. J., McAvoy, J. W., Lovicu, F. J., and Little, M. H. (2007). Crim1KST264/KST264 mice display a disruption of the Crim1 gene resulting in perinatal lethality with defects in multiple organ systems. Developmental Dynamics. 236: 502–511.
[7]  Pennisi, D. J., and Mikawa, T. (2005). Normal patterning of the coronary capillary plexus is dependent on the correct transmural gradient of FGF expression in the myocardium. Developmental Biology. 279: 378–390.
[8]  Hatcher, C. J., Diman, N. Y., Kim, M. S., Pennisi, D., Song, Y., Goldstein, M. M., Mikawa, T., and Basson, C. T. (2004). A role for Tbx5 in proepicardial cell migration during cardiogenesis. Physiological Genomics. 18: 129–140.
[9]  Hall, C. E., Hurtado, R., Hewett, K. W., Shulimovich, M., Poma, C. P., Reckova, M., Justus, C., Pennisi, D. J., Tobita, K., Sedmera, D., Gourdie, R. G., and Mikawa, T. (2004). Hemodynamic-dependent patterning of endothelin converting enzyme 1 expression and differentiation of impulse-conducting Purkinje fibers in the embryonic heart. Development. 131: 581–592.
[10]  Pennisi, D. J., Ballard, V. L., and Mikawa, T. (2003). Epicardium is required for the full rate of myocyte proliferation and levels of expression of myocyte mitogenic factors FGF2 and its receptor, FGFR-1, but not for transmural myocardial patterning in the embryonic chick heart. Developmental Dynamics. 228, 161–172.
[11]  Mikawa, T., Gourdie, R. G., Takebayashi-Suzuki, K., Kanzawa, N., Hyer, J., Pennisi, D. J., Poma, C. P., Shulimovich, M., Diaz, K. G., Layliev, J., and Prasad, A. (2003). Induction and patterning of the Purkinje fibre network. Novartis Foundation Symposium. 250: 142–153.
[12]  Pennisi, D. J., Rentschler, S., Gourdie, R. G., Fishman, G. I., and Mikawa, T. (2002). Induction and patterning of the cardiac conduction system. International Journal of Developmental Biology. 46: 765–775.
[13]  Hosking, B. M., Wyeth, J. R., Pennisi, D. J., Wang, S. C., Koopman, P., and Muscat, G. E. (2001). Cloning and functional analysis of the Sry-related HMG box gene, Sox18. Gene. 262: 239–247.
[14]  Pennisi, D. J., James, K. M., Hosking, B., Muscat, G. E., and Koopman, P. (2000). Structure, mapping, and expression of human SOX18. Mammalian Genome. 11: 1147–1149.
[15]  Pennisi, D., Gardner, J., Chambers, D., Hosking, B., Peters, J., Muscat, G., Abbott, C., and Koopman, P. (2000). Mutations in Sox18 underlie cardiovascular and hair follicle defects in ragged mice. Nature Genetics. 24: 434-437.
[16]  Greenfield, A., Carrel, L., Pennisi, D., Philippe, C., Quaderi, N., Siggers, P., Steiner, K., Tam, P. P., Monaco, A. P., Willard, H. F., and Koopman, P. (1998). The UTX gene escapes X inactivation in mice and humans. Human Molecular Genetics. 7: 737–742.
[17]  Greenfield, A., Scott, D., Pennisi, D., Ehrmann, I., Ellis, P., Cooper, L., Simpson, E., and Koopman, P. (1996). An H-YDb epitope is encoded by a novel mouse Y chromosome gene. Nature Genetics. 14, 474–478.
[18]  Monkley, S. J., Delaney, S. J., Pennisi, D. J., Christiansen, J. H., and Wainwright, B. J. (1996). Targeted disruption of the Wnt2 gene results in placentation defects. Development. 122: 3343–3353.

Publications: Books/Book Chapters

[1]  Mikawa, T., Gourdie, R. G., Takebayashi-Suzuki, K., Kanzawa, N., Pennisi, D. J., Poma, C. P., Shulimovich, M. Induction and patterning of the Purkinje fiber network. In: Runge, M. S., Patterson, C., editors. Principles of Molecular Cardiology. Humana Press: 2005. p. 311-321.