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Abstract  This paper addresses the problem of simultaneous estimation of unmeasurable states and unknown inputs (UIs) 
for a class of discrete-time nonlinear descriptor models (DNDMs) described by Takagi-Sugeno (T-S) structure with 
unmeasurable premise variables. The UIs affect both state and output of the system. The main idea of the proposed design of 
fuzzy unknown inputs observer (FUIO) is based on the separation between dynamic and static relations in T-S descriptor 
model. First, the method permitting to separate dynamic equations from static equations is developed. Next, based on the 
augmented fuzzy model which contains the dynamic equations and the UIs, a new FUIO design in explicit structure is given. 
The exponential convergence of the state estimation error is studied by using the Lyapunov theory and the stability conditions 
are given in terms of linear matrix inequalities (LMIs). Finally, an application to a DNDM of a single-link flexible joint robot 
is presented in order to illustrate the validity and applicability of the proposed method. 
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1. Introduction 
Many industrial processes as e.g. circuit systems, robotics, 

chemical processes, biological systems and so on, are 
naturally modelled as systems of differential and algebraic 
equations also called descriptor models or singular models 
or implicit models. Known as a generalization of standard 
models, such descriptor models constitute a powerful 
modeling tool allowing to describe the dynamic behaviour 
of processes. They represent physical phenomenas that can 
not be described by standard models. We may cite [1], [2], 
[3] for some real applications of implicit models. The 
numerical simulation of such models usually combines an 
ODE numerical method together with an optimization 
algorithm. 

On the other hand, ordinary T-S approach [4], [5] known 
as an interesting alternative for the analysis and 
controller/observer synthesis for nonlinear systems, finds its 
success on the fact that once the T-S fuzzy models are 
obtained, some analysis and design tools developed in the 
linear case can be used, which facilitates observer or/and 
controller synthesis for  complex nonlinear systems see for  
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example [6], [7] and the references therein. Moreover, 
notice that in [8], [9], a fuzzy implicit model is defined by 
extending the T-S fuzzy model [4].  

In this paper, the aim is to consider the problem of FUIO 
design for a class of DTSDMs. Due to its important role in 
the area of fault detection and design of fault tolerant 
control strategy, the field of the FUIO design for nonlinear 
systems has attracted much attention from researchers 
during these last two decades. Indeed, many research works 
on fuzzy observer and its application to fault detection can 
be found in the literature. They relate to explicit and 
implicit nonlinear systems in both continuous-time and 
discrete-time cases. Concerning the continuous-time case, 
we may cite [10], [11], [12], [13], [14] for explicit models 
and [8], [9], [15], [16], [17], [18], [19], [20] for implicit 
models. Likewise, in discrete-time case, several works exist 
for explicit or implicit structures see e.g. [21], [22], [23], 
[24], [25], [26], [27]. It should be noted that, generally an 
interesting way to solve the various FUIO raised previously 
is to write the convergence conditions on the LMI form 
[28]. 

Based on T-S fuzzy approach with unmeasurable premise 
variables, the main contribution of the paper consists in an 
observer design allowing the simultaneous estimation of the 
unknown states and unknown inputs for a class of DNDMs 
subject to unknown inputs affecting states and outputs of 
the system simultaneously. The idea is based on the 
separation between dynamic and static equations in the 
considering DTSDM and the use of an augmented system 
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structure formed by dynamic equations and unknown inputs. 
The global exponential stability of the state estimation error 
of the augmented system is studied by using the Lyapunov 
theory and the stability conditions are given in term of 
LMIs. Besides, the proposed FUIO is given without the use 
of an optimization algorithm. 

The paper is organized as follows. The considered class 
of DNDMs subject to unknown inputs described by T-S 
fuzzy structure with unmeasurable premise variables is 
presented in Section 2. The main contribution about FUIO 
design permitting simultaneous estimation of unknown 
states and unknown inputs is stated in Section 3. To show 
the good performance of the proposed FUIO, an application 
of a single-link flexible joint robot is given in Section 4. 
Finally, a conclusion is given in section 5. 

In this paper, some notations used are fair standard. For 
example, 0X >  means the matrix X  is symmetric and 
positive definite. TX  denotes the transpose of X . The 
symbol I  (or 0 ) represents the identity matrix (or zero 
matrix) with appropriate dimension.  

, 1 1 1

q q q

i j i j
i j i j

µ µ µ µ
= = =

=∑ ∑∑  and 
* TX X Y

Y Z Y Z
  
       

= .   

2. System Description 
In this paper, the aim is to consider the problem of FUIO 

design for a class of DNDMs subject to UIs described by T-S 
structure with unmeasurable premise variables. For this 
objective, the following class of DNDMs subject to UIs is 
adopted: 

1  ( ) ( ) ( )
      ( ) ( ) ( )

k k k k k k k

k k k k k k k

Mx A x x B x u C x d
y D x x E x u F x d

+



= + +
= + +

      (1) 

where 1 2T T T n
k k kx X X R = ∈   is the state vector with 
11 n

kX R∈ is the vector of difference variables, 22 n
kX R∈ is 

the vector of algebraic variables with 1 2n n n+ = , m
ku R∈

is the control input, r
kd R∈  is the unknown control input, 

p
ky R∈  is the measured output. ( ) n n

kA x R ×∈ , 

( ) n m
kB x R ×∈ , ( ) n r

kC x R ×∈ , ( ) p n
kD x R ×∈ , 

( ) p m
kE x R ×∈ , ( ) p r

kF x R ×∈ are nonlinear matrices 

functions. n nM R ×∈  such that 1( )rank M n=  is a real 
known constant matrix with: 

0
0 0
I

M  
 
 

=                    (2) 

By the sector nonlinearity approach [6], the DNDM (1) 
can be exactly represented by the following T-S fuzzy 
descriptor model: 

( )

( )

1
1

1

  ( )

       = ( )

q

i i i ik k k k k
i
q

i i i ik k k k k
i

Mx x A x B u C d

y x D x E u F d

µ

µ

+
=

=









= + +

+ +

∑

∑
   (3) 

where n n
iA R ×∈ , n m

iB R ×∈ , n r
iC R ×∈ , p n

iD R ×∈ , 
p m

iE R ×∈ , p r
iF R ×∈ , are real known constant matrices 

with: 

( )

111 12

221 22

1
1 2

2

;    ;    

C ;  D

ii i
i i

ii i

i
i i i i

i

BA AA B BA A

C D DC

   
     

  
 
  
 

= =

= =
    (4) 

where constant matrices 22iA  are supposed invertible. q  is 
the number of sub-models.  

The ( ) (i = 1, ..., q)i kxµ  are the weighting functions that 
ensure the transition between the contribution of each sub 
model: 

1 
       

i i ik k k k

i i ik k k k

Mx A x B u C d
y D x E u F d

+



= + +
= + +

       (5) 

They verify the so-called convex sum properties: 

1
( ) 1;    0 ( ) 1     1, ,   

q

i ik k
i

x x i qµ µ
=

= ≤ ≤ =∑    (6) 

Before giving the main result, let us make the following 
assumption [1], [16]: 

Assumption 1: Suppose that: 
• ( , )iM A  is regular, i.e. det( ) 0  izM A z− ≠ ∀ ∈  
• All sub-models (5) are impulse observable and 

detectable. 
In order to investigate the Fuzzy UIO design for system 

(3), we proceed as mentioned above to the separation of the 
dynamic equations from static equations of the model (3). 
Indeed, from (2)-(4), sub-model (5) can be rewritten as 
follows: 

1 1 2
1

1 2

1 2

11 12 1 1

21 22 2 2

1 2

  
0    

   

k k k

k k

k k k

i i i ik k

i i i ik k

i ii i k k

X X

X X

X D X

X A A B u C d
A A B u C d

y D E u F d

+
 +


+


+

= + +
= + +
= + +

  (7) 

Since 22iA  is invertible, it follows: 
2 1  k ki i ik kX KX J u L d+= +         (8) 

where 

22

22

22

1
21

1
2

1
2
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−


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            (9) 
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Thus, combining (7) and (8) we have: 

1
1

1

2 1

1

  
   
    

k

k

i i ik k k

i i ik k k k

i i ik k k

X M X N u Pd
X J X K u L d
y R X S u T d

+

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
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      (10) 

where 

11 12
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2
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   L
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i ii i
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








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           (11) 

The weighting functions ( )i kxµ can be rewritten as: 

1 2 1( ) ( , ) ( )i i i i i ik k k k k k kx X X J X K u L dµ µ µ η= = + + =   
(12) 

with 1( )T T T T
k k k kX u dη  =   . 

So, by aggregation of the resulting sub-models (10), the 
following global fuzzy model is obtained: 
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 (13) 

Assumption 2: Suppose that kd  is considered as a 
constant unknown control input per time interval i.e.: 

1 2 1 21     ;    ,  k kd d k T T T T R+
+   = ∈ ∀ ∈     (14) 

Let us define the augmented state vector 
1 1T T T
k k kX dξ  =    and 2 2

k kXξ = . Thus, the system (13) 
can be represented as: 
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        (15) 

where 
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3. Main Result 
Based on the transformation of the T-S descriptor system 

(3) into the equivalent form (15), the proposed FUIO 
permitting the estimate of unmeasurable state and unknown 
inputs takes the following form: 

( )

( )

( )

1 1
1

1
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



(17) 

where 1 2ˆ ˆ( ,  )k kξ ξ , ˆky and k̂θ denote the estimated augmented 
state vector, the output vector and the decision variable 
vector respectively. ,  1, ,iG i q= …  are the observer gains 

which are determined such that 1 2ˆ ˆ( ,  )k kξ ξ asymptotically 

converges to 1 2( ,  )k kξ ξ .  
In order to establish the conditions for the asymptotic 

convergence of the observer (17), we define the state 
estimation error: 

1 1 1

2 2 2
  

ˆ
  ˆ

k k k
k

k k k

e
e

e
ξ ξ
ξ ξ

  
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   

−
= =

−
           (18) 

It follows from (15) and (17) that the dynamics of state 
estimation error ke  is given by the differential and 
algebraic equations: 
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q
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µ θ ξ
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+
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=

=

=
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

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




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∑
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 
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(19) 
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which are equivalent to the following equations: 

( )

( )( )

( )( )
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1

1

1

1
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1

1

1
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ˆ( ) ( )
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ξ
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ξ

+
=

=

=

=





 −





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∑

∑

∑

∑



 





 (20) 

Thus, from (20) to prove the convergence of the 
estimation error ke  toward zero, it suffices to prove that 

1
ke  converges to zero. So, using the fact that: 

1 , 1

1 , 1

ˆ ˆ( ( ) - ( )) ( ) ( ) 

ˆ ˆ( ( ) - ( )) ( ) ( ) 

q q

i i i i j ijk k k k
i i j

q q

i i i i j ijk k k k
i i j

M M

N N

µ θ µ θ µ θ µ θ

µ θ µ θ µ θ µ θ

= =

= =









= ∆

= ∆

∑ ∑

∑ ∑

 

 

(21) 

where ij i jM M M∆ = −    and ij i jN N N∆ = −   . 

Hence, the first equation of (20) becomes: 

( )

( )

1 1
1

1

1
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q
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  (22) 

Since 
1

( ) 1
q

i k
i

µ θ
=

=∑ , equality (22) can be written as 

follows: 
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Similarly,  ky  and ˆ  ky  can be written as follows: 
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q
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where ih i hR R R∆ = −    and ih i hS S S∆ = − . 

By substituting (24) in (23), we obtain: 
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where 
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j ijijh ih

M G R

G R M

G S N
i j h q









Γ = −

Φ = ∆ − ∆

Ω = ∆ − ∆

∈

 

 



          (26) 

Let ( )1 1 1 ( ) ( )
TT T

k k keξ ξ= , then from (15) and (25) we 
have: 
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Thus, in order to prove the convergence of the FUIO (17), 
the aim is to determine the observer gains ,  1, ,iG i q= …  to 
ensure the stability of the system (27). Therefore, the 
convergence conditions of (17) can be formulated by the 
following Theorem. 

Theorem 1: Under above Assumptions 1 and 2, the state 
estimation error between the DTSDM (3) and its FUIO (17) 
converges exponentially asymptotically towards zero, if 
given 0 1λ< <  there exist matrices 1 0 Q > and 2 0,Q >  

,  1, ,iW i q= …  such that the following LMIs hold: 
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21 22

31 32 33

41 42 43 44
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* * 0,    
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Λ
Λ Λ <
Λ Λ Λ
Λ Λ Λ Λ
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     (29) 

where 



54 Karim Bouassem et al.:  Design of Unknown Inputs Observer for  
a Class of Discrete-Time Takagi-Sugeno Descriptor Models 

 

2
11 1 1

21 1

22 1 2
2

2

31 1

32

           

T T T T
j j j j j jh h
T T T T

j j ij j ij jih h
T T T T
ij ij i i j ijih

T
ij j ih

T T T T
j j ij j ij jih h

T
ij

M Q M M W R R W M Q

R W M M Q M M W R

M Q M M Q M R W M

M W R Q

S W M N Q M N W R

N

λ

λ

Λ = − − −

Λ = ∆ − ∆ + ∆

Λ = ∆ ∆ + − ∆ ∆

− ∆ ∆ −

Λ = ∆ − ∆ + ∆

Λ = ∆

     

     

     

 

    



1 2

33 1

2

41

42

43

44 1

          

          

T
ij i i

T T T
j ij ij jih ih

T T T
ij ij j ijih

T T
ij j i iih

j h

j ih

j ih

Q M N Q M

S W M N W R

N Q N S W N

N W S N Q N

W R

W R
W S
Q



























∆ +

− ∆ ∆ − ∆ ∆

Λ = ∆ ∆ − ∆ ∆

− ∆ ∆ +

Λ =

Λ = − ∆

Λ = − ∆

Λ = −

  

  

  

  





(30) 

The observer gains in (17) are derived from: 
1

1  i iG Q W−=                (31) 

Proof of Theorem 1: Considering the following 
quadratic Lyapunov function: 

1 1 )   (  T
k k kV Qξ ξ=                (32) 

with 

1

2

0
    0

0
Q

Q
Q

 
 
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= >             (33) 

The convergence of (27) is exponentially ensured if the 
following condition is guaranteed (see [29] as cited in [6]): 

2
1   ( 1)      0 <  < 1 k k k kV V V Vλ λ+ − < −∆ =  (34) 

From (27) and (32), inequality (34) becomes: 
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where 
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By using (28), ijhΣ can be reduced as follows: 
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    (38) 

The inequality (35) is satisfied if: 

  0       , , {1,..., }ijh i j h qΣ < ∀ ∈       (39) 

Then from (26), (33), we can establish the LMI conditions 
(29) of Theorem 1 by using the Schur complement [28] and 
the following change of variables: 

1  i iW Q G=                  (40) 

Thus, from the Lypunov stability theory, if the LMI 
conditions (29) given in Theorem 1 are satisfied, the system 
(27) is exponentially asymptotically stable. This completes 
the proof of Theorem 1. 

4. Application to Single-Link Flexible 
Joint Robot  

In this section, the proposed FUIO design (17) is applied 
to a single-link flexible joint robot in order to estimate 
on-line these unknown states and its UI simultaneously. The 
following DNDM that we consider here is obtained by Euler 
discretisation of the model given in [19]. It takes the form: 

1  ( )
                 

k

k k

k k k kMx A x x Bu Cd
y Dx

+

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= + +
=

      (41) 

where 1 2 3 4 5 6( , , , , , )T
k k k k k k kx x x x x x x=  is the state vector 

with 1kx  and 2kx  are the angles of rotations of the motor 
and the link respectively. 3kx  and 4kx are their angular 
velocities. 5kx  and 6kx  are their angular accelerations. 

ku  is the control variable, ky  is the output measurement 
vector and kd  is the unknown input variable.  
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where 0τ >  is sampling time and 

    
21

2

sin( )  k

L L k

xk mgb
J J x
τ τν = − −        (42) 

To express the model (41) process as a T-S model with 
unmeasurable premise variable, we consider the sector of 
nonlinearities of the term [ ]min max,  ν ν ν∈  of the matrix

( )kA x . Then, we can transform the nonlinear term under the 
following shape: 

max1 2 min    ν ν ν= Λ + Λ          (43) 

where 
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Hence, the global T-S fuzzy model which is a particular 
case of the system (3) is inferred as: 
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The weighting functions are given by: 
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x
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µ
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= Λ                (46) 

Based on the theory developed in Sections 2 and 3, the aim 
is to design a FUIO for DTSDM (45). More precisely, based 
on the on-line measurements of 1kx , 3kx  and 4kx , we shall 
show that the previous result (17) can be used to the on-line 
estimation of the unknown states 2kx , 5kx , 6kx  and the UI 

kd  simultaneously. To this end, let: 
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−  are invertible.  

This shows that model (45) is a particular case of model (3) 
with 0 and F 0i iE = = .  

Consequently, apply the theory developed in the Section 2 
(see (7) to (15)), model (45) is written as follows: 
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where 
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,iK ,  , ,  i i ii N J RM     are given in the above equations (9) 
and (16). 

Then using Section 3, the FUIO for model (45) (see its 
equivalent model (47)) permitting to estimate 
simultaneously 2kx , 5kx , 6kx  and the UI kd takes de 
following form: 
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 (49) 

where the observer gains iG  are given by equation (31). 
For all the results of computer simulations discussed 

below, we use the physical parameters whose definitions and 
numerical values are given in [19] and we assume 

0.012sec.τ =   
The expression of the unknown input signal is defined as 

in Figure 1. 
Thus, by Theorem 1 with 0.95λ =  the following 

observer gains 1G  and 2G  are obtained: 
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Simulation results with initial conditions: 
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are given in Figures 1 to 7.  

These simulation results show the performances of the 
proposed FUIO (17) with the gains 1G , 2G  where the 
dashed lines denote the state variables and unknown input 
estimated by the fuzzy observer. They show that the observer 
gives a good estimation of unknown states and unknown 
input of the considered robot. 

 

Figure 1.  Unknown input kd  and its estimate 

 

Figure 2.  State variables 1kx  and its estimate 

 

Figure 3.  State variables 2kx  and its estimate 
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Figure 4.  State variables 3kx  and its estimate 

 

Figure 5.  State variables 4kx  and its estimate 

 

Figure 6.  State variables 5kx  and its estimate 

 

Figure 7.  State variables 6kx  and its estimate 

5. Conclusions 
In order to estimate simultaneously the unknown state and 

unknown inputs for a class of DNDMs described by T-S 
fuzzy structure with unmeasurable premise variables, a new 
FUIO design without the use of an optimization algorithm is 
proposed in this paper. The main idea is based on the 
separation between dynamic and static relations in the 
DTSDM and the use of an augmented system structure 
formed by dynamic equations and unknown inputs. The 
global exponential stability of the state estimation error is 
studied by using the Lyapunov theory and the conditions 
ensuring this stability are expressed in term of LMIs. In order 
to demonstrate the good performance of the proposed result, 
a DNDM of a single-link flexible joint robot is considered. 
The effectiveness of the proposed FUIO for the on-line 
estimation of unknown states and unknown inputs of the 
used model is verified by numerical simulation. 
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