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Abstract  The onset of convection in a horizontal layer of Walter’s B' visco-elastic nanofluid is studied. A linear stability 
analysis based upon normal mode analysis is used to find solution of the fluid layer confined between two free boundaries. 
The onset criterion for stationary and oscillatory convection was derived analytically and graphically. The effects of the 
concentration Rayleigh number, Prandtl number, capacity ratio, Lewis number and kinematics visco elasticity Parameter on 
the stability of the system are investigated both on stationary and oscillatory convection. The sufficient conditions for the 
non-existence of oscillatory convection were also obtained. 
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1. Introduction 
Nanofluid have novel properties that make them 

potentially useful in many applications in heat transfer, 
including microelectronics, fuel cells, pharmaceutical 
processes, and hybrid powered engines, domestic 
refrigerator, chiller, heat exchanger and nuclear reactor, in 
grinding, in machining, in space, defense and ships, and in 
boiler flue gas temperature reduction. Nanofluid is a fluid 
colloidal mixture of nano (<100 nm) sized particles, in base 
fluid. Nanoparticles materials may be taken as oxide 
ceramics (Al2O3, CuO), metal carbides (SiC), nitrides (AlN, 
SiN) or metals (Al, Cu) etc. and base fluids are water, 
ethylene or tri-ethylene- glycols and other coolants, oil and 
other lubricants, bio-fluids, polymer solutions, other 
common fluids. The term ‘nanofluid’ was coined by Choi 
[1]. Since Choi proposed his theory on nanofluids a 
continuous effort has ensued to look for the causes of the 
so-called anomalous increase in thermal conductivity of 
nanofluids. The presence of nanoparticles in the fluid 
significantly increases the effective thermal conductivity of 
the mixture. Buongiorno [2] noted that the nanoparticles 
absolute velocity can be viewed as the sum of the base fluid 
velocity and a relative (slip) velocity. He also discussed the 
effect of seven slip mechanisms: Inertia, Brownian  
diffusion, Thermophoresis, Diffusiophoresis, Magnus  
effect, Fluid drainage and Gravity setting. He concludes that 
in the absence of turbulent eddies Brownian diffusion and   
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thermophoresis dominate the other slip mechanisms. Xuan 
and Li [3] investigated convective heat transfer and flow 
features of Cu-water nanofluid. They observed that the 
suspended nanoparticles remarkably enhance heat transfer 
process and the nanofluid has larger heat transfer coefficient 
than that of the original base liquid under the same Reynolds 
number. The heat transfer feature of a nanofluid increases 
with volume fraction of nanoparticles. A detail account of 
the thermal instability of Newtonian fluids has been 
discussed in detail by Chanderasekher [4]. The Bénard 
problem (the onset of convection in a horizontal layer 
uniformly heated from below) for a nanofluid was studied 
by many authors [5-16].  

The above study deals with nanofluid as Newtonian fluid. 
There is growing importance of non-Newtonian fluids in 
geophysical fluid dynamics, chemical technology, petroleum, 
biological and material industries. The study of 
non-Newtonian nanofluid is desirable. Bhatia and Steiner 
[17] studied the thermal instability of visco-elastic fluids. An 
experimental demonstration by Toms et al. [18] has revealed 
that a dilute solution of methyl methacrylate in n-butyl 
acetate agrees well with the theoretical model of Oldroyd 
[19]. There are many visco-elastic fluids which cannot be 
characterized by Maxwell’s constitutive relations. Two such 
classes of elastico-viscous fluids are Rivlin-Ericksen and 
Walters’ (Model B') fluids. Walters [20] reported that the 
mixture of polymethyl methacrylate and pyridine at 25°C 
containing 30.5g of polymer per litre with density 0.98g per 
litre behaves very nearly as the Walters’ (Model B') fluid. 
Walters’ (Model B') visco- elastic fluid forms the basis for 
the manufacture of many important polymers and useful 
products. Sharma et al. [21] have studied the stability of two 
superposed Walters’ (Model B') liquids whereas 
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thermosolutal convection problem in the presenceof 
magnetic field for Walters’ (Model B') fluid has been 
investigated by Sunil et al. [22]. The interest for 
investigations of visco-elastic nanofluids is also motivated 
by a wide range of engineering applications which include 
ground pollutions by chemicals which are non-Newtonian 
like lubricants and polymers and in the treatment of sewage 
sludge in drying beds. Recently, polymers are used in 
agriculture, communications appliances and in bio medical 
applications. In the present study, we investigated the 
thermal instability of a visco-elastic (Model B') nanofluid 
fluid. 

2. Mathematical Formulations 
Consider an infinite horizontal layer of Walter’s B’ 

elastico-viscous nanofluid of thickness‘d’ bounded by plane 
z = 0 and z = d and heated from below. Each boundary wall 
is assumed to be impermeable and perfectly thermal 
conducting. Fluid layer is acted upon by gravity force   
g(0, 0, -g). The temperature T and volumetric fraction φ of 
nano particles at z = 0 taken to be T0 and φ0 at z = 0 and T1 
and φ1 at z = d, (T0 > T1). The reference temperature is taken 
to be T1. Thermo physical properties of the nano fluid are 
constant for the analytical formulation but these properties 
are not constant and strongly depend upon volume fraction 
of the nano particles.  

Thus the governing equations for Walter’s B' 
elastico-viscous nanofluid are  

,0. =∇q                   (1) 

        (2) 

where ( )∇+
∂
∂

= q
ε
1

tdt
d

 stands for convection derivative, 

q(u, v, w) is the velocity vector, p is the hydrostatic pressure, 
μ is viscosity, μ' kinematic visco-elasticity and g(0, 0, -g) is 
acceleration due to gravity. 

The ρ density of the nanofluid can be written as 
Buongiorno2 

( ) ,ρφ1φρρ fp −+=        (3) 

where φ is the volume fraction of the nanoparticles, ρp 
density of nano particles and ρf density of base fluid. 

Using equation (3), equation of motion for Walter’s B' 
elastico-viscous nanofluid is given as 
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where α is the coefficient of thermal expansion. 
 
 

The continuity equation for the nanoparticles is 

T.
T
DφDφ.
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φ 2

1

T2
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∂
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where DB is the Brownian diffusion coefficient, given by 
Einstein-Stokes equation and DT is the thermoporetic 
diffusion coefficient of the nanoparticles given as: 

The energy equation in nanofluid is 
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where ρc is heat capacity of fluid, (ρc)p is heat capacity of 
nano particles and k is thermal conductivity. 

We introduce non-dimensional variables as  
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where 
ρc
kκ =  is thermal diffusivity of the fluid.  

There after dropping the dashes (') for simplicity. 
,0. =∇q                   (7) 
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where non-dimensional parameters are (Table 1):  
In the spirit of the Boussinesq approximations, equation (8) 

was linearized by neglecting the term proportional to the 
product of φ and T. Neglecting this value is valid in the case 
of small temperature gradients in the dilute suspension of 
nanoparticles. 

We assume that temperature and volumemetric fraction of 
the nanoparticles are constants on boundaries. Thus the 
dimensionless boundary conditions are: 

0zat       0φ   ,1T   0,w ====  and 
 1zat        1φ    0T   0,w ==== .         (12) 

2.1. Basic Solutions 

The basic state was assumed to be quiescent and is given 
by: 

b bu v w 0,  p p(z), T T (z)  φ φ (z).= = = = = = (13) 
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Approximation for the solution is given by: 

z,1Tb −=  z.φb =              (14) 

Table 2.  List of non-dimension less parameters 

S.No Parameters Relations 

1. Prandtl number r

μ
 P    

ρκ
=  

2. Lewis number 
B

κ
Le    

D
=  

3. Rayleigh number 
( )3
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6. 
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A
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8. 
Modified 

particle-density 
increment.  

2.2. Perturbation Solutions 

To study the stability of the system, we superimposed 
infinitesimal perturbations on the basic state, which are of 
the forms 

( ) ( )
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b b b
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T T , φ φ φ , p
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(There after dropping the dashes for simplicity.) 
Using the equation (15) in the equations (7) – (10) and 

linearize by neglecting the product of the prime quantities 
we obtained following equations  
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And boundary conditions 
w 0,    T 0    φ 0 at    z 0,= = = =  

w 0,    T 0    φ 0 at    z 1.= = = =  (20) 

It will be noted that the parameter Rm is not involved in 
these and subsequent equations. It is just a measure of the 
basic static pressure gradient. 

The six unknown’s u, v, w, p, T and φ can be reduced to 
three by operating equation (17) with  we 
get  
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where ,2
H∇  is two-dimensional Laplacian operator.

  

3. Normal Modes 
Analyzing the disturbances into the normal modes and 

assuming that the perturbed quantities are of the form  

[ ] ( )[ ] ( )x yw,θ,φ W(z),Θ(z),Φ z exp ik x ik y nt= + + (22) 

where kx, ky are wave numbers in x and y direction and n is 
growth rate of disturbances. 

Using equation (22), equations (18), (19) and (21) 
becomes 
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Where  and a2 = k2
x+ k2

y is dimensionless the 

resultant wave number. 
The boundary conditions for free-free boundaries surfaces 

are thus 

and     0zat     0Φ0,Θ0,WD    0,W 2 =====  

    (26) 

4. Linear Stability Analysis 
The solution to be W, Θ and Ф is of the form 

 z sinπ ΦΦz, sin πΘΘ , z  sinπ WW 000 ===  (27) 

satisfying boundary conditions (26).  
Substituting solution (27) in equations (23) - (25), 

integrating each equation from z = 0 to z = 1 and 
performing some integrations by parts, we obtain Eigen 
equation 

( ) ( )
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f

01p
B =

curl, .curlez

dz
dD =
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Setting n = iω, (where ω is real and dimensional frequency) 
in equation (28), we get 
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either ω = 0 (exchange of stability, steady state) or Δ2 = 0 (ω 
# 0 overstability or oscillatory onset).  

4.1. Stationary Convection 

For stationary convection ω = 0 (n = 0), equation (29) 
reduces to 

 

( ) ( ) ( ).NLeRn
a

aπRa A2

322

s +−
+

=      (32) 

We find that for the stationary convection the kinematic 
visco-elasticity parameter F vanishes with n and the 
Rivlin-Ericksen elastico-viscous fluid behaves like an 
ordinary Newtonian fluid. 

Figure 3 represent the variation of stationary Rayleigh 
number with wave number for different value of Lewis 
number Le and it is found that stationary Rayleigh number 
increases with Lewis number, thus Lewis number stabilize 
stationary convection. Figure 1 represent the variation of 
stationary Rayleigh number with wave number for different 
value of concentration Rayleigh number Rn and it is found 
that stationary Rayleigh number decreases with increase in 
the value concentration Rayleigh number Rn which imply 
that concentration Rayleigh number destabilize the 
stationary convection. The negative value of Rn indicates a 
bottom-heavy distribution while positive value of Rn 
indicates a top-heavy distribution of nano particles.  

It is also observed that stationary convection is possible 
for both bottom- and top- heavy nanoparticles distribution 
and stationary Rayleigh number is smaller for top-heavy 
than that of bottom-heavy distribution of nano particles. 

Figure 2 represents the variation of stationary Rayleigh 
number with wave number for the different values of 

modified diffusivity ratio NA and it is noted that stationary 
Rayleigh number increases with increase in the value 
modified diffusivity ratio NA, thus modified diffusivity ratio 
NA has stabilize the stationary convection. 

 

Figure 1.  Variation of stationary Rayleigh number Ra with wave number - 
a for different values concentration Rayleigh number 

 

Figure 2.  Variation of stationary Rayleigh number Ra with wave number - 
a for different values of modified diffusivity ratio 

 

Figure 3.  Variation of stationary Rayleigh number Ra with wave number- 
a for different values of Lewis number Le 
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4.2. Oscillatory Convection
 For oscillatory convection ω # 0, we must have Δ2 = 0, 

which gives  

 .
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Equation (33) gives the frequency of oscillatory mode. If 
there is no positive of ω2 then oscillatory instability is not 
possible. If there exist positive values of ω2, then thermal 
oscillatory Rayleigh number is obtain by putting the positive 
values of ω2 in equation (28).  

Thus thermal oscillatory Rayleigh number given by 
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where ω2 is given by equation (33).  

If then ω2 is 

negative and hence oscillatory convection cannot occur.  

Thus for  

are sufficient conditions for the non-existence oscillatory 
convection, the violation of which does not necessarily 
imply the occurrence of oscillatory convection. 

5. Results and Discussions 
Expression for stationary thermal Rayleigh number is 

given in equation (32) and for oscillatory thermal Rayleigh 
number is given in equation (34). We have discussed our 
results graphically. 

Figure 4 shows the variation of oscillatory Rayliegh 
number Ra with wave number a for different value of 
kinematic visco-elasticity parameter F and it is found that 
oscillatory Rayliegh number Ra decreases with increases in 
the values of kinematic visco-elasticity parameter F, thus 
kinematic visco-elasticity parameter F have destabilzing 
effect on the oscillatory convection. 

Figure 5 shows the variation of oscillatory Rayliegh 
number Ra with wave number a for different value of 
modified diffusivity ratio NA and it is found that the 
oscillatory Rayliegh number Ra slightly decreases as values 
of modified diffusivity ratio NA inceases, thus NA destabilze 
the oscillatory convection. 

Figure 6 shows the variation of oscillatory Rayliegh 
number with wave number a for different values of Prandtl 
number Pr and it is found that the oscillatory Rayliegh 

number Ra slightly decreases as values of Prandtl number Pr 
inceases, thus Prandtl number Pr has destabilzing effect on 
oscillating convection. 

Figure 7 shows the variation of oscillatory Rayliegh 
number with wave number a for different values of 
concentration Rayleigh number Rn and it is observed that 
oscillatory Rayliegh number slightly decreases with 
increases in the values of concentration Rayleigh number Rn, 
(for bottom-heavy distribution of nanoparticles), thus 
concentration Rayleigh number Rn destabilze the oscillatory 
convection. It was also observed that oscillatory convection 
was not possible for top-heavy distribution of nano particles.  

Figure 8 shows the variation of oscillatory Rayliegh 
number with wave number a for different values of Lewis 
number Le and it is found that the oscillatory Rayliegh 
number decreases as values of Lewis number Le inceases, 
thus Lewis number Le has destabilzing effect on on 
oscillating convection. 

 

Figure 4.  Variation of oscillatory Rayliegh number Ra with wave number 
- a for different concentration Rayleigh number 

 

Figure 5.  Variation oscilltory Rayleigh number with wave number - a for 
different value of kinematic visco-elasticity parameter F 
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Figure 6.  Variation of oscillatory Rayliegh number with wave number - a 
for different modified diffusivity ratio 

 

Figure 7.  Variation of oscillatory Rayliegh number with wave number- a 
for different Prandtl number 

 

Figure 8.  Variation of oscillatory Rayliegh number with wave number - a 
for different Lewis number Le 

6. Conclusions 
We studied linear instability of Walter’s B' 

elastico-viscous nanofluid heated from below by employing 
a model that incorporate the effects of Brownian motion, 
thermophoresis and visco elasticity. An expression for 
Rayleigh number, for the stationary convection and 
oscillatory convection is obtained. We draw following 
conclusion: 

(i)  The critical cell size is not a function of any 
thermophysical properties of nanofluid. 

(ii)  The effect of Lewis number Le and modified 
diffusivity ratio NA is to stabilizes the stationary 
convection and destabilize s the oscillatory 
convection. 

(iii)  The concentration Rayleigh number Rn destabilizes 
both stationary and oscillatory convection. 

(iv)  The oscillatory convection is possible only for the 
bottom-heavy nanoparticles distribution while 
stationary convection is possible for both bottom 
and top-heavy distribution of nanoparticles. 

(v)  The Prandtl number Pr destabilizes the oscillatory 
convection and no has effect on stationary 
convection. 

(vi)  Kinematic visco-elasticity parameter F destabilizes 
the oscillatory convection and no has effects on 
stationary convection. 

(vii)  A comparison between nano fluid and ordinary 
fluid made and it is found that nano fluid is more 
stable than ordinary fluid. 

(viii)  It was also found that Rayleigh number in stationary 
convection has higher value in than that of Rayleigh 
number in oscillatory convection. 

The sufficient conditions for the non-existence of 
oscillatory convection are 

( )A
r

1
Rn 0 and 1 N L   and JF 1

P
e< > + < +

 
 
 

. 
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