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Abstract  This paper presents a detailed methodology for the calculation of CO2 tailpipe emissions of advanced vehicle 
technologies such as hybrid, plug-in hybrid vehicles and similar range-dependent powertrains with respect to trip and 
mileage distribution. The concept is based on the realisation that advanced vehicle technologies require a more thorough 
knowledge of trip distribution characteristics based available statistical data rather than average trip length which is already 
used for cold and evaporative emissions calculation. The proposed discrete trip distribution modelling takes into 
consideration the unique characteristics of different technologies without adding too much complexity. Results show that 
this approach can provide a representative projection of the impact on energy consumption and CO2 estimation depending 
on the assumed trip distribution especially if crucial characteristics such as the average speed and state of charge are also 
considered in parallel. Closed form solutions for the simplified representation of indicative statistical trip distributions are 
extracted.  
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1. Introduction 
The European Commission has presented the White Paper 

on Transport[1] which is a roadmap document setting the 
targets for the evolution of transport in the European 
Community until 2050. Key policies in the area are 
addressing CO2 emissions and energy efficiency in order to 
provide the fundamental mechanisms to decouple transport 
growth from fossil fuel consumption. For instance, the 
20-20-20 is a collection of robust policies[2] aiming to 
achieve 20% lower CO2 emissions in 2020 compared to 
1990. 

Within this framework, electricity stands out as an 
appealing candidate when it comes to decarbonisation 
strategies. The term electromobility (or e-mobility) often 
refers to the concept of using electric powertrain 
technologies and infrastructures to enable the electric 
propulsion of vehicles and fleets. E-mobility is mainly 
intended for passenger cars and light commercial vehicles as 
efficiency drops with mass increase. Hybrid electric vehicles 
(HEVs), plug-in hybrid electric vehicles (PHEVs), battery 
electric vehicles (BEVs), EVs with range extender (EREVs) 
and Fuel-Cell EVs (FCEVs) are some representative 
electromobility technologies which can, up to a different  
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extent, minimise or even eliminate oil dependency and 
tailpipe CO2 emissions, provided that the production supply 
chain does not emit too much CO2. On the other hand, HEVs, 
PHEVs and EREVs can maintain current conventional 
vehicle ranges, but do not allow full oil independency unless 
renewable fuels are used; while modern battery EVs have 
low electric ranges due to limitations of the battery storage 
capacity. It is quite apparent that there several similarities 
and several differences among these technologies. 

Furthermore, it is possible that other advanced 
technologies, either in the form of targeted eco-innovations 
or as new vehicle types will enter the market in an attempt to 
achieve the agreed targets. Therefore, it should be 
investigated whether these different technologies can be 
modelled with the currently available tools and 
methodologies used for conventional vehicle technologies. 

One parameter which is important for the modelling of 
such vehicles is the trip length distribution. For conventional 
vehicles, average trip length is an important parameter for 
the estimation of emissions in vehicles due to the influence 
on the cold start excess. It also plays an important role in the 
estimation of evaporative emissions. 

However, with the introduction of advanced technologies 
in transportation, the trip length distribution received 
additional importance. In such cases it plays a decisive role 
as it may indicate the ranges in which the new technology 
cars will operate in a special mode (e.g. all-electric mode). 
Consequentially, this would have a large impact on the 
associated emissions. Hence, detailed and accurate maps of 
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the distribution of trip lengths should become available for 
the precise modelling of such vehicles. 

The COPERT 4 methodology[3] which is part of the 
EMEP/EEA Air Pollutant Emission Inventory Guidebook[4] 
for the calculation of air pollutant emissions and is consistent 
with the 2006 IPCC Guidelines[5] for the calculation of 
greenhouse gas emissions requires the classification of the 
annual mileage share into three modes (urban, rural and 
highway). A specific average velocity is assigned to each 
such mode. As a result, fuel consumption and emissions are 
calculated for these three velocity classes and then multiplied 
with the mileage total of each respective zone.  

For some advanced vehicle technologies though, e.g. 
electric vehicles with range extender, bi-fuel vehicles, the 
previous urban/ rural/ highway mileage modelling is 
probably not sufficient, because the use of the internal 
combustion engine will not only depend on the driving speed, 
but also on the trip length and the related range of the 
auxiliary energy source.  

In the long run, the average trip length, which is the 
current input related to trip length, will be substituted and the 
software tools will require more detailed input parameters of 
vehicle trip performance. Thus, emission estimation tools 
could consider appropriate inputs in order to approximate the 
detailed whole trip length distribution curve. 

The idea behind the trip length distribution lies in the 
statistical processing of representative trip lengths of 
passenger cars in Europe[6-9]. Statistical data describing 
travelling patterns and behaviours must be the start point of 
the modelling process, but the idea is to maintain low 
complexity, at least on a par with the current conventional 
technology estimation procedure. Unfortunately, such data 
sources are quite limited and describe different trip length 
characteristics. In this work, statistical data for specific 
countries in the EU which adhere to a similar format have 
been investigated. Although not all EU countries have been 
included, the available statistics can be considered 
indicative. 

 The scope of our study is to develop a mathematical 
approach that can reconstruct the trip length distribution 
curves, in order to approximate emissions more accurately 
for vehicles using more complex powertrains and under the 
prospect of a significant market introduction of hybrid, plug- 
in – hybrid, range extender and other advanced powertrain 
vehicles. This approach should be able to extend to other 
bi-fuelled vehicles, especially when range- or trip-dependent 
restrictions apply. This modelling attempt will attempt to 
estimate quantitatively the effect on CO2 emission 
estimation. 

This paper is organised as follows: Section 2 describes the 
basic modelling methodology, Section 3 presents the 
simulation results and Section 4 summarises the conclusions. 

2. Modelling Methodology 

2.1. Trip Length Correlation 

2.1.1. E-mobility Modes of Operation 

Focusing one e-mobility vehicles, regardless of their 
specific architecture, a plug-in hybrid vehicle for example, is 
generally capable of two modes of operation: 
charge-depleting and charge-sustaining mode. Combinations 
of these two modes are termed blended mode or mixed-mode. 
These vehicles can be designed to drive for an extended 
range in all-electric mode; this is usually achievable either 
for low speeds only (similar to full hybrid vehicles) or at all 
speeds.  

Charge-depleting mode allows a fully charged PHEV to 
operate almost exclusively on electric power until its battery 
is depleted to a predetermined level, at which time the 
vehicle's internal combustion engine (ICE) or fuel cell will 
be engaged. This period is the vehicle's all-electric range. 
This is the only mode in which a battery electric vehicle can 
operate. 

Blended mode is normally employed by vehicles which do 
not have enough electric power to sustain high speeds 
without the help of the internal combustion portion of the 
powertrain. A blended control strategy typically increases 
the distance from stored grid electricity compared to a 
charge-depleting strategy. Such models can only run without 
using the ICE at low speeds due to the limits dictated by the 
vehicle's powertrain control software. However, at higher 
speeds, electric power can still be used to displace gasoline, 
thus improving the fuel economy in blended mode and 
generally doubling the fuel efficiency. 

Charge-sustaining mode is used by production hybrid 
vehicles (HEVs) today, and combines the operation of the 
vehicle's two power sources (electric and internal 
combustion) in such a manner that the vehicle is operating as 
efficiently as possible without allowing the battery state of 
charge to move outside a predetermined narrow band. The 
state of charge may fluctuate, yet the net charge change will 
be essentially zero. The battery in a HEV can thus be thought 
of as an energy accumulator rather than a fuel storage device. 
Once a plug-in hybrid has exhausted its all-electric range in 
charge-depleting mode, it can automatically switch into 
charge-sustaining mode. 

2.1.2. Data Sources  

There is a scarcity of sources in the field of reliable trip 
distribution data that could accommodate the extraction of a 
respective statistical distribution model. EUROSTAT 
statistics[9] were used, since they contained adequate 
information without requiring excessive input parameters 
for the purpose of this study. The data cover six EU 
countries (Table 1) for a variety of travel modes. Trip 
distribution is quantised into distinct mileage bins with 
predetermined upper and lower limits. In this way, trip 
distribution describes the percentage of trips within each 
such mileage bin with respect to the total number of trips. 
The average number of trips per day is also provided.  
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Figure 1.  Percentage of trips in each distance class for Austria[9] 

An example of this data is shown in Figure 1; the trip 
allocation of Austria statistics is illustrated.  

2.2. Trip Length Distribution Modelling 

2.2.1. Log-normal Distribution 

For range-dependent vehicles, a statistical distribution 
describing the probability of a certain trip length can be used 
to approximate the trip length behaviour. Adding the average 
number of trips per year yields the annual mileage allotment 
with respect to trip length. 

The statistical analysis of the trip distribution data 
available for 6 EU countries demonstrates a strong 
resemblance with the log-normal distribution, which is a 
typical distribution capable of describing various 
applications in economics. This distribution has a 
probability density function described as[11]:   
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where erf(x) denotes the error function. The statistics of a 
log-normal distribution are then expressed as: 

2
( )Mode X eµ σ−=                (3) 

2

2( )E X e
σµ+

=                    (4) 

( )2 22( ) 1Var X e eσ µ σ+= −          (5) 

which represent the mode, expected value (mean) and 
variance of the distribution respectively. After some 

manipulations, it can be deduced that μ and σ can be 
expressed as 
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In this way, an equivalent log-normal distribution can be 
constructed based on available statistical data. Moreover, 
these two equations require a minimum possible user input, 
which can be easily obtained from the actual trip 
distribution curves, i.e. the mean trip length that passenger 
cars travel and the length most commonly covered.  

By using the available statistical data[9], the lognormal 
distribution parameters were calculated. The results are 
presented on Table 1 for six selected countries.  

From the above, it can be observed that there are 
similarities as well as significant differences in terms of trip 
length characteristics. Portugal shows a distinct behaviour, 
since no trips were reported for distances lower than 20km. 
Despite this issue, it can be used as an example of the effect 
that totally different distributions can have upon different 
vehicles technologies. 

Table 1.  Log-normal parameters for each country 

Country E[X] (km) Mode[X] (km) 

Austria 18 2.5 

Finland 25 10 

France 23 12.5 

Netherlands 12 2.5 

Portugal 80 65 

Sweden 30 10 

An example of applying the log-normal distribution as an 
approximation of the trip distribution can be seen in Figure 
2.  

 
Figure 2.  Log-normal distribution approximation for trip lengths in 
Austria (logarithmic scale) 

In order to validate the approximation compared to the 
actual statistical data a comparison was carried out. By 
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multiplying the percentage of trips in each distance class 
with the average distance of the respective class the total 
mileage was calculated. A comparison between the 
statistical and the approximated trip distribution for Austria 
can be seen in Figure 3. 

 
Figure 3.  Comparison of actual data with the applied log-normal 
distribution fit approach for Austria 

It should be noted that, in order to fully implement the 
mileage distribution based on the trip distribution, the 
average number of trips per day is also needed. These three 
parameters can fully accommodate a mileage distribution 
approximation of the available data. 

A comparison of all six countries in terms of the relative 
error (e=[data– estimation]/ data) between actual and 
approximated total mileage is presented on Table 2.  

Table 2.  Log-normal parameters for each country 

Country Error (%) 
Austria 8.79 
Finland 9.45 
France 9.07 

Netherlands 0.81 
Portugal 4.59 
Sweden 2.82 

The validation showed that the proposed methodology can 
approximate the trip length distribution in the considered 
examples with acceptable accuracy, which is less than 10 % 
for the studied countries. 

2.3. Mileage and Energy Modelling 

This trip distribution approximation was developed in 
order to achieve a more realistic estimation of energy 
consumption for range-dependent vehicle technologies as 
opposed to the simple mileage concatenation used for 
conventional vehicles.  

In order to estimate fuel consumption, the Tier 3 method 
according to the EMEP/EEA Guidebook requires the 
combination of emission factors and activity data. The 
different activity data and emission factors are attributed to 
each driving situation as follows:  

ETOTAL = EURBAN + ERURAL + EHIGHWAY,         (8) 
where E denotes the emission type of interest in each 
respective driving condition (urban, rural, highway). For the 
sake of simplicity, this paper will only focus on the hot 
emissions (energy consumption /CO2) part, while the 
evaporation effect will also be omitted. For similar reasons, 
the road slope is considered (flat road). 

Following the analysis in the previous section, if this basic 
concept is transformed into a continuous relation, the 
consumed fuel for trips with length s in (a,b] and speed v 
within (u,w) can be generally expressed as follows: 
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where fc denotes the consumption function which depends on 
both the average speed v and the trip length s. Thus, if a 
vehicle is equipped with n types of propulsion this would 
lead to a total annual consumption of 
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where k is the number of trips per year.  

2.3.1. Mileage  

The previous log-normal approximation of the trip 
distribution will be applied for the estimation of mileage: 
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where s is the total mileage, k is the number of trips per year, 
ftrip denotes the trip distribution function with respect to a 
given trip length s and average trip velocity v. The average 
speed can be either fixed or a function of s – v(s). Initially, 
the speed dependency will not be considered. 

Using the lognormal statistics, the probability that the trip 
length is between a and b equals: 
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where erf(x) denotes the error function. In a similar fashion, 
the probability that the trip length is higher than c equals: 
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Since the available statistical data are discrete, it would be 
needlessly complex to aim for a continuous solution, thus a 
discrete form of mileage concatenation will be employed: 
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where n is the number of mileage bins and x1, x2, .... xn are the limits of these bins. The solution to the last term in (15) is given 
by[10] in the form of the partial expectation of a log-normal distribution:  
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where Φ is the cumulative distribution of the standard normal distribution. Therefore it can also be written as: 
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In order to calculate the intermediate, upper- and lower-limited, mileage bins, e.g. the (x1, x2] range, where x2>x1, the 
resulting mileage would become: 
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by invoking the previous equation (16). Thus, by establishing a discrete set of mileage bins, the mileage in each such bin can 
be expressed using expressions (17-18). 

2.3.2. Speed Dependency 

Closed-form solutions for the calculation of mileage in each mileage bin have been derived with respect to the trip 
distribution, which was approximated by a log-normal distribution. However, a typical energy consumption function is a 
linear function of the travelled distance and a coefficient dependent on the average speed. Given that, each mileage part is 
treated separately as a mileage bin, one would also have to provide an equivalent speed distribution. The latter one could also 
be dependent on the relative trip length as mentioned previously.  

In this approach, trip length and average speed are treated as independent variables; the average speed assigned to each 
distinct mileage bin is fixed for this entire mileage range. As a result, the total consumed energy for a vehicle would be: 
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where fc1, fc2, ... fcn are the energy consumption functions dependent on the average speed and mileage bin of interest, rather 
than a continuous dependency and v1, v2,...vn are the average speed values which are distinct, yet constant for each mileage 
bin.   
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2.3.3. Other Initial Conditions 

Depending on the exact nature of the vehicle powertrain, 
additional parameters might be necessary to consider. In 
electric powertrains with all-electric driving capability, for 
instance, the initial state charge of the battery (SoC) for each 
mileage bin should also be considered. This could be 
modelled in a way similar to the speed distribution (mileage 
bin dependency) in this study or in a more complex and 
detailed approach, bearing in mind that more complex 
socio-psychological models could probably be used to 
estimate the connection between initial charge and related 
trip length. 

2.4. Software Implementation 

2.4.1. Background 

The methodology analysed in the previous paragraphs was 
integrated into a custom software application called 
SIBYL[12]. The software has a modular base, consisting of a 
series of virtually independent and sequential modules 
(Figure 4), each of them being responsible for the calculation 
of a certain metric (e.g. stock, mileage distribution, energy 
consumption etc.). It uses a bottom-up approach in forming 
total activity, rather than a top-down approach that would 
come from a demand module. Traditionally, new 
registrations are calculated as the difference of the size stock 
minus the surviving stock from the previous year.  

A new scenario starts by formulating the vehicle stock 
projection, which can be manually altered based on desired 

assumptions on market growth, stock growth, or vehicle 
utilization patterns. 

The average mileage combined with the previously 
estimated stock yields the total vehicle-kilometres. The 
classification of vehicles in different categories provides 
then the average projected mileage per technology and 
energy source. 

The calculation of activity per vehicle type in conjunction 
with fuel consumption and emission factors can then lead to 
a bottom-up energy consumption and emission estimation. 
The model contains emission and consumption factors for a 
variety of modern vehicle technologies, based on extensive 
powertrain software modelling and simulations of real-world 
driving cycles as well as actual vehicle data. Real – life 
vehicle characteristics were used for the development of the 
vehicle models and the advertised performance and fuel 
consumption specifications served as feedback to calibrate 
the results.   

A correlation diagram has been obtained for each such 
vehicle category (and fuel type for multi-fuel technologies), 
e.g. by simulation and testing procedures. The energy 
consumption factors are speed and trip-length dependent in 
the case of advanced powertrains.  

This study will focus on the trip length and mileage 
distribution module which incorporates the aforementioned 
modelling process. The implemented simulation tool also 
contains speed and battery state of charge distribution 
capabilities in order to investigate the impact of all three 
parameters on the emission output of selected e-mobility 
technologies. 

 
Figure 4.  Simplified SIBYL model block diagram 



 Energy and Power 2014, 4(1A): 57-64 63 
 

 

3. Simulation and Results 
In the following results, four vehicles have been used to 

demonstrate the effect of trip distribution along with speed 
and related initial conditions: a hybrid electric vehicle, an 
electric vehicle with range extender, a plug-in hybrid electric 
vehicle (small battery) and a medium gasoline vehicle. The 
latter one has been used to investigate if a detailed trip 
distribution can also affect conventional vehicles.    

The basecase simulation parameters are listed on Table 3 
below. The trip distribution parameters of Austria (mean=18, 
mode=2.5) have been used for the log-normal distribution 
approximation. The speed distribution is based on the 
assumption that shorter trips correspond to urban driving 
where lower average speeds are reported and as trip 
distances increase, the average speed increases. 

Table 3.  Simulation parameters 

Mileage bin (km) Speed (km/h) Initial SoC (%) 

0-1 10 65 

1-3 20 70 

3-10 30 75 

10-20 40 85 

20-50 50 85 

50-80 60 85 

80-100 70 85 

100-200 80 85 

200-500 90 85 

500- 100 85 

Figure 5 shows a comparison in terms of tailpipe average 
gCO2/km among the basecase, a totally different travelling 
pattern like Portugal (Scen2, mean=80, mode=65) and a 
more realistic one, Sweden (Scen1, mean=30, mode=10) and 
its subsequent effect on different technologies. 

 

Figure 5.  Comparison of CO2 emissions of various technologies for 
different trip distributions 

The results are reasonable; the range extender vehicle 
(reev), which boasts the greatest all-electric range, shows a 
performance which deteriorates rapidly as the trip 
distribution moves outside this range. The Hybrid vehicle 
(hev) is only slightly affected in the extreme case (Portugal), 

while the plug-in hybrid (phev) shows a more complicated 
behaviour; CO2 emissions drop a bit for the intermediate 
scenario and rise significantly in the extreme case. This 
could be attributed to the increase of the Mode value which is 
close to the range of this PHEV. Finally, the conventional 
gasoline vehicle (gas med) indeed shows that it is affected by 
the different distribution patterns, mostly as a result of the 
varying average travelling speed with trip distance. 

Table 4.  CO2 emissions change compared with the basecase 

Vehicle Scen1 (%) Scen2 (%) 

hev 0.34 5.17 

reev 9.57 122.41 

phev -1.87 22.83 

gas med -2.93 -7.51 

The different speed distribution (linear), as shown in 
Table 3, combined with majority of trips being around 
50-100 km, where there is an ideal “notch” in CO2 emissions 
for the respective speeds, can explain the drop in CO2 
emissions for the gasoline vehicle. The results are 
summarized in Table 4 (relative emissions compared to the 
basecase). 

In the second simulation the role of speed is investigated 
for the intermediate scenario (Scen1) in terms of trip 
distribution, following the distribution of Table 5. The 
relative speed increase with trip distance has been 
maintained, but the distribution is no longer linear. The 
results are shown in Figure 6.  

Table 5.  Simulation parameters for speed and initial SoC subscenarios 

Mileage bin (km) Speed (km/h) Initial SoC (%) 

0-1 15 65 

1-3 15 65 

3-10 15 65 

10-20 30 65 

20-50 30 65 

50-80 30 65 

80-100 100 65 

100-200 100 65 

200-500 100 65 

500- 100 65 

In this case, the low speed for small distances clearly 
favours the hybrid drivetrains, which show a similar 
reception compared to the REEV and the gasoline vehicles, 
on which emissions increase by 25-30%. The HEV 
performance even appears to improve by almost 5%. This 
fact could be attributed to the HEV electric drivetrain 
optimization at very low speeds.   

Finally, in the last simulation run, the influence of the 
starting battery state of charge is investigated upon the same 
scenario (Scen1) as depicted in Table 5; the starting SoC 
remains constant for all distance classes.  
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Figure 6.  Comparison of technologies when applying different speed 
distributions 

As expected, Figure 7 delivers the catalytic effect of the 
state-of-charge level on the usage of the alternative power 
source. The PHEV and the REEV vehicle performances 
deteriorate significantly as distance increases. Reasonably, 
the REEV is more sensitive as the low starting battery level 
effectively diminishes the all-electric range.  

 

Figure 7.  Comparison of technologies when applying different initial SoC 
distributions 

4. Conclusions  
The paper presents an attempt to model collected trip 

length statistical data in the form of a log-normal 
distribution. The resulting fit is considered satisfactory for 
the cases under study. This distribution is then used to form 
the mileage distribution, which is concatenated into discrete 
distance classes. Closed-form mathematical expressions are 
extracted by integrating each distance class. Finally, this 
methodology is incorporated in a thorough transport model; 
the tool is then used to evaluate the impact of the modelling 
approach on technologies which clearly depend on range 
resolution. 

The results successfully demonstrate the advantage of the 
proposed model in showing the true potential of electrified 
vehicle technologies. Moreover, further research can extend 
the study to include other technologies with range 
dependency such as bi-fuelled vehicles (e.g. gasoline – 
liquid petroleum gas), as well as investigate the correlation 
of average speed and trip length. 
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