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Abstract  It is possible to reformulate the portfolio optimization problem as a constrained regression. In this paper we use 

a shrinkage estimator combined with a constrained robust regression and apply it to portfolio robust prediction. Starting with 

robust estimates (𝛍 𝑅 , Σ 𝑅), we solve the constrained optimization problem in order to obtain a robust estimation of the 

portfolio weights. By varying a shrinkage parameter it is possible to 'interpolate' between the robust and least-squares cases 

and to find an optimal value of this parameter with the best predictive power. Indeed recurrence of outliers in financial data 

may require some flexibility aside robustness. In particular we derive a closed formula for linear constrained regression 

M-estimator and present a procedure intertwining this solution with the shrinkage estimator. Monte Carlo Simulations are 

used to study the behavior of the optimum values of the shrinkage parameter in some distributions arising in financial data. 
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1. Introduction 

In the analysis of financial data we often have to 

implement regression analysis from historical data, the aim 

being to predict future values of the variables. In this paper 

we will work mainly with regression techniques applied to 

portfolio prediction. Classical applications are Markowitz 

portfolio optimization, Marcowitz (1952), and the Capital 

Asset Pricing Model (CAPM), developed by many leading 

economists in the sixties. 

CAPM is a very used method for estimating the expected 

return of a portfolio and evaluation of risks. It is a one-factor 

model:  

𝑟𝑡 − 𝑟𝑓𝑡 = 𝛼 + 𝛽(𝑟𝑚𝑡 − 𝑟𝑓𝑡 ) + 𝑢𝑡 , 

with 𝑡 = 1, . . . , 𝑇, where 𝑟𝑡  is the rate of return, 𝑟𝑓𝑡  is the 

risk-free rate, 𝑟𝑚𝑡  is the rate of return of the market and 𝑢𝑡  

is a random error. Typically the model is fitted by ordinary 

least squares (OLS). 

We can put CAPM in the context of the standard linear 

model:  

𝑦𝑡 = 𝐱𝑡′𝛃 + 𝑢𝑡 ,               (1) 

with 𝑡 = 1, . . . , 𝑇, 𝛃 ∈ ℝ𝑁 and 𝑢𝑡  following a density 𝑔(⋅). 

It is useful to write the model in matrix notation:  

𝐲 = 𝐗𝛃 + 𝐮,                (2) 

where 𝐲  and 𝐮  are 𝑇 × 1  vectors and 𝐗  is a 𝑇 × 𝑁 

matrix. 
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In spite of well-known shortcomings, CAPM continues 

tobe an important and widely used model. From a statistical 

point of view, it is known that standard OLS estimation of 𝛃 

presents several drawbacks. In particular many authors have 

pointed out its high sensitivity in the presence of outliers and 

its loss of efficiency in the presence of small deviations from 

the normality assumption, see, for instance, the books by 

Huber (1981), Hampel et al.(1986) and Huber and Ronchetti 

(2009). 

Robust statistics was developed to cope with the problem 

arising from the approximate nature of standard parametric 

models. Indeed robust statistics deals with deviations from 

the stochastic assumptions on the model and develops 

statistical procedures which are still reliable and reasonably 

efficient in a small neighborhood of the model. In particular, 

several well known robust regression estimators were 

proposed in the finance literature as alternatives to OLS to 

estimate 𝛃. This issue was already studied by one of the 

creators of the CAPM, Sharpe (1971). He suggested to use 

least absolute deviations (𝐿1 -estimator) instead of OLS 

(𝐿2-estimator). Chan and Lakonishok (1992) used regression 

quantiles, linear combinations of regression quantiles, and 

trimmed regression quantiles. Martin and Simin (2003) 

proposed to estimate 𝛃 using redescending M-estimators. 

These robust estimators produce values of 𝛃 which are 

more reliable than those obtained by OLS in that they reflect 

the majority of the historical data and they are not influenced 

by outlying returns. In fact, robust estimators downweight 

abnormal observations by means of weights which are 

computed from the data. Following the discussion in Genton 

and Ronchetti (2008), robustness is important if the main 

goal of the analysis is to reflect the structure of the 

underlying process as revealed by the bulk of the data, but a 

familiar criticism of this approach in finance is that 
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'abnormal returns are the important observations', and it has 

some foundation from the point of view of prediction. Indeed 

if abnormal returns are not errors but legitimate outlying 

observations, they will likely appear again in the future and 

downweighting them by using robust estimators will 

potentially result in a bias in the prediction of 𝛃. On the 

other hand, it is true that OLS will produce in this case 

unbiased estimators of 𝛃 but this is achieved by paying a 

potentially important price of a large variability in the 

prediction. Therefore, we are in a typical situation of a 

trade-off between bias and variance and we can improve 

upon a simple use of either OLS or a robust estimator. This 

motivates the use of some form of shrinkage from the robust 

estimator toward OLS to achieve the minimization of the 

mean squared error. 

That discussion on CAPM and in least-squares regression 

model can also be extrapolated to other models in finance 

based on analog statistical principles. The topic which 

interests us here is portfolio optimization, mainly from the 

point of view of prediction. The goal of portfolio 

optimization is to find weights 𝛚 , which represent the 

percentage of capital to be invested in each asset, and to 

obtain an expected return with a minimum risk. Brodie et al. 

(2007) presented a way to express the optimization problem 

as a multiple regression with constraints. It is therefore 

possible to perform this regression using robust methods, e.g. 

M-estimators, least trimmed squares (LTS) or others. 

Consider a portfolio with 𝑁  assets and 𝑇  historical 

returns 𝐫𝑡  forming the rows of a matrix 𝐑. For an expected 

return 𝑟 we can solve the following optimization problem: 

𝛚 = 𝑎𝑟𝑔𝑚𝑖𝑛
1

𝑇
𝜌(𝑟𝟏𝑇 − 𝐑𝛚)  with constraints 𝛚′𝛍 = 𝑟 

and 𝛚′𝟏𝑁 = 1 where 𝜌  is a penalizing function such as 

squaring for the OLS estimator or the Huber's function for 

the robust M-estimator. We use robust estimations (𝛍 𝑅 , Σ 𝑅) 

and we solve the optimization problem to obtain a robust 

estimation for the portfolio weights 𝜔 𝑅
∗ . We then use a 

shrinkage estimator, see Eq. (24), to 'shrink' towards the OLS 

estimator and find an optimal value of the shrinkage 

parameter 𝑐  for the measures of predictive power 

considered in Section 4 of Genton and Ronchetti (2008). 

We use Monte-Carlo simulations to study the behavior of 

the optimum values of 𝑐 for outlying returns 𝐫𝑡  generated 

by contamination or long-tailed skew-symmetric laws. The 

simulations give us empirical heuristics for actual 

applications in robust asset allocation. We consider specially 

the flexibility of skew-symmetric distributions and study 

these type of distributions which allow to model return 

distributions with significant skewness and high kurtosis as 

is usually the case of hedge funds (see for instance Popova et 

al. (2003)). 

From a practical point of view, we implement the methods 

in the statistical software R. Some tools are already 

implemented (e.g. MCD estimator) but we have to program 

some other routines (constrained robust regression, 

multivariate shrinkage). Depending on the amount of data to 

be analyzed, execution can be expensive in time, 

consequently we have to take care about efficiency of the 

routines mainly if we want to apply Monte Carlo simulations 

using resampling methods. 

This paper could be considered as an application in 

portfolio optimization of the skrinkage estimators studied in 

Genton and Ronchetti (2008). They only treat the case of 

estimating beta in CAPM. That estimator have been 

generalized to multidimensional variables need in portfolio 

statistical analysis. Gramacy et al. (2008) use specific 

shrinkage estimators (LASSO and rigde regression) in 

finance to estimate covariances between many assets with 

histories of highly variable length (missing data) but they do 

not the deal with robustness. That work have been developed 

and extended in Gramacy and Pantaleo (2010), where they 

consider a Bayesian hierarchical formulation, considering 

heavy-tailed errors and accounting for estimation risk. 

The introduction to robust techniques to portfolio 

optimization is relatively recent compared with the 

Markowitz foundational paper. Nevertheless the subject 

have become very active in the last decade. We can mention 

the works of Vaz-de Melo and Camara (2003), Perret-Gentil 

and Victoria-Feser (2004), and Welsch and Zhou (2007). All 

three papers compute the robust portfolio policies in two 

steps. First, they compute a robust estimate of the covariance 

matrix of asset returns. Second, they solve the 

minimum-variance problem where the covariance matrix is 

replaced by its robust estimate. Recently, Demiguel and 

Nogales (2009) proposed solving a single nonlinear program, 

where portfolio optimization and robust estimation are 

performed in one step. They performed a theoretical study 

for M-estimators and S-estimators, in addition to a 

simulation using a mixture of a normal and a deviation 

distribution. A very recent work of Demiguel et al. (2013) 

have also implemented a shrinkage strategy both using 

shrinkage estimators of the moments of asset returns 

(shrinkage moments), and using shrinkage portfolios 

obtained by shrinking the portfolio weights directly. We 

have to remark that in that paper, they use shrinkage by 

means of a convex combination from the sample estimator 

(low bias), towards the target estimator (low variance). They 

use two calibration criteria: the expected quadratic loss 

minimization criterion, and the Sharpe ratio maximization 

criterion. We distinguish our work by the fact that use 

explicitly use a M-estimator as the target of the shrinkage, 

which enables us to use a more specific shrinkage estimator 

(from Genton and Ronchetti (2008)) with the calibration 

parameter is related to Huber's function. In fact varying that 

parameter allow the shrinkage model to interpolate within 

the family of robust estimators, the OLS estimator being a 

limit case for a big value of the parameter 𝑐 (in fact the OLS 

is the limit for 𝑐 → ∞, see Section 4). This is an advantage of 

our shrinkage strategy compared to convex combination of 

estimators. Other characteristic of our work is that use use 

many measures of predictive errors aside the expected 

quadratic loss. This is specially because in our simulated 

study we are interested in long-tailed and asymmetric 

distributions. Other reference which uses skew-symmetric 

laws as 𝑆𝑡 in portfolio optimization is Hu and Kercheval 

(2010) but they do not involve with shrinkage strategies. 

The paper is organized as follows, in Section 2 we explain 
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some basic issues concerning the appearance of asymmetric 

and long-tailed errors and robust regression, then in Section 

3 we derive the robust constrained regression model 

associated to portfolio allocation, in particular we have a 

closed formula for the shift of the estimator of the parameter 

vector of the linear model due to linear constraints, see. Eq. 

14. In section 4, we present a shrinkage robust estimator and 

combine it with the constrained robust regression in a 

procedure for the application in portfolio optimization. 

Section 5 illustrates the results of the combined procedure 

using Monte Carlo simulation, first in an ideal standard 

linear model and then to simulated distributions from 

contaminated normal and asymmetric-long-tailed laws. 

Finally Section 7 presents some conclusions of our study. 

2. Non-normal Errors and Robust 
Regression 

Robust statistics is an extension of classical statistics in 

that it takes into account the possibility of contaminated data 

or more generally of model misspecification. This theory 

was firstly developed by Huber (1964) and Hampel (1968). 

There are many ways to model errors with outlier. For 

instance we can consider a mixture of a normal distribution 

𝑁 with a large-variance distribution 𝑊. Let 𝜀 ∈ (0,1) be a 

number representing the proportion of contamination and 

define the neighborhood of the parametric distribution 𝐅𝜃  to 

be the set:  

{𝐆𝜀 |𝐆𝜀 = (1 − 𝜀)𝐅𝜃 + 𝜀𝐖}.        (3) 

𝐆𝜀  can be considered as a mixed distribution between 

𝐅𝜃  and the contamination distribution 𝐖. An estimator is 

said robust if it remains stable in a neighborhood of 𝐅𝜃 . 

Often in theoretical studies 𝐅𝜃  is a multivariate normal 

distribution in dimension 𝑑: 𝑁𝑑(𝛍, 𝚺). 

In standard linear regression theory, least-squares 

estimator for the parameter 𝛃 is known to be non-robust. In 

section 3 we will use M-estimators to find robust estimates of 

parameters in portfolio allocation. In the context of the linear 

model (1), the general M-estimators minimize the objective 

function:  

 ‍𝑇
𝑡=1 𝜌(

𝑦𝑡−𝐱𝐭
′ 𝛃

𝑠
),              (4) 

with respect to 𝛃  and the loss function 𝜌  gives the 

contribution of each residual to the objective function. 𝑠 is a 

scale parameter. Generalizing least-squares minimization, a 

reasonable 𝜌 should have the following properties:   

    ● 𝜌(𝑢) ≥ 0,  

    ● 𝜌(0) = 0,  

    ● 𝜌(𝑢) = 𝜌(−𝑢),  

    ● 𝜌(𝑢𝑖) ≥ 𝜌(𝑢𝑗 ) for |𝑢𝑖| > |𝑢𝑗 |.  

For example, for least-squares estimation we have 

𝜌(𝑢) = 𝑢2. 

Let 𝜓 = 𝜌′ denote the derivative of 𝜌. In this paper we 

will work with the Huber objective function and its 

derivative 𝜓𝑐(⋅)  which is called Huber function and is 

defined by 𝜓𝑐(𝑢) = 𝑚𝑖𝑛(𝑐,𝑚𝑎𝑥(−𝑐, 𝑢)) . The tuning 

constant 𝑐 controls the level of robustness. If 𝑐 → ∞ then 

𝜓∞(𝑢) = 𝑢, which corresponds to least-squares estimation. 

Differentiating the objective function (4) with respect to 𝛃 

gives the following estimating equations:  

 ‍𝑇
𝑡=1  𝐱𝑡𝜓(𝑦𝑡 − 𝐱𝐭

′𝛃) = 𝟎.          (5) 

Define the weight function 𝑤(𝑢) =
𝜓(𝑢)

𝑢
, and denote 

𝑤𝑡 = 𝑤(𝑢𝑡). Then the estimating equation (5) can be written 

as:  

 ‍

𝑇

𝑡=1

 𝐱𝑡  (𝑦𝑡 − 𝐱𝐭
′𝛃)𝑤𝑡 = 𝟎. 

Note that solving these estimating equations can be seen 

as a weighted least-squares minimization problem with 

objective function:  

 ‍

𝑇

𝑡=1

𝑤𝑡  (𝑦𝑡 − 𝐱𝐭
′𝛃)2. 

The weights 𝑤𝑡 , however, depend upon the residuals, the 

residuals depend upon the estimated coefficients, and the 

estimated coefficients depend upon the weights. An iterative 

solution is therefore required. More details about 

M-estimators can be found in references, for instance 

Hampel et al. (1986). 

At the end of the procedure we obtain the weights 𝑤𝑡  

which can be collected in a 𝑇 × 𝑇 diagonal matrix 𝐖 and 

then we can calculate the M-estimator 𝛃 𝑀 in matrix notation:  

𝛃 𝑀 = (𝐗′𝐖𝐗)−1𝐗′𝐖𝐲. 

2.1. Resistant Regression (LTS) 

There are other robust techniques of estimation in order to 

reduce the influence of outliers on the fit of a model. 

Following the schema of Genton and Ronchetti (2008), we 

will use the least trimmed squares (LTS) regression. 

LTS was proposed by Rousseeuw (1985) as another robust 

alternative to OLS. Let us consider a linear regression model 

(1). The LTS estimator 𝛃𝐿𝑇𝑆  is defined as:  

𝛃𝐿𝑇𝑆 = 𝑎𝑟𝑔𝑚𝑖𝑛 ‍

𝑕

𝑡=1

𝑢[𝑡]
2 (𝛃), 

where 𝑢[𝑡]
2 (𝛃) represents the 𝑡-th order statistics of squared 

residuals 𝑢𝑡
2(𝛃) with 𝑢𝑡(𝛃) = 𝑦𝑡 − 𝐱𝐭

′𝛃. 

The trimming constant 𝑕 has to satisfy 
𝑇

2
< 𝑕 < 𝑇. This 

constant determines the robustness level of the LTS 

estimator, since the definition implies that 𝑇 − 𝑕 

observations with the largest residuals do not have a direct 

influence on the estimator. The LTS robustness is the lowest 

for 𝑕 = 𝑇, which corresponds to the least-squares estimator. 

2.2. Asymmetric and Long-tailed Errors 

Often returns in portfolio optimization do not follow a 

normal distribution and the empirical distribution presents 

asymmetry and thick tails. In those cases we can propose 
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errors following more flexible laws such as skew-symmetric 

distributions. 

Skew-symmetric distributions were explicitly introduced 

in the literature by Azzalini (1985) with the aim to model 

departure from normality. Afterwards many generalizations 

have been introduced and it is nowadays a well studied topic 

because of its flexibility and theoretical tractability. We can 

mention the multivariate skew normal distribution studied by 

Azzalini and Dalla Valle (1996) and the multivariate skew 𝑡 
distribution studied in Azzalini and Capitanio (2003). Here 

we will only define notations. 

2.2.1. The Multivariate Skew-normal Distribution 

Given a full-rank 𝑑 × 𝑑  covariance matrix 𝛀  define 

𝛚 = 𝑑𝑖𝑎𝑔(𝛀11 , . . . , 𝛀𝑑𝑑 )1/2 , let 𝛀 = 𝛚−1𝛀𝛚−1  be the 

corresponding correlation matrix and define vectors 𝛏 , 

𝛂 ∈ ℝ𝑑 . A 𝑑 -dimensional random variable 𝑍  is said to 

follow a skew-normal distribution if its density function at 

𝐳 ∈ ℝ𝑑  is given by:  

2𝜙𝑑(𝐳 − 𝛏;𝛀)Φ(𝛂′𝛚−1(𝐳 − 𝛏)). 

where 𝜙𝑑(𝐳;𝛀)  is the 𝑁𝑑(𝟎,𝛀)  𝑑 -dimensional normal 

density at 𝐳  with covariance matrix 𝛀  and Φ(⋅)  is the 

𝑁(0,1) distribution function. 

We will then write 𝑍: 𝑆𝑁𝑑(𝛏, 𝛀, 𝛂) and call 𝛏, 𝛀, 𝛂 the 

location, dispersion and the shape or skewness parameters, 

respectively. If we define a new shape parameter:  

𝛅 =
1

(1 + 𝛂′𝛀𝛂)
𝛀𝛂, 

then we can write the expressions of mean vector and 

covariance matrix:  

𝛍𝑍: = 𝐄[𝑍] = 𝛏 +  
2

𝜋
𝛅 

𝐕𝐚𝐫 𝑍 = 𝛀 − 𝛍𝑍𝛍Z
′ . 

2.2.2. The Multivariate Skew-t Distribution 

In dimension 1, standard t distribution have thick tails and 

then it allows to model large outliers. In the multivariate case, 

consider random variables 𝑍: 𝑆𝑁𝑑(𝟎, 𝛀, 𝛂) , 𝑉: 𝜒𝜈
2/𝜈 , 

independent of 𝑍 , and the constant vector 𝛏 ∈ ℝ𝑑 . We 

define the skew-t distribution as the one corresponding to the 

transformation:  

𝑌 = 𝛏 + 𝑉−1/2𝑍.               (6) 

We shall write 𝑌: 𝑆𝑡𝑑(𝛏, 𝛀, 𝛂, 𝜈) . The parameter 𝜈 

corresponds to the degrees of freedom. A small value of 𝜈 

will allow the presence of large outliers and when 𝜈 → ∞ 

then 𝑌 converges to a skew-normal variable. 

The density function and other formulas and properties 

can be found in Azzalini and Capitanio (2003). Figures 1 and 

2 shows two scatterplots of a 4-dimensional skew-normal 

variable and skew-t variable. In section 6 we will perform 

simulations using these distributions in the context of 

portfolio optimization. 

  

 

Figure  1.  Scatterplot of a 𝑆𝑁4 distribution 
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Figure 2.  Scatterplot of a 𝑆𝑡4 distribution 

3. Portfolio Asset Allocation 

We consider 𝑁 assets and denote their returns at time 𝑡 
by 𝑟𝑖,𝑡 , 𝑖 = 1, . . . , 𝑁 , 𝑡 = 1, . . . , 𝑇  and denote by 𝐫𝐭 =
(𝑟1,𝑡 , . . . , 𝑟𝑁,𝑡)′ the 𝑁 × 1 vector of returns at time 𝑡 . We 

assume that 𝐫𝐭  follows a multivariate distribution with 

𝐸[𝐫𝐭] = 𝛍 and 𝑉𝑎𝑟[𝐫𝐭] = 𝚺. 

A portfolio is defined to be a list of weights 𝜔𝑖  for the 

assets 𝑖 = 1, . . . , 𝑁 that represent the amount of capital to be 

invested in each asset. We assume that  ‍𝜔𝑖 = 1  which 

means that capital is fully invested and denote 𝛚 the 𝑁 × 1 

vector of weights. 

For a given portfolio 𝛚, the expected return and variance 

are respectively given by:  

𝐄[𝛚′𝐫𝐭] = 𝛚′𝛍,              (7) 

𝐕𝐚𝐫[𝛚′𝐫𝐭] = 𝛚′𝐕𝐚𝐫[𝐫𝐭]𝛚 = 𝛚′𝚺𝛚.       (8) 

Following the standard Markowitz portfolio optimization 

procedure, we seek a portfolio 𝛚  which has minimal 

variance for a given expected return 𝑟. We can express the 

problem as:  

𝛚 = 𝑎𝑟𝑔𝑚𝑖𝑛  𝛚′𝚺𝛚, 

with constraints  

𝛚′𝛍 = 𝑟,                  (9) 

𝛚′𝟏𝑁 = 1,                (10) 

where 𝟏𝑁 is the 𝑁 × 1 vector in which every entry is equal 

to 1. 

We can find in Brodie et al.(2007) a way to model the 

optimization problem using a multivariate constrained 

regression. Here we develop details of the derivation. 

We have 𝚺 = 𝐄[𝐫𝐭𝐫𝐭′] − 𝛍𝛍′ and we can write:  

  𝛚′𝚺𝛚 = 𝛚′ 𝐄 𝐫𝐭𝐫𝐭
′  − 𝛍𝛍′ 𝛚, 

              = 𝐄[𝛚′𝐫𝐭𝐫𝐭′𝛚] − 𝛚′𝛍𝛍′𝛚. 

In fact 𝛚′𝐫𝐭 and 𝛚′𝛍 are scalars and using (7) we can 

write the last expression as:  

  𝛚′𝚺𝛚 = 𝐄[(𝛚′𝐫𝐭)
2] − (𝛚′𝛍)2 

              = 𝐄[(𝛚′𝐫𝐭)
2] − (𝐄[𝛚′𝐫𝐭])2 

              = 𝐄[(𝜔′𝐫𝐭 − 𝐄[𝜔′𝐫𝐭])2]. 

Finally using (7) and the constraint (9) we have:  

𝛚′𝚺𝛚 = 𝐄[|𝛚′𝐫𝐭 − 𝑟|2].            (11) 

For the empirical implementation, we replace expectations 

by sample average. We set 𝛍 =
1

𝑇
 ‍𝐫𝐭 and define 𝐑 to be 

the 𝑇 × 𝑁 matrix of which the 𝑡 − 𝑡𝑕 row is 𝐫𝐭′. 
The empirical version of expression (11) is:  

1

𝑇
 ‍

𝑇

𝑡=1

(𝛚′𝐫𝐭 − 𝑟)2 =
1

𝑇
∥ 𝐑𝛚 − 𝑟𝟏𝑇 ∥2

2 

where, for a vector 𝐚 in ℝ′, we use the 2-norm notation: 

∥ 𝐚 ∥2
2=  ‍𝐚𝑡

2. 

In summary, we seek to solve the new following 

optimization problem:  

𝛚 = 𝑎𝑟𝑔𝑚𝑖𝑛  
1

𝑇
∥ 𝐑𝛚 − 𝑟𝟏𝑇 ∥2

2 

with constraints  

𝛚′𝛍 = 𝑟,                 (12) 

𝛚′𝟏𝑁 = 1.                (13) 

We can view this as a multiple constrained regression for 

the model:  



32 Luis P. Yapu Quispe:  Constrained Shrinkage Estimation for Portfolio Robust Prediction  

 

 

𝑦𝑡 = 𝐫𝐭𝜔 + 𝜀𝑡 , 

𝑡 = 1, . . . , 𝑇 , 𝑦𝑡 = 𝑟  for each 𝑡 , and with the same 

constraints (12) and (13). 

In the optic of robustness we replace the 2-norm by a loss 

function 𝜌 which grows slower, obtaining then the problem:  

𝜔 = 𝑎𝑟𝑔𝑚𝑖𝑛  
1

𝑇
 ‍

𝑇

𝑡=1

𝜌(
(𝐑𝛚)𝑡 − (𝑟𝟏)𝑡

𝑠
) 

with constraints (12) and (13). As before 𝑠  is a scale 

parameter which should be estimated robustly. 

We have seen in the last section that the non-constrained 

M-estimator 𝛚𝑀  is:  

𝛚 𝐌 = (𝐑′𝐖𝐑)−1𝐑′𝐖𝐲. 

The constrained minimization is solved using Lagrange 

multipliers. We present the derivation in the next subsection 

3.1. In the presence of 𝑙 ≤ 𝑁 independent linear constrains 

𝐂𝛚 = 𝑣 we obtain the constrained M-estimator 𝛚 𝐂𝐌: 

𝛚 𝐂𝐌 = 𝛚 𝐌 + (𝐑′𝐖𝐑)−1𝐂′(𝐂(𝐑′𝐖𝐑)−1𝐂′)−1(𝐯 − 𝐂𝛚 𝐌). (14) 

We observe that the constrained M-estimator 𝛚 𝐂𝐌 differs 

from the unconstrained 𝛚 𝐌 by a function of the quantity 

(𝐯 − 𝐂𝛚𝐌). 

For our problem, the constraint matrices are:  

𝐂 =  
𝛍 ′

𝟏𝐍′
 ,            𝐯 =  

𝑟
1
 .        (15) 

3.1. Constrained Robust Regression 

Using the notation of weighted least-squares regression 

and in the presence of`the linear constrains 𝐂𝛃 = 𝐯, we can 

write the Lagrangian:  

𝔏(𝛃, 𝚲) =  ‍

𝑇

𝑡=𝑖

𝑤𝑖  (𝑦𝑖 − 𝐱𝑖
′𝛃)2 + 𝛌′(𝐂𝛃 − 𝐯), 

where 𝛌 is a 𝑙 × 1 vector of lagrange multipliers, 𝐶  is a 

𝑙 × 𝑛 matrix and 𝑣 is a 𝑙 × 1 vector. 

In matrix notation:  

𝔏(𝛃, 𝚲) = (𝐲 − 𝐗𝛃)𝐖(𝐲 − 𝐗𝛃) + 𝛌′(𝐂𝛃 − 𝐯). 

Differentiation with respect to 𝛃  and 𝛌  gives the 

equations:  

∂𝔏

∂𝛃
= −2𝐗′𝐖(𝐲 − 𝐗𝛃) + 𝐂′𝛌 = 𝟎, 

∂𝔏

∂𝛌
= 𝐂𝛃 − 𝐯 = 𝟎. 

From the first equation we find:  

𝛃 = (𝐗′𝐖𝐗)−𝟏[𝐗′𝐖𝐲 −
𝟏

𝟐
𝐂′𝛌],          (16) 

and replacing this into the second equation we get:   

𝐯 = 𝐂(𝐗′𝐖𝐗)−𝟏𝐗′𝐖𝐲 −
𝟏

𝟐
𝐂(𝐗′𝐖𝐗)−𝟏𝐂′𝛌.    (17) 

From this, we obtain the value of 𝛌:   

𝛌 = 𝟐(𝐂(𝐗′𝐖𝐗)−𝟏𝐂′)−𝟏(𝐂(𝐗′𝐖𝐗)−𝟏𝐗′𝐖𝐲 − 𝐯),  (18) 

and replacing this into expression (16) we find the 

expression of the constrained estimator:   

 𝛃 = (𝐗′𝐖𝐗)−𝟏[𝐗′𝐖𝐲 − 𝐂′(𝐂(𝐗′𝐖𝐗)−𝟏𝐂′)−𝟏 

   × (𝐂(𝐗′𝐖𝐗)−𝟏𝐗′𝐖𝐲 − 𝐯)] 

Recall the formula of the non-constrained weighted 

estimator:  

𝛃 𝐌 = (𝐗′𝐖𝐗)−𝟏𝐗′𝐖𝐲. 

Using this the final expression of the constrained 

M-estimator can be written:   

𝛃 = 𝛃 𝐌 − (𝐗′𝐖𝐗)−𝟏𝐂′(𝐂(𝐗′𝐖𝐗)−𝟏𝐂′)−𝟏(𝐂𝛃 𝐌 − 𝐯). (19) 

4. Shrinkage Robust Estimator 

Genton and Ronchetti (2008) have defined a robust 

estimator with shrinkage for the linear model:  

𝛃 𝑐 = 𝛃 𝑅 + ( ‍𝑇
𝑡=1 𝐱𝑡𝐱𝑡

′ )−1  ‍𝑇
𝑡=1 𝜍 𝜓𝑐  

𝑦𝑡−𝐱𝑡
′ 𝛃 𝑅

𝜍 
 𝐱𝑡

′ ,   (20) 

where 𝛃 𝑅 is a robust estimator of 𝛃, 𝜍  is a robust estimator 

of scale such as the median absolute deviation (MAD), and 

𝜓𝑐(⋅) is the Huber's function. As we have seen in Section 2, 

there are many proposals for the robust estimator 𝛃 𝑅, see for 

instance Hampel et al. (1986). 

The tuning constant 𝑐 allows us to control the level of 

shrinkage. If 𝑐 = 0 we find the robust estimator 𝛽𝑅  and if 

𝑐 → ∞ we find the least-squares estimator (OLS). 

Indeed, in 𝑐 = 0  then 𝜓0(𝑢) = 0  for all values of 𝑢 

then the rightmost expression in (20) is zero and we have 

𝛃 𝑐 = 𝛃 𝑅, the robust estimator. On the other side, if 𝑐 → ∞ 

then 𝜓∞(𝑢) = 𝑢 and equation (20) simplifies to:  

𝛽 ∞ = 𝛽 𝑅 + ( ‍

𝑛

𝑖=1

𝐱𝐢𝐱𝐢
′)−1  ‍

𝑛

𝑖=1

(𝑦𝑖 − 𝐱𝐢
′𝛃 𝐑)𝐱𝐢 

= 𝛽 𝑅 + ( ‍

𝑛

𝑖=1

𝐱𝐢𝐱𝐢
′)−1( ‍

𝑛

𝑖=1

𝐱𝐢𝑦𝑖 − ‍

𝑛

𝑖=1

𝐱𝐢𝐱𝐢
′𝛃 𝐑) 

Distributing the expression (⋅)−1  and recognizing the 

expression of ordinary least-squares estimator 𝛃 𝑂𝐿𝑆  we 

obtain:  

𝛃 ∞ = 𝛽 𝑅 + 𝛃 𝑂𝐿𝑆 − ( ‍

𝑛

𝑖=1

𝐱𝐢𝐱𝐢
′)−1( ‍

𝑛

𝑖=1

𝐱𝐢𝐱𝐢
′)𝛃 𝑅 

The rightmost expression simplifies and we obtain the 

limit expression:  

𝛃 ∞ = 𝛃 𝑅 + 𝛃 𝑂𝐿𝑆 − 𝛃 𝑅 = 𝛃 𝑂𝐿𝑆         (21) 

As was discussed in the Section 1, if the goal of modeling 

is to find a model which reflects the bulk of the data then the 

robust estimation is the most adequate method because 

outliers are under-weighted. Nevertheless from a predictive 

point of view, outliers in finance could be considered as 

interesting data. So it is important to study if, by varying the 

constant 𝑐 , we can improve the predictive power with 

respect to least-squares or robust estimators. 

There are many choices for measuring the quality of the 

prediction. For normal-distributed errors, the most used 
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criterium is the mean squared error (MSE). However for 

asymmetric or long-tailed distributions there is not a 

standard choice. 

Following Genton and Ronchetti (2008) we consider a 

family of measures:  

𝑄𝑐(𝑝) =  
1

𝑚
 ‍𝑚

𝑖=1 |𝑟𝑖 − 𝑟 𝑖|
𝑝 

1/𝑝

,        (22) 

where 𝑐  is the shrinkage constant used to estimate the 

expected returns 𝑟 𝑖 . The case 𝑝 = 2  give us the MSE 

measure. We will be interested in 𝑝 = 1/2 , 𝑝 = 1  and 

𝑝 = 2. 

An important tool to compare the shrinkage estimators is 

the relative gain:  

𝑅𝐺𝑐,𝑑(𝑝) =
𝑄𝑑 (𝑝)−𝑄𝑐(𝑝)

𝑄𝑑 (𝑝)
.            (23) 

It will be useful to analyze if shrinkage with a level 𝑐 

offers more predictive power than the robust estimator 

(𝑑 = 0) or the OLS estimator (𝑑 → ∞). 

4.1. Application to Portfolio Optimization 

In classical portfolio optimization the first stage in general 

is to estimate the mean 𝛍 = 𝐄[𝐫]  and the covariances 

𝚺 = 𝐕𝐚𝐫[𝐫]. We can use the historical data and use robust 

methods to obtain (robust) estimators 𝛍 𝑅  and Σ 𝑅 , as 

explained by Welsch and Zhou (2007). Some methods such 

as minimum covariance determinant MCD or FAST-MCD 

are already implemented in statistical software such as R. 

We have seen in section 3 how to write the classical 

portfolio optimization problem as a multivariate constrained 

regression problem and then we considered the robust setting 

of the problem. In this formulation, we need only a robust 

estimator of 𝛍  which enters into de constrains matrix 𝐂 

(see formula (15)). We will use the MCD estimator which is 

already implemented in R. 

In subsection 3.1 we have found the formula of the robust 

constrained estimator 𝛚 𝐶𝑀  of the portfolio weights. We can 

now try to apply the shrinkage to 𝛚 𝐶𝑀  but then the 

constraints are no more satisfied. We need to use equation 

(19) one more time but for this we have to recalculate the 

matrix 𝐖. 

To be precise we present next a detailed description of the 

procedure step by step. 

1. Calculate robust estimator 𝛚 𝑀  and the regression 

matrix of weights 𝐖 . This can be do with standard 

routines of statistical software such as R.  

2. Use 𝐖  to obtain the constrained estimator 𝛚 𝐶𝑀  

given by formula   

𝛚 𝐶𝑀 = 𝜔𝑀 + (𝐑′𝐖𝐑)−1𝐂′(𝐂(𝐑′𝐖𝐑)−1𝐂′)−1(𝐯 − 𝐂𝛚𝐌). 

3. Let 𝑐  be de tuning constant of shrinkage then 

calculate the shrinkage estimator:   

𝛚 𝑐 = 𝛚 𝐶𝑀 + ( ‍𝑇
𝑡=1 𝐫𝐭𝐫𝐭′)

−1  ‍𝑇
𝑡=1 𝜍 𝜓𝑐(

𝑦𝑡−𝐫𝐭′𝛚 𝐶𝑀

𝜍 
)𝐫𝐭. (24) 

4. Using 𝛚 𝑐 , calculate the new weight matrix 𝐖𝑐  

associated with this estimator. We need to calculate 

standardized residuals 𝑟𝑡 = (𝑦𝑡 − 𝐑𝛚 𝑐)/𝜍 𝑐 , where 𝜍 𝑐  is 

a robust estimate of scale of the residuals. The matrix 𝐖𝑐  

is diagonal with 𝑡-th component:  

𝑤𝑡 =
𝜓𝑐(𝑟𝑡)

𝑟𝑡
. 

5. Use 𝐖𝑐  to obtain the shrinkage constrained 

estimator 𝛚 𝐶𝑐  given by formula   

𝛚 𝐶𝑐 = 𝛚 𝑐 + (𝐑′𝐖𝑐𝐑)−1𝐂′(𝐂(𝐑′𝐖𝑐𝐑)−1𝐂′)−1(𝐯 − 𝐂𝛚 𝐜). 

We will use Monte-Carlo simulations to study the 

behavior of the optimum values of 𝑐  with respect to the 

different prediction error measures (values of 𝑝 in (22)) for 

normal and outlying returns 𝐫𝑡  generated by contamination 

(mixture) and by skew-symmetric laws. 

A suitable shrinkage could vary in time depending on new 

available historical data. Anyway at any moment the Monte 

Carlo simulation can be performed to assess an optimum 

value of this shrinkage parameter for future estimations of 

the portfolio weights. 

We remark that the computation complexity of this 

procedure depends of the actual implementation of the robust 

estimation and the matrix operations involved. Supposing 

that Iteratively Reweighed Least Squares is used in step 1. 
and only a few iterations are sufficient for convergence, the 

number of operations involved in all the steps is of the order 

𝑂(𝑁3 + 𝑁2𝑇 + 𝑇2𝑁). Taking N (the number of the assets) 

fixed, the computational complexity becomes 𝑂(𝑇2) . In 

consequence, even if it is possible to assess efficiency of 

Monte Carlo simulation by changing 𝑇, the computational 

work increases too, as well as the collateral computational 

errors. A better study of this remains to be done. 

5. Monte Carlo Simulations 

In this section we perform simulations based on the paper 

of Genton and Ronchetti (2008) but in the multivariate case. 

We will apply the general strategy to portfolio optimization 

in section 6. We consider the linear model:  

𝑦𝑡 = 𝐱t
′𝛃 + 𝑢𝑡 , 

with 𝑡 = 1, . . . , 𝑇 , 𝛽  a 𝑁 × 1  vector, 𝑢𝑡  i.i.d. 𝑁(0,1) 

errors and 𝑥𝑡  a multivariate normal. As the first example we 

consider two covariates:  

𝑦𝑡 = 𝛽0 + 𝛽1𝑥𝑡1 + 𝛽2𝑥𝑡2 + 𝑢𝑡 , 

and we take the values 𝛽0 = 1, 𝛽1 = 0.5, 𝛽2 = 1.5, with 

𝑥𝑡1, 𝑥𝑡2 independent 𝑁(0, 22) variables. 

We take 𝑇 = 400  and include 10%  of outliers 

(contamination) for 𝑥𝑡1, 𝑥𝑡2 and 𝑦𝑡  from 𝑁(0, 52). 

We use M and LTS estimators, 𝛽 𝑀  and 𝛽 𝐿𝑇𝑆 , to obtain 

robust estimates of 𝛽. The estimated values are: 

Variable M-estimator LTS OLS 

𝛽 0 1.016 1.073 0.886 

𝛽 1 0.466 0.611 0.234 

𝛽 2 1.321 1.459 0.790 
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We observe that the OLS estimates are biased and will not 

be useful for future predictions. We can now use the 

shrinkage robust estimator (called SR 𝑐  in the sequel), 𝛃 𝑐 , of 

𝛃 with shrinkage constant 𝑐. In order to analyze the effect of 

outliers, we simulate 1000  training data sets of size 

𝑛 = 100 each and containing outliers as indicated. For each 

sample we estimate 𝛽  by LTS, OLS and SR  𝑐  with 

𝑐 = 1, . . ,10. Figures 4 show boxplots of these estimates over 

the 1000 simulated training data. 

The LTS estimators of 𝛽1 and 𝛽2 have smaller bias than 

OLS estimators. We observe that for some values of 𝑐, the 

variance of SR 𝑐  is reduced at the cost of a small increase in 

bias. 

Next we investigate the effect of outliers and shrinkage on 

the prediction of future observations. More precisely, for 

each of the 1000 estimates 𝛃 , we compute the predicted 

values 𝑦 𝑡 = 𝐱𝑡′𝛃 , 𝑡 = 1, . . . ,400. 

We consider the measures of quality of prediction with the 

shrinkage robust estimator SR 𝑐 , 𝑄𝑐(𝑝), defined in (22) with 

three choices for 𝑝 . For 𝑝 = 2  we have the root mean 

square error (RMSE), for 𝑝 = 1 the mean absolute error 

(MAE) and for 𝑝 = 1/2  the square root absolute error 

(STAE). 

In Table 1 we report the frequencies of selection of a 

minimum measure of prediction for a range of values of 

𝑐 = 0,1, . . . ,10,∞ over the 1000 replicates. As can be seen, 

the optimal 𝑐 which minimizes a certain measure of quality 

of prediction is not exclusively concentrated at the 'limit' 

estimators LTS and OLS. The RMSE measure is related with 

least squares estimation, consequently OLS is selected most 

of times. We observe that a shrinkage constant of 𝑐 = 3 is 

optimal for MAE and 𝑐 = 2 is optimal for STAE. If we are 

interested in a more precise value of the constant 𝑐, it is 

possible to refine the search around the values 2 or 3 of the 

parameter 𝑐 and use a smaller step size. 

We have defined the relative gain by 𝑅𝐺𝑐,𝑑(𝑝) in (23). 

Denote by 𝑐∗ the value of 𝑐 minimizing 𝑄𝑐(𝑝) for a fixed 

𝑝. Figure 3 depicts boxplots over the 1000 replicates of 

𝑅𝐺𝑐∗,0(𝑝) and 𝑅𝐺𝑐∗,∞(𝑝) for p=1/2, 1 and 2, that is, the 

relative gain compared to LTS and OLS estimators using 

STAE, MAE and RMSE respectively. 

We remark that in terms RMSE, the gains of SR  𝑐  

compared to OLS are small. In terms of MAE and STAE, the 

gains can reach 30% − 40%. The gains compared to LTS 

go rather in the other direction. 

Table 1.  Normal contamination: frequencies of selection of a minimum measure of prediction 

Value of c: LTS 1 2 3 4 5 6 7 8 9 10 OLS 

MAE 28 122 211 224 173 83 53 38 23 14 22 9 

RMSE 0 0 0 1 6 22 54 81 129 154 210 343 

STAE 67 215 288 183 114 50 30 19 13 6 7 8 

 

Figure 3.  Normal contamination: relative gains obtained with shrinkage robust estimators compared to LTS and OLS on various measures of prediction 

(RMSE, MAE, STAE) 



 American Journal of Economics 2014, 4(2A): 27-41 35 

 

 

 

 

 

Figure 4.  Normal contamination: boxplots of 𝛽0, 𝛽1 and 𝛽2 for several values of the shrinkage constant 𝑐 
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6. Application to Portfolio Optimization 

Monte Carlo simulations can give us empirical heuristics 

for actual applications of the shrinkage robust asset 

allocation. We have already mentioned the flexibility of 

skew-symmetric distributions and we will especially study 

these types of distributions which allow to model return 

distributions which have significant skewness and high 

kurtosis such as hedge funds (see for instance Popova et al. 

(2003)). In this paper we will perform only a empirical study. 

6.1. Normal Data with Normal Contamination 

We consider a portfolio of 𝑁 = 4 assets. In this example, 

we suppose that returns are generated from a 4-dimensional 

normal distribution  

𝐫𝑡 : 𝑁4(𝛍, 𝚺)                (25) 

with parameters:  

𝛍 =  

30
20
10
40

   ,    𝚺 =  

100 140 70 70
140 400 140 140
70 140 100 70
70 140 70 100

 .  (26) 

We will include 10% of contamination from 𝑁4(𝛍𝟏, 𝚺𝟏) 

where:  

𝛍𝟏 =  

−20
−20
−20
−20

   ,    𝚺𝟏 =  

2500 0 0 0
0 2500 0 0
0 0 2500 0
0 0 0 2500

 . (27) 

We interpret this as independent returns with large 

variance. We used a general scaling constant of 10 and this 

explains the order of magnitude of mean vectors and 

variance matrices. 

Recall that in portfolio optimization, the regression 

equation is:  

𝑦𝑡 = 𝐫𝐭𝛚 + 𝜀𝑡                (28) 

𝑡 = 1, . . . , 𝑇, 𝑦𝑡 = 𝑟 the expected return of the portfolio 

and with constraints (12) and (13). 

We simulate a contaminated test sample of size 𝑇 = 400 

and take 𝑟 = 25. In practice we don't know the theoretical 

mean vector 𝛍 and we only have the matrix 𝐑 of all returns. 

As long as we have outliers we need a robust estimate of 𝛍 

denoted 𝛍 . This can be performed using the method called 

"fast MCD" developed by Rousseeuw and Van Driessen 

(1999) which is more general and compute a robust 

covariance matrix estimator too. The robust estimate of 𝛍 is:  

𝛍 =  

30.09
19.82
10.04
40.02

   .                  (29) 

In Figures 5-8 we simulate 500 data sets of size 400 

each and compare the M-estimates and OLS estimates of 

contaminated data with the OLS estimates of 

non-contaminated data. The bias is much smaller for the 

M-estimates but for some variables it is not null. Anyway in 

this paper we worked with M-estimators because we could 

find analytical formulas for constrained regression (Section 

3.1). These formulas allowed us to implement shrinkage and 

to verify the constraints. There is also the possibility to use 

more resistant estimators but in that case it is necessary to 

use others methods to project the shrinked weights onto de 

constrained subspace. 

Following the algorithm described in subsection 4.1 we 

will use M-estimator as initial robust estimate. The estimates 

are: 

Variable Constrained M Constrained OLS 

𝜔 0 0.4808 0.3776 

𝜔 1 -0.3083 -0.2973 

𝜔 2 0.5598 0.5853 

𝜔 3 0.2677 0.3344 

As these values are computed using constraints, it is 

difficult to assess the standard errors and intervals of 

confidence analytically. The Monte Carlo simulations will 

show that the interquartile ranges (IQR) are large and this 

reflects the instability of classical portfolio optimization. 

We simulate 1000  training data sets of size 𝑛 = 100 

each and containing the same kind of contamination. For 

each sample we estimate 𝛚 by M-estimator, OLS and SR 𝑐  

with 𝑐 = 1, . . ,10 . Figures 10-13 show boxplots of these 

estimates over the 1000  simulated training data. We 

observe that the shrinkage estimators of 𝜔2 and 𝜔3 show 

the biasing effects but those are much less important than in 

non-constrained regression as presented in section 5. The 

other effect we can see is that variabilities are large but we 

observe reduction of variability with some values of the 

shrinking constant 𝑐. 

Now in Table 2 we report the frequencies of selection of a 

minimum measure of prediction for a range of values of 

𝑐 = 0,1, . . . ,10,∞ over the 1000 replicates. The optimal 𝑐 

which minimizes the quality of prediction is around 1 for 

the three measures MAE, RMSE and STAE. At this stage, 

our simulations showed that with weaker contamination 

M-estimation is optimal and with less percentage of 

contamination the optima are very instable. 

Table 2.  Portfolio with normal contamination: frequencies of selection of a minimum measure of prediction 

Value of c: LTS 1 2 3 4 5 6 7 8 9 10 OLS 

MAE 107 129 107 93 102 93 71 66 57 68 53 54 

RMSE 84 120 108 94 102 89 78 73 63 78 51 60 

STAE 111 133 99 94 109 94 66 68 60 58 56 52 
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Figure 5.  OLS-estimates, M-estimates and non-contaminated OLS 

estimates of 𝜔1 

 

Figure 6.  OLS-estimates, M-estimates and non-contaminated OLS 

estimates of 𝜔2 

 

Figure 7.  OLS-estimates, M-estimates and non-contaminated OLS 

estimates of 𝜔3 

 

Figure 8.  OLS-estimates, M-estimates and non-contaminated OLS 

estimates of 𝜔4 

 

Figure 9.  Portfolio with normal contamination: relative gains obtained 

with shrinkage robust estimators compared to M-estimator and OLS on 

various measures of prediction (RMSE, MAE, STAE) 

 

Figure 10.  Portfolio with normal contamination: Boxplots of 𝜔1 for 

several values of shrinkage 
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Figure 11.  Portfolio with normal contamination: Boxplots of 𝜔2  for 

several values of shrinkage 

 

Figure 12.  Portfolio with normal contamination: Boxplots of 𝜔3  for 

several values of shrinkage 

 

Figure 13.  Portfolio with normal contamination: Boxplots of 𝜔4  for 

several values of shrinkage 

6.2. Skew-Normal and Skew-𝒕 Data 

In this example, we suppose that returns are generated 

from a 4-dimensional skew-normal distribution:  

𝐫𝑡 : 𝑆𝑁4(𝛏, 𝛀, 𝛂)                (30) 

with parameters:  

𝛏 =  

30
20
10
40

 , 𝛀 =  

100 140 70 70
140 400 140 140
70 140 100 70
70 140 70 100

  , 𝛂 =  

−30
−30
−30
−30

  .  (31) 

We simulate a skew-normal test sample of size 𝑇 = 400 

and take 𝑟 = 25 to be the expended return of the portfolio as 

in the last subsection. The robust estimate of 𝛍 is:  

𝛍 =  

23.56
6.38
3.58
33.53

  .                 (32) 

The estimated weights are the following: 

Variable Constrained M Constrained OLS 

𝜔 0 0.4825 0.4597 

𝜔 1 -0.0611 -0.0887 

𝜔 2 0.1795 0.2123 

𝜔 3 0.3989 0.4168 

As before we simulate 1000 training data sets of size 

𝑛 = 100  each and containing the same kind of 

contamination. For each sample we estimate 𝛚  by 

M-estimator, OLS and SR  𝑐  with 𝑐 = 1, . . ,10 . Figures 

15-18 show boxplots of these estimates over the 1000 

simulated training data. We observe that the shrinkage 

estimators of 𝜔2 and 𝜔3 show the biasing effect when SR 𝑐  

tends to OLS. Now the IRQ are smaller than in the normal 

contamination case. The IRQ are in general less than 0.1 

excepting the IRQ for 𝜔1  which is around 0.2  for the 

M-estimator. As before we observe the reduction of 

variability with some values of the shrinking constant 𝑐. 

Now in Table 3 we report the frequencies of selection of a 

minimum measure of prediction for a range of values of 

𝑐 = 0,1, . . . ,10,∞ over the 1000 replicates. The optimal 𝑐 

which minimizes the quality of prediction for MAE and 

STAE is 1, for RMSE it is around 5. Others simulations 

showed that these optimum values are more or less instable 

around 2. 

Finally, Table 4 summarizes the computations for the 

Skew- 𝑡  model, using the same parameters as the 

skew-normal and using 3 degrees of freedom. Small degree 

of freedom value allows for more outliers. Following 

Huisman thesis (1999), 3 to 6 degrees of freedom are usual in 

finalcial data. The optimum value for 𝑐 is about 5. 
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Table 3.  Portfolio skew-normal contamination: frequencies of selection of a minimum measure of prediction 

Value of c: LTS 1 2 3 4 5 6 7 8 9 10 OLS 

MAE 40 103 94 90 88 77 84 77 93 82 91 81 

RMSE 39 62 90 92 84 110 85 79 81 96 87 95 

STAE 55 103 83 99 78 88 77 82 88 75 84 88 

Table 4.  Portfolio skew-t contamination: frequencies of selection of a minimum measure of prediction 

Value of c: LTS 1 2 3 4 5 6 7 8 9 10 OLS 

MAE 71 82 84 87 90 92 84 105 76 85 78 66 

RMSE 92 104 94 98 92 78 77 71 83 64 94 53 

STAE 61 83 80 83 85 107 88 89 86 80 86 72 

 

Figure 14.  Portfolio with skew-normal returns: relative gains obtained with shrinkage robust estimators compared to M-estimator and OLS on various 

measures of prediction (RMSE, MAE, STAE) 

 

Figure 15.  Portfolio with skew-normal returns: Boxplots of 𝜔1 for several values of shrinkage 
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Figure 16.  Portfolio with skew-normal returns: Boxplots of 𝜔2 for several values of shrinkage 

 

Figure 17.  Portfolio with skew-normal returns: Boxplots of 𝜔3 for several values of shrinkage 

 

Figure 18.  Portfolio with skew-normal returns: Boxplots of 𝜔4 for several values of shrinkage 
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7. Conclusions 

In this paper, we have implemented a multivariate version 

of the shrinkage robust estimators described in Genton and 

Ronchetti (2008). The aim was to apply the method to the 

estimation of weights for portfolio optimization. The greatest 

difficulty was to combine the general method with the 

constraints which are present in the definition of portfolio 

optimization. We have seen in Section 6 that the shrinkage 

constant 𝑐 is more instable than in the non-constrained case 

(Section 5). The origin of the effect is very probably the high 

instability of the estimation of portfolio weights even with 

M-estimators. Anyway, the simulations show a optimal 

shrinkage constant of about 1 for our skew-normal returns 

and about 5 for our skew-t returns. Location, scale and shape 

parameters were the same for both laws. We used a skew-t 

distribution with 3 degrees of freedom, and consequently 

large outliers were allowed. 

The Monte Carlo simulations give us only empirical 

heuristics for actual applications of the robust portfolio 

allocation. In the future this can be followed by a theoretical 

study to find more general properties relating asymmetry and 

shrinkage. 
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