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Abstract  This paper deals with a Markovian queueing system having a multi-task service counters and finite queue in 
front of each counter. The total service of a customer is completed in three stages provided by two servers at three counters. 
The first server (S1) can serve the counter I and III alternatively, whereas second server (S2) provides the service at counter II. 
The server (S1) g ives the priority to the customers waiting fo r stage third for the service at counter III since they are in last 
phase of service completion. The steady state queue size distribution has been obtained. The expressions for mean number of 
customers in the system, average queue length and blocking probability have been obtained. Sensitivity analysis has been 
carried out to study the effect of variat ion of different parameters. 
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1. Introduction 
Queueing theory has been widely used to model various 

service systems to provide Quality of Serv ice (QoS) dealing 
with many congestion situat ions of day – to - day life. 
Queueing situations at any service station provide a variety 
of fascinated  challenges to  the mathemat icians who  are 
in teres ted  in  app licat ions  o f p robab ility  theory  and 
optimization. Question of interest in the design of optimal 
service system is to p redict the average delay at various 
interacting and sequenced counters managed by mult itask 
servers and by incorporating customer’s behaviour. In such a 
system format ion  o f tandem queues, b locking  is very 
common. Tandem queues  with  b locking  have been 
addressed  by  many  theorists and researchers. Opt imal 
ordering o f stations in tandem queue with  blocking was 
considered by Ding and Greenberg[1]. A ltiok[2], Altiok and 
Perros [3], Brandwajn  and  Jow[4] developed  algorithms 
which can be used for the analysis of tandem networks with 
exponent ial serv ice t imes and Po isson external arrivals. 
Morris and Perros[5] p resented  a d iscrete-t ime tandem 
network of cut-through queues and introduced a new bursty 
arrival process. They analyzed  the tandem network using 
s ing le-node decompos it ion . Charles  and  LaPadula[6] 
analyzed the performance o f mult i-queue s ing le-server 
systems consisting  of many queues. They  approximated 
polling system consisting of several queues. The exp licit  
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time – dependent distribution of the number of tasks for a 
parallel multi-p rocessor system with task-splitting and 
feedback was obtained by Haghighi[7]. Zhang  and Tian[8] 
studied a Markovian queueing system with mult i-task 
servers where each server can perform two types of job. 
Using the matrix analytic method, they provided a new 
computational algorithm for the stationary distributions of 
the queue length and waiting time. The analysis of networks 
of queues under repetitive service blocking mechanism had 
been presented by Awan et al.[9]. They assumed that the 
nodes are connected according to an arbitrary configuration 
and each node in the networks employs an active queue 
management (AQM) based queueing policy to guarantee 
certain quality of service fo r multiple class external traffic. 
Bhaskar and Lallement[10] investigated supply chain which 
is represented as a two-input, three-stage queueing network. 
They computed the minimum response time for the delivery 
of items to the final destination along the three stages of the 
network. Yang et al.[11] considered a finite capacity M/M/R 
queue with second optional channel. Using the matrix - 
geometric method, they obtained the steady-state probability 
distributions and various system performance measures. 

Intermediate buffer space plays a very important role in 
managing tandem queues which arise due to variation in 
service facility at different counters. Kavusturucu and 
Gupta[12] modeled fin ite buffer tandem manufacturing 
system under N policy using open queueing networks. They 
computed the throughput of the system using decomposition, 
isolation and expansion methodologies. Vidalis and 
Papadopoulos[13] obtained the exact solution of the large 
sparse linear system by the use of the Gauss–Seidel method 
for reliable multi-station series queueing networks where 
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buffers of non-identical finite  capacities are allowed between 
successive stations. Aweya et al.[14] proposed a new active 
queue management scheme for a network device (e.g. router, 
switch, etc.) with a shared buffer where the buffer is logically 
organized into multiple queues. Sharma and Virtamo[15] 
considered a queue with fin ite buffer where the buffer size 
limits the amount of work that can be stored in the queue. 
They obtained the stability, the rates of convergence to the 
stationary distribution and functional limit theorems for this 
system. In addit ion, they also obtained algorithms to 
compute the stationary density of the workload process, the 
wait ing times and the probability of packet loss. Chydzinski 
and Winiarczyk[16] investigated the blocking probability in 
a finite–buffer queue whose arrival p rocess is given by the 
batch Markovian arrival process. Using the supplementary 
variable and imbedded Markov chain techniques, Goswami 
et al.[17] obtained the queue-length distributions at 
pre-arrival and arb itrary epochs for fin ite - buffer mult i - 
server bulk - service queueing system. Diamantidis and 
Papadopoulos[18] used exact Markovian analysis to 
examine the model of a serial flow line with two 
workstations and an intermediate buffer where each 
workstation has mult iple unreliable and non-identical 
parallel machines. 

The behavior of the customer in the queue is very 
important factor for analyzing the quality of service in any 
service system. Wang et al.[19] developed profit model to 
determine the optimal number of servers in the system under 
the constraint of impatience behaviors of the customers. 
Yang and Choo[20] considered an M/M/s queue with 
balking, reneging and retrials. They developed an algorithm 
for the stationary distribution of the Markov chain and 
presented some numerical results. Al-Seedy et al.[21] used 
generating function technique to obtain the transient solution 
for the M/M/c queue with balking and reneging. Perel and 
Yechiali[22] studied M/M/c queues (c=1, 1<c<∞ and c=∞) 
in a two-phase (fast and slow) Markovian random 
environment, with impatient customers. Recently there has 
been considerable interest in state dependent queueing 
models. In real life situations, the customer’s behaviour may 
play a deciding role on the service rate of a server. The input 
traffic may also be influenced by the status of the servers. In 
the last few years, researches on queueing network theory 
have been redirected by a series of brilliant and sobering 
examples. Queues with state dependent arrival rate have 
wide applications in computers and communication system, 
production processes, etc. Shagon[23] studied a single server 
queueing model wherein arrival rate depends on the server 
status. Using approximation for the general service time 
distribution by phase type distribution, M/G/1 queue with 
queue length dependent arrival rate was investigated by 
Gong et  al.[24]. A  state dependent queueing model wherein 
the service rate is adjusted at the beginning of service was 
studied by Wang[25]. Jain[26] studied optimal N-policy for 
state dependent Markovian queue with single removable and 
unreliable server. Hwang et al.[27] proposed a Markov 
decision theoretic frame-work for a multi-rate network by 

approximating a single state-dependent Poisson arrival 
stream without incurring any significant increase in 
computational complexity. Jain et al.[28] analyzed  the fin ite 
queue-dependent heterogeneous multiprocessor service 
system in which processors are shared by more than one job. 
They obtained steady-state queue size distribution using 
recursive method considering Markovian arrival and service 
times. Lee and Kim[29] considered an M/G/1 queueing 
system where the speed of the server depends on the amount 
of work present in the system. By  using the level crossing 
theory and solving the corresponding integral equation, they 
obtained the stationary distribution of the workload in the 
system in exp licit  form. For a single-server retrial queue with 
state dependent exponential inter-arrival, service and 
inter-retrial t imes, Parthasarathy and Sudesh[30] studied the 
time dependent system size probabilit ies by employing the 
continued fractions. Wall and Worthington[31] considered 
the time dependent behavior of virtual waiting time for 
modeling of approximate t ime dependent behavior of queue 
length of the form M(t)/G/c queueing model. Soares and 
Latouche[32] developed various models of fluid queues with 
a level dependency component where the behavior of the 
phase process changes when the level crosses certain 
thresholds, as well as the rate at which flu id increases or 
decreases. Banik[33] considered an infinite-buffer single - 
server queue with renewal input. Lee[34] considered a class 
of stochastic networks with state-dependent arrival and 
service rates. Under the uniform (in state) stability condition, 
he established several moment stability properties of the 
system. Banerjee and Gupta[35] analyzed single-server 
fin ite-buffer queue where customers arrive according to 
Poisson process and served in batches of min imum size and 
maximum threshold limit. Louvel et  al.[36] recently 
presented a non - intrusive and adaptable resource 
management framework which was developed upon a 
customized architecture. Zhou et al.[37] gave exact  analysis 
of two-stage tandem queueing network with MAP inputs and 
buffer sharing using matrix filtration technique. MAP/M/2 
queueing system in steady - state was analyzed by 
Chakravarthy and Karatz[38] with two identical servers in 
parallel system and pure space sharing among rigid jobs 
using matrix analytic method. 

In this paper we deal with Markovian queueing system 
wherein jobs are served by two mult i-task servers at three 
counters. The input traffic is assumed to be effected by the 
status of the server. The state-dependent server may provide 
service with faster rate to reduce the backlog in  case of long 
queue. The organization of the paper is as follows. The 
description of the model and underlying  assumptions and 
notations are given in  section 2. In  section 3 governing 
equations and queue size distribution are established. The 
expressions for mean number of jobs in the system and 
blocking probability are obtained in section 4. The numerical 
algorithm to develop a computer program is d iscussed in 
section 5. Numerical illustrations and sensitivity analysis are 
also provided. Concluding remarks and scopes of future 
work are g iven in the last section 6.  
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2. System Description 

 
Figure 1.  Three counters service system with two servers 

In the present investigation, we consider a three counters 
service system served by two multi-purpose servers as 
shown in Figure 1. For modeling purpose the following 
assumptions and notations are used: 

• The arrival of jobs for service at  counter I follows 
Poisson distribution with rate λ. The jobs are independent to 
each other. 

• The arriving jobs may balk only at counter 1 with 
probability β (0<β<1) when queue size reaches to a threshold 
value N1 (N1>1). 

• The job entering in the system has to be served by all 
(three) counters i.e. the jobs form tandem queue. It is not 
allowed to leave in between  without getting complete service. 
The flow of jobs in the service facility is shown in the figure 
1.  

• Counters I and III are operated by the first server (S1) 
whereas second server (S2) operates single counter II. Both 
servers are independent to each others. 

• The service times at counters I, II, and III are 
exponential distributed with rates µ1, µ2, and µ3, respectively. 

The state-dependent servers at counter II and III switch to 
faster rate 2µ′  and 3µ′  respectively, if there are more than 
N2  (N2>1) jobs at counter II and at least one job at counter I 
respectively. 

• The discipline for service at all counters is First Come 
First Served (FCFS).  

• The queue is allowed to be formed in front of each 
counter within the buffer and waiting space capacity of 
system i.e . at most M jobs are allowed in the system. 

• The times taken for transaction of jobs between counters 
in sequence are assumed to be negligible. 

• The switching time of first server (S1) between counter I 
and counter III is also neglig ible.  

The following notations are used for mathemat ical 
formulat ion of birth-death process: 

P0,0,0 Steady-state probability that the system is id le i.e. 
there is no job at any counter. 

Pi,j,k Steady-state probability that there are i, j and k jobs at 
counters I, II, and III respectively, for service.  

PI Fract ion of time during which the server (S1) is busy at 
counter I. 

PIII Fraction of time during which  the server (S1) is busy at 
counter III. 

3. Mathematical Analysis 
The steady-state Chapman-Kolmogrov differential 

difference equations governing the present model are as 
follows: 

0,0,0 3 0,0,1 0P Pλ µ− + =                                                (1) 

( )3 0,0, 2 0,1, 1 3 0,0, 1 0,1 1k k kP P P k Mλ µ µ µ− +− + + − = ≤ ≤ −               (2) 

2 0,1, 1 3 0,0, 0M MP Pµ µ− − =                                              (3) 

( )2 0, ,0 1 1, 1,0 3 0, ,1 20,1j j jP P P j Nλ µ µ µ−− + + + = ≤ ≤                     (4) 

( )2 0, ,0 1 1, 1,0 3 0, ,1 20, 1j j jP P P N j Mλ µ µ µ−′− + + + = < ≤ −                (5) 

2 0, ,0 1 1, 1,0 20,M MP P N Mµ µ −′− + = <                                    (6) 

( )1 ,0,0 1,0,0 3 ,0,1 10,1i i iP P P i Nλ µ λ µ− ′− + + + = ≤ ≤                       (7) 

( )1 ,0,0 1,0,0 3 ,0,1 10, 1i i iP P P i Nλβ µ λ µ− ′− + + + = = +                      (8) 

( )1 ,0,0 1,0,0 3 ,0,1 10, 1 1i i iP P P N i Mλβ µ λβ µ− ′− + + + = + < ≤ −            (9) 

1 ,0,0 1,0,0 10, 1M MP P N Mµ λβ −− + = + <                                (10) 

( )1 2 , ,0 1, ,0 1 1, 1,0 3 , ,1

1 2

0,

1 , 1 , 1
i j i j i j i jP P P P

i N j N i j M

λ µ µ λ µ µ− − − ′− + + + + + =

≤ ≤ ≤ ≤ + ≤ −
                (11) 

( )1 2 , ,0 1, ,0 1 1, 1,0 3 , ,1

1 2

0,

1 , 2, 1
i j i j i j i jP P P P

i N N j M i j M

λ µ µ λ µ µ− − −′ ′− + + + + + =

≤ ≤ < ≤ − + ≤ −
              (12) 

( )1 2 , ,0 1, ,0 1 1, 1,0 3 , ,1

1 2

0,

1, 1 , 1
i j i j i j i jP P P P

i N j N i j M

λβ µ µ λ µ µ− − − ′− + + + + + =

= + ≤ ≤ + ≤ −
        (13) 
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( )1 2 , ,0 1, ,0 1 1, 1,0 3 , ,1

1 2

0,

1, 2, 1
i j i j i j i jP P P P

i N N j M i j M

λβ µ µ λ µ µ− − −′ ′− + + + + + =

= + ≤ ≤ − + ≤ −
  (14) 

( )1 2 , ,0 1, ,0 1 1, 1,0 3 , ,1

1 2

0,

1 2,1 , 1
i j i j i j i jP P P P

N i M j N i j M

λβ µ µ λβ µ µ− − − ′− + + + + + =

+ < ≤ − ≤ ≤ + ≤ −
           (15) 

( )1 2 , ,0 1, ,0 1 1, 1,0 3 , ,1

1 2

0,

1 2, 2, 1
i j i j i j i jP P P P

N i M N j M i j M

λβ µ µ λβ µ µ− − −′ ′− + + + + + =

+ < ≤ − < ≤ − + ≤ −
           (16) 

( )1 2 , ,0 1 1, 1,0 1, ,0

2 1

0,

1
i M i i M i i M iP P P

M N i N
µ µ µ λ− + − − − −− + + + =

− ≤ ≤ +
                   (17) 

( )1 2 , ,0 1 1, 1,0 1, ,0

1 2

0

1 1,
i M i i M i i M iP P P

i N M i N
µ µ µ λ− + − − − −′− + + + =

≤ ≤ + − ≥
                (18) 

( )1 2 , ,0 1 1, 1,0 1, ,0

1 2

0,

max( 1, ) 1
i M i i M i i M iP P P

N M N i M
µ µ µ λβ− + − − − −− + + + =

+ − ≤ ≤ −
            (19) 

( )1 2 , ,0 1 1, 1,0 1, ,0

1 2

0,

1 1,
i M i i M i i M iP P P

N i M M i N
µ µ µ λβ− + − − − −′− + + + =

+ < ≤ − − ≥
                 (20) 

( )2 3 0, , 2 0, 1, 1 3 , , 1

2

0,

1 2, 1 2, 1
j k j k o j kP P P

j N k M j k M

λ µ µ µ µ+ − +− + + + + =

≤ ≤ − ≤ ≤ − + ≤ −
            (21) 

( )2 3 0, , 2 0, 1, 1 3 , , 1

2

0,

1, 1 2, 1
j k j k o j kP P P

j N k M j k M

λ µ µ µ µ+ − +′− + + + + =

= − ≤ ≤ − + ≤ −
             (22) 

( )2 3 0, , 2 0, 1, 1 3 , , 1

2

0,

1 2, 1 2, 1
j k j k o j kP P P

N j M k M j k M

λ µ µ µ µ+ − +′ ′− + + + + =

− ≤ ≤ − ≤ ≤ − + ≤ −
               (23) 

( )2 3 0, , 2 0, 1, 1 20,1 2j M j j M jP P j Nµ µ µ− + − −− + + = ≤ ≤ −                 (24) 

( )2 3 0, , 2 0, 1, 1 20, 1j M j j M jP P j Nµ µ µ− + − −′− + + = = −                     (25) 

( )2 3 0, , 2 0, 1, 1 20, 1 1j M j j M jP P N j Mµ µ µ− + − −′ ′− + + = − < ≤ −              (26) 

3 ,0, 1,0, 2 ,1, 1 10,1i M i i M i i M iP P P i Nµ λ µ− − − − −′− + + = ≤ ≤                     (27) 

3 ,0, 1,0, 2 ,1, 1 10, 1i M i i M i i M iP P P N i Mµ λβ µ− − − − −′− + + = < ≤ −               (28) 

( )3 ,0, 1,0, 2 ,1, 1 3 ,0, 1

1

0,

1 , 1 2, 1
i k i k i K i kP P P P

i N k M i k M
λ µ λ µ µ− − +′ ′− + + + + =

≤ ≤ ≤ ≤ − + ≤ −
                   (29) 

( )3 ,0, 1,0, 2 ,1, 1 3 ,0, 1

1

0,

1, 1 2, 1
i k i k i K i kP P P P

i N k M i k M
λβ µ λ µ µ− − +′ ′− + + + + =

= + ≤ ≤ − + ≤ −
                  (30) 

( )3 ,0, 1,0, 2 ,1, 1 3 ,0, 1

1

0,

1 2, 1 2, 1
i k i k i K i kP P P P

N i M k M i k M
λβ µ λβ µ µ− − +′ ′− + + + + =

+ < ≤ − ≤ ≤ − + ≤ −
                 (31) 

( )2 3 , , 1, , 2 , 1, 1 3 , , 1

1 2

0,

1 , 1 1, 1 3, 1
i j k i j k i j k i j kP P P P

i N j N k M i j k M

λ µ µ λ µ µ− + − +′ ′− + + + + + =

≤ ≤ ≤ ≤ − ≤ ≤ − + + ≤ −
          (32) 

( )2 3 , , 1, , 2 , 1, 1 3 , , 1

1 2

0,

1 , , 1 3, 1
i j k i j k i j k i j kP P P P

i N j N k M i j k M

λ µ µ λ µ µ− + − +′ ′ ′− + + + + + =

≤ ≤ = ≤ ≤ − + + ≤ −
              (33) 
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( )2 3 , , 1, , 2 , 1, 1 3 , , 1 1

2

0,1 ,

3, 1 3, 1
i j k i j k i j k i j kP P P P i N

N j M k M i j k M

λ µ µ λ µ µ− + − +′ ′ ′ ′− + + + + + = ≤ ≤

< ≤ − ≤ ≤ − + + ≤ −
   (34) 

( )2 3 , , 1, , 2 , 1, 1 3 , , 1

1 2

0,

1, 1 , 1 3, 1
i j k i j k i j k i j kP P P P

i N j N k M i j k M

λβ µ µ λ µ µ− + − +′ ′− + + + + + =

= + ≤ ≤ ≤ ≤ − + + ≤ −
            (35) 

( )2 3 , , 1, , 2 , 1, 1 3 , , 1

1 2

0,

1, , 1 3, 1
i j k i j k i j k i j kP P P P

i N j N k M i j k M

λβ µ µ λ µ µ− + − +′ ′ ′− + + + + + =

= + = ≤ ≤ − + + ≤ −
            (36) 

( )2 3 , , 1, , 2 , 1, 1 3 , , 1 1

2

0, 1,

3, 1 3, 1
i j k i j k i j k i j kP P P P i N

N j M k M i j k M

λβ µ µ λ µ µ− + − +′ ′ ′ ′− + + + + + = = +

< ≤ − ≤ ≤ − + + ≤ −
  (37) 

( )2 3 , , 1, , 2 , 1, 1 3 , , 1 1

2

0, 1 3,

1 , 1 3, 1
i j k i j k i j k i j kP P P P N M

j N k M i j k M

λβ µ µ λβ µ µ− + − +′ ′− + + + + + = + ≤ −

≤ ≤ ≤ ≤ − + + ≤ −
  (38) 

( )2 3 , , 1, , 2 , 1, 1 3 , , 1

1 2

0,

1 3, , 1 3, 1
i j k i j k i j k i j kP P P P

N i M j N k M i j k M

λβ µ µ λβ µ µ− + − +′ ′ ′− + + + + + =

+ < ≤ − = ≤ ≤ − + + ≤ −
        (39) 

( )2 3 , , 1, , 2 , 1, 1 3 , , 1

1 2

0,

1 3, 3, 1 3, 1
i j k i j k i j k i j kP P P P

N i M N j M k M i j k M

λβ µ µ λβ µ µ− + − +′ ′ ′ ′− + + + + + =

+ < ≤ − < ≤ − ≤ ≤ − + + ≤ −
          (40) 

( )2 3 , , 1, , 2 , 1, 1

1 2

0,

1 1, 1 2, 1
i j M i j i j M i j i j M i jP P P

i N j N i j M

µ µ λ µ− − − − − + − − −′− + + + =

≤ ≤ + ≤ ≤ − + ≤ −
              (41) 

( )2 3 , , 1, , 2 , 1, 1

1 2

0,

1 1, 1, 1
i j M i j i j M i j i j M i jP P P

i N j N i j M

µ µ λ µ− − − − − + − − −′ ′− + + + =

≤ ≤ + = − + ≤ −
                (42) 

( )2 3 , , 1, , 2 , 1, 1

1 2

0,

1 1, 1 2, 1
i j M i j i j M i j i j M i jP P P

i N N j M i j M

µ µ λ µ− − − − − + − − −′ ′ ′− + + + =

≤ ≤ + − < ≤ − + ≤ −
               (43) 

( )2 3 , , 1, , 2 , 1, 1

1 2

0,

1 2, 1 2, 1
i j M i j i j M i j i j M i jP P P

N i M j N i j M

µ µ λβ µ− − − − − + − − −′− + + + =

+ < ≤ − ≤ ≤ − + ≤ −
              (44) 

( )2 3 , , 1, , 2 , 1, 1

1 2

0,

1 2, 1, 1
i j M i j i j M i j i j M i jP P P

N i M j N i j M

µ µ λβ µ− − − − − + − − −′ ′− + + + =

+ < ≤ − = − + ≤ −
            (45) 

( )2 3 , , 1, , 2 , 1, 1

1 2

0,

1 2, 1 2, 1
i j M i j i j M i j i j M i jP P P

N i M N j M i j M

µ µ λβ µ− − − − − + − − −′ ′ ′− + + + =

+ < ≤ − − < ≤ − + ≤ −
               (46) 

 
The above system of linear equations governing the 

present model in terms of steady-state probabilities in matrix 
form can be written as 

AP=0                       (47) 
where A is square matrix o f o rder (M+3)(M+2)(M+1)/6  
whose elements are the coefficients of state probabilit ies, P 
is column vector of state probabilit ies and 0 is null column 
vector of order (M+3)(M+2)(M+1)/6. 

Using the normalizing condition 

∑∑∑ = 1,, kjiP            (48) 
The system of linear equations in (47) can be expressed as  

A*P=B                  (49) 
where A* is the matrix A replacing the last row with a row 
vector having all unit element and B is the column vector of 

the form [0, 0, …0, 1]T o f order (M+3)(M+2)(M+1)/6. 
Equation (49) can be solved using matrix-inverse method to 
obtain steady-state probabilities that can be fu rther used to 
evaluate various system performance measures.  

4. The System Performance Measures 
For queueing model under consideration, using the 

steady-state probabilit ies derived in the prev ious section, we 
compute following system performance measures:  

(i) The mean number of jobs in the system (L) is  

, , , , , ,
, , , , , ,

1 2

2 ...i j k i j k i j k
i j k i j k i j k

i j k i j k i j k M

L P P M P

+ + = + + = + + =

= + + +∑ ∑ ∑
(50) 
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(ii) The blocking probability at counter I is obtained by 

MjiPP
M

i

M

j
jiI ≤+= ∑∑

= =
,

0 0
0,,       (51) 

(iii) The b locking probability at counter III is obtained by 

MkjiPP
M

i

M

j

M

k
kjiIII ≤++= ∑∑∑

= = =
,

0 0 1
,,    (52) 

(iv) Now the effect ive arrival rate is 

, ,
0

,0 , 0
M

i i j k
i

P j M k M and i j k Mλ λ
=

= ≤ ≤ ≤ ≤ + + ≤∑ .(53) 

Here λi is obtained as




≥
<

=
1

1

;
;

Ni
Ni

i λβ
λ

λ . 

5. Numerical Results 

In order to validate the computational tractability, the 
performance measures established above have been used to 
generate numerical results. The computer program is 
developed in software package MATLAB by writ ing code to 
compute performance measures. The average number of jobs 
in the system and blocking probabilit ies are obtained 
numerically by varying various parameters and are 
summarized in Tab les 1, 2, and 3. 

Table 1.  Performance measures by varying λ and M (for β=0.8, µ1=1.1, 
µ2=0.8, µ3=1.2, N1=5, N2=5) 

M λ L PI PIII 

5 

0.1 0.6722 0.1171 0.1230 

0.5 2.7856 0.3991 0.3385 

1.0 3.9844 0.4902 0.3817 

7 

0.1 1.0446 0.1437 0.1422 

0.5 3.8779 0.4468 0.3591 

1.0 5.6880 0.5390 0.3986 

9 

0.1 1.4926 0.1673 0.1591 

0.5 4.9358 0.4729 0.3730 

1.0 7.4062 0.5574 0.4101 

In Table 1, average number of jobs in the system and 
blocking probabilities are d isplayed with the variation of 
arrival rate λ from 0.1 to 1.0 for different room capacity (M). 
The service rates at different counter are fixed as µ1 = 1.1, µ2 
= 0.8, µ3 = 1.2. The threshold parameters N1 and Ν2 for 
balking are fixed at 5 and the balking rate (β) is 0.8. The 
value of faster service rates at counter II and III are 

4.1,0.1 32 =′=′ µµ  respectively. A significant increasing trend 
are observed in all performance measures L, PI, PIII  with 
respect to room capacity (M) and arrival rate (λ) which is 
true in realistic situation. 

 

Table 2.  Performance measures by varying µ and M (for λ=0.5, β=0.8, 
µ1=1.1µ, µ2=0.8 µ, µ3=1.2 µ, N1=5, N2=5) 

M µ L PI PIII 

5 
1.0 2.7856 0.3991 0.3385 
1.6 1.9445 0.2997 0.2846 
2.0 1.6065 0.2544 0.2521 

7 
1.0 3.8779 0.4468 0.3591 
1.6 2.7706 0.3425 0.3098 
2.0 2.3349 0.2949 0.2784 

9 
1.0 4.9358 0.4729 0.3730 
1.6 3.6529 0.3724 0.3284 
2.0 3.1405 0.3255 0.2989 

In Table 2, various performance measures are evaluated 
for different service rate where service rate are µ1=1.1µ, 
µ2=0.8µ, µ3=1.2µ. The value of µ is varying from 1 to 2. The 
changed service rate fo r counter II and III are 2.022 +=′ µµ
and 2.033 +=′ µµ . The arrival rate chosen is λ=0.5. A ll others 
parameters are same as in Table 1. An average number of 
jobs in the system and blocking probabilit ies are exhib iting 
decreasing trend with respect to service rate. 

Table 3.  Performance measures by varying β and M (for λ=0.5, µ1=1.1, 
µ2=0.8, µ3=1.2, N1=5, N2=5) 

M β L PI PIII 

5 
0.5 2.8576 0.4079 0.3551 
0.7 2.8263 0.4029 0.3448 
0.9 2.7237 0.3945 0.3310 

7 
0.5 4.0910 0.4661 0.3687 
0.7 3.9918 0.4551 0.3634 
0.9 3.6933 0.4361 0.3526 

9 
0.5 5.2785 0.4951 0.3795 
0.7 5.1226 0.4826 0.3765 
0.9 4.6022 0.4589 0.3664 

In Table 3, we measure the performance by varying the 
rate of balking from 0.5 to 0.9 with an increment of 0.2 for 
arrival rate λ=0.5. All other parameters are same as in Tab le 
1. A prominent decreasing effect is observed in the value of 
performance measures for higher room capacity with respect 
to balking probability. 

In Figures 2(a)-2(d) the variat ion of average number of 
jobs in system is displayed by varying λ, µ, M, and β 
respectively. The average number o f jobs increases with the 
increase in arrival rate (λ) and room capacity (M) which 
matches with physical situation. By increasing service rate 
(µ) and balking probability (β), the average number of jobs 
reduces but the effect of β is negligib le for s mall room 
capacity. 

These figures exh ibit realistic result. Hence, the system 
designer should provide the efficient servers in  service 
system to check reluctance behavior among customers which 
directly or indirectly affect on average number o f jobs in the 
system. The present study shows that system capacity is 
important parameter for t imeliness and efficient service. The 
decision maker should analyze the system’s size efficiently 
since it direct ly affect service cost and customer’s 
satisfactions. 
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Figure 2.  Number of jobs in the system 

For illustration purpose we give the following example. 
Consider the repair shop wherein a mach ine arriving for 
repair, is first checked by primary repairman. He 
recommends the jobs to specialized repairman according to 
the requirement. Finally  primary  repairman checks the 
mach ines and handover it to the customer and takes the 
payment. Another similar example occurs at bank where the 
account holder comes to withdraw his money from his 
account. First he has to go to the cashier counter with cheque 
and pass book. At this stage cashier checks the account 
number, name and amount in his account and gives the token 
to the customer. Cashier then forwards his cheque to senior 
officer to verify the signature of the customer. After 
verify ing the signature from the specimen copy, the officer 
returns the cheque back to the cashier. Cashier then calls the 
customer and takes the token before giving the cash. From 
the above examples we see that, there may be situations 
where the job has to be processed by two servers in three 
stages where the primary server works at counter I and III 
whereas secondary server provides service at counter II. 
Each job has to go through all the three counters in a 
sequential manner. Primary  server g ives the priority to the 
customers at counter III as they have already got some 
service.  

6. Conclusions 

In this paper we have studied the multi-tasking server that 
oscillates between counters with balking and state-dependent 
service rate. The service of job is done through three 
counters. Numerical solution is obtained using matrix 
method. The performance of the system is measured in terms 
of average waiting time in the system, average number of 
jobs in the system and blocking probabilities for different 
arrival rate, service rate and balking rate. The state 
dependent rate incorporated for modelling mult i-counters 
system make our results more closer to realistic situation. 
The system analyst can analyze such model by incorporating 
associated cost factors and optimize the time fraction 
between counters and service rates of the servers. However 
there is scope of extension of this work by considering bulk 
arrivals and/or bulk service in which direction the attention 
should be paid. We should go for the transient solution to 
make our model more realistic. We can  analyze present 
model under shadow of various type of server’s policies and 
customer’s policies. We can extend our model fo r other 
different kind of architectural restrictions. 
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