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Abstract  The following study employs two different autocorrelation functions (ACF) to obtain the principal parameters 
that describe the behavior of the low-wind meandering phenomenon. The looping parameter (m) and the meandering time 
scale (T*) were estimated from the fit of 828 experimental ACF evaluated from measurements accomplished at the Santa 
Maria micrometeorological site (Santa Maria, south of Brazil). The results show that both meandering ACFs appropriately fit 
the negative lobes and the oscillatory behavior observed in experimental meandering ACFs. The T* parameter, obtained from 
the distinct ACF formulations, agrees in most of the analyzed cases. However, substantial differences between the values of 
the m parameter, obtained by the two formulations, are observed. This difference is more evident for higher values of m. This 
highlights the distinct functional form that describes the turbulence in the meandering ACF. 
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1. Introduction 
The velocity autocorrelation functions are important 

statistical quantities to describe atmospheric movements. 
Such functions can be used to calculate the dispersion 
parameters associated to the turbulent diffusion modeling 
studies in the planetary boundary layer (PBL). Based on the 
Taylor Statistical Diffusion Theory, the following formula 
has been proposed by Frenkiel [1] and [2] to represent the 
autocorrelation functions describing the connected states 
between turbulent and non-turbulent (submeso motions e.g. 
[3]) movements.  

R( ) cos ( )pe qττ τ−=           (1) 

This functional form is composed of the product of 
classical exponential function, that represents the 
autocorrelation function for a fully developed turbulence, by 
the cosine function that describe the larger scale movements, 
such as the wind meandering, associated to the observed low 
frequency horizontal wind oscillation. 

Recently, [4] proposed a new mathematical formulation to 
represent turbulent and submeso motions. This formulation 
is similar to those of Frenkiel and can be described as: 
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Differently from Eq. (1), Eq. (2) contains a binomial 
function to represent the fully developed turbulence [5]. The 
cosine function allows the reproduction of the negative lobes 
observed in the autocorrelation functions ([6]; [4]). Both 
mathematical formulations are hybrid, since that they are 
described in term of LT , the Lagrangian integral time scale 
for a fully developed turbulence, and m the loop parameter, 
which controls the meandering oscillation frequency 
associated to the horizontal wind. The m parameter controls 
the negative lobe absolute value in the autocorrelation 
functions and as a consequence defines the meandering 
phenomenon intensity [6]. Following [2] and [7] p and q are 
defined by the relations: 
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where T* is the meandering period. The ratio between Eq. (4) 
and Eq. (3) yields:   

p
qm =                   (4) 

In this study, employing observational wind data and the 
Eqs. (1) and (2), we evaluate the principal parameters that 
characterize the meandering phenomenon. Specifically, the 
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magnitudes of mu,v,T and T Tvu
*  (u and v are the horizontal 

and lateral turbulent velocity components and T is the 
temperature), are calculated. Furthermore, the looping 
parameters and the meandering periods derived from Eq. (1) 
are compared with those obtained from Eq. (2).    

2. Results and Discussion 
In this section, we analyze low-wind speed data to 

evaluate experimental autocorrelation functions. These 
experimental curves, presenting negative lobes, are fitted by 
mathematical formulations provided by the Eqs. (1) and (2).   

Therefore, Eqs. (1) and (2) are mathematical 
representations that reproduce the observed meandering 
curves and are used to obtain the loop parameters and the 
meandering periods.  

The low-wind speed dataset employed in this analysis 
were measured in a micrometeorological station (UFSM, Rio 
Grande do Sul, Brazil) between November 2013 and 
December 2014. Observations of wind speed and 
temperature were sampled by a sonic anemometer installed 
at 3 m in a tower at a frequency of 10Hz.  

Figures 1-3 show peculiar patterns of the comparison 
among the velocity and temperature ACFs calculated on the 
Santa Maria low wind speed dataset (continuous line) and 
the associated best fits (dotted and dashed lines) calculated 
from the ACFs (Eqs. (1) and (2) respectively).  

 

Figure 1.  Comparison between the ACF estimated on the Santa Maria 
dataset (continuous line) and the associated best fits (dotted and dashed lines) 
for the u component, evaluated from Eq.(1) and from Eq. (2) on April 25 of 
2014,  00:00LT; U =1.05 m s-1 

Following [6], all the ACFs analyzed in this study were 
evaluated from one-hour time series having the mean 
horizontal speed less than 1.5 m s-1 and looping parameters 

1m ≥ .    
Eq. (4) provides the meandering characteristic time scale 

(meandering period). From this equation values of the 
magnitude of T* were obtained. Figure 4 shows the scatter 
plots of T* calculated from Eq. (1) (x-axis) and Eq. (2) 
(y-axis). It can be seen that there is a very good agreement 

between the magnitudes of T* obtained from the two 
mathematical formulations. This behavior is evidenced by 
the fact that most of the T* values are situated on the line of 
perfect agreement.  

 
Figure 2.  As in Fig. 1, for the v component 

 
Figure 3.  As in Fig. 1, for the temperature  

From Eq. (5) the loop parameter m can be estimated. 
Figure 5 exhibits the scatter plot of the m values obtained 
from Eq. (1) (x-axis) and Eq. (2) (y-axis). Looking at this 
scatter plot, it is evident that the loop parameter estimated 
from Eq. (2) presents greater magnitudes than the one 
provided by Eq. (1). Furthermore, it is important to note that 
the Figure 4 present a linear relation between the m values 
calculated from Eqs. (1) and (2).   

The higher values of m, calculated from Eq. (2), suggest 
that the binomial formula contained in this equation 
reproduces for longer time the oscillatory effects associated 
to the meandering motions. This means that the values of the 
p parameter from the fitting of Eq. (2) are smaller than the 
ones obtained from Eq. (1). These differences evidence the 
distinct functional formulation that represents the turbulent 
component of the low-wind ACF.  

The present analysis shows that both ACFs can be 
employed to obtain meandering parameters from wind and 
temperature observational data.   
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Figure 4.  Meandering period for all low wind dataset 

 

Figure 5.  Loop parameter (m) for all low wind dataset 

3. Conclusions 
We present a comparison between two mathematical 

formulations that describe the negative lobes associated to 
the observed meandering ACF. The analysis shows that both 
mathematical expressions appropriately fit the experimental 
data. The oscillatory behavior presents in the meandering 

motion are equally well described by both representations. 
Thus, the meandering time scale can be estimated 
independently of the ACF formulation chosen. On the other 
hand, the m parameter is larger for the case in which the 
turbulence movement is represented by the binomial 
function. This last decreases more slowly than the 
exponential function.     
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