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Abstract  The present work is an attempt to simulate stochastic effects in a deterministic model for pollutant dispersion in 

the atmospheric boundary layer by the use of a probability weighted boundary condition. More specifically, the escape of 

pollutant substances across the boundary layer horizon on the one side and the surface boundary on the other side are 

modelled by probabilities to quantify the fraction of pollutant that returns into the boundary layer from above and the process 

of adsorption or deposition on the ground layer. These effects are represented by partially reflective boundary conditions that 

together with advection-diffusion dispersion define the model in consideration. The consequences of the reflections are 

analysed using the meteorological conditions and data of the Hanford and Copenhagen experiments. A variety of trials have 

shown that partial reflection on the boundary layer horizon and the ground, respectively, obtain the most significant 

correlations between model and data suggesting that effects on the boundary are essential to model dispersion processes in the 

atmospheric boundary layer. 
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1. Introduction 

The air quality of a region is essential for the welfare of the 

population and the environment, and is directly influenced 

by the levels of air pollution. Industrial and technological 

developments generate excessive emission of pollutants, 

decreasing air quality. Therefore, there is a necessity to 

develop mathematical models and computer simulations in 

order to understand and predict impact of dispersion of 

pollutants in the environment and in case of incidents or 

accidents evaluate its risks on habitats. 

Turbulent diffusion in the atmosphere is usually modelled 

by the advection-diffusion equation, even though does not 

explain all the observed phenomena. This equation is 

considered to be deterministic and its solution describes 

mean values of substance concentrations whereas the 

atmospheric dispersion is stochastic because of natural 

fluctuations that evidently cannot be reproduced by a purely 

deterministic model.  

Thus, the main objective of this work is to investigate   

the behaviour of the solution to the deterministic 

advection-diffusion equation whilst introducing effects that 

shall mimic stochastic properties. For this purpose we 

modify  the  originally  purely  geometrical  boundary  
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conditions, i.e. the ground level and the boundary layer 

height, respectively. More specifically turbulent mixture is 

believed to take place in various scales, where the largest 

scale is limited by the boundary layer height, but also smaller 

scales shall be present.  

One could think of the boundary layer as a superposition 

of various boundary layers, however with different ground 

and upper layer heights. Such a construction could model the 

escape of pollutant substances across the boundary layer 

horizon on the one side and the surface boundary on the other 

side and are modelled by probabilities to quantify the 

fraction of pollutant that returns into the boundary layer from 

above and the process of adsorption or deposition on the 

ground layer. These effects are represented by reflective and 

distributed boundary conditions that together with 

advection-diffusion dispersion define the model in 

consideration. The consequences of the reflections are 

analysed using the meteorological conditions and data from 

the Hanford and Copenhagen experiments. 

2. A Locally Gaussian Model 

Starting from the continuity equation one can obtain the 

advection-diffusion equation through the use of the 

Reynolds decomposition to separate the mean components 

for the concentration and the velocity fields. Upon taking 

averages and substitution of the average fluctuations by 

Fick’s closure, the desired equation for mean concentrations 

and an a priori known wind field and with all turbulent 
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characteristics parametrised in a time dependent eddy 

diffusivity matrix coefficient K is attained. For the current 

study the eddy diffusion is simplified as locally constant 

coefficients, which may be justified by the fact that the 

coefficients vary softly only with changing coordinates and 

is typical for homogeneous turbulence. For details of the 

derivation see for instance the textbook by Arya [1].  

            (1) 

where c represents the mean concentration of a contaminant 

(g/m³), u = (u, v, w) are the mean wind speeds (in m/s) in the 

longitudinal, vertical and cross wind directions, the Nabla 

symbol ∇ signifies the usual vector differential operator, the 

eddy diffusivity coefficient is represented by a diagonal 

matrix K = diag(Kx, Ky, Kz) and S is a source term. 

Considering a point source at height Hs that releases 

instantaneously a pollutant at a time t = 0, in a fixed emission 

rate Q, then the source term can be cast in an initial condition 

and equation (1) is written as the initial value problem, 

disregarding further the slowly varying terms ∇K∇c. 

 (2) 

    (3) 

This approximate problem can be solved analytically by 

separation of variables [16] and Fourier transform [19] and 

have the following solution.  

 (4) 

However, most dispersion problems are due to continuous 

emissions, which can be idealized by the superposition of 

instantaneous emissions. Considering a small time interval 

dτ with an instantaneous emission, then the continuous 

emission is  

     (5) 

where c is the concentration for the instantaneous and C for 

the continuous emission. Making use of equation (4) in 

equation (5)  

  (6) 

Since the solutions (4) and (6) were obtained by Fourier 

transform, they are valid for the infinite ranges x ∈ (−∞, ∞), 

y ∈ (−∞, ∞), z ∈ (−∞, ∞), although the dispersion of 

contaminants is limited at the vertical domain by the ground 

(z = 0) and the top of the atmospheric boundary layer (z = zi) 

thus the infinite range has to be mapped into a finite range.  

3. Reflective Boundary Conditions 

To justify the mapping of the infinite range z ∈ (−∞, ∞) 

to the finite z ∈ [0, zi] we first consider a cut of the 

distribution at z = 0 and z = zi, respectively. Usually the 

boundary conditions for the pollutant dispersion problem 

are zero flux or zero concentration at the boundaries, 

however Fick’s hypothesis suggests there should be a flux 

across the boundaries. In that sense we copy from 

observation that the layer until the hight where temperature 

inversion occurs may be considered at least partially 

decoupled from the wind flux system beyond. Hence, in an 

ideally decoupled system the lost contributions should be 

recovered adopting reflecting boundaries, which intuitively 

agrees with a simple particle ensemble picture where the 

pollutant that reaches the ground or the top of the 

atmospheric boundary layer bounces completely back into 

the domain. For the distributions that means that even after 

reflections the Gaussian tails exceeding the allowed domain 

are mirrored back into the finite range z ∈ [0, zi].  

Formally, the reflection on the ground and in the 

atmospheric boundary layer may be viewed as contributions 

due to a virtual source in some effective heights to both 

sides below ground and above the boundary layer [2], those 

heights are the center of the gaussians formed at the ground 

and at the top of the atmospheric boundary layer, as 

exemplified in Figures 1, 2 and 3. The sequences that 

represent the mirror maxima are 

    (7) 

Substituting those two sequences (7) in the solution for 

the continuous emission (6), the solution for continuous 

emission with complete reflection is obtained  

 

Figure 1.  Scheme for the dispersion as if there were no limits in the 

vertical domain 
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Figure 2.  Scheme for the reflection starting on the ground         Figure 3.  Scheme for the reflection starting on the top of the ABL 

                              (8) 

and is now valid for x ∈ (−∞, ∞), y ∈ (−∞, ∞), z ∈ [0, zi]. 

So far the model still does not represent any property that might be associated to an effect from a stochastic feature. As 

already argued before, instead of a boundary layer with rigid limits one could mimic a sample of a distribution with 

different boundary layer heights upon changing the position of the mirror images that compose the total distributions. To 

this end we introduce the reduction factor ωb and ωg in the sequences (7). Note, that the system still maintains its 

deterministic character, but finite sample of boundary layer configurations with different heights and centre could be 

interpreted as a manifestation of stochasticity that are used to study the behaviour of the new solution. 

 

   (9) 

 

4. Turbulent Diffusivity Parametrisation  

To validate the proposed model, more specifically to 

analyse the impact of reflections on the results, turbulent 

diffusivity was parametrised to represent meteorological 

conditions of the Hanford [10] and Copenhagen experiment 

[11]. 

The Hanford experiment is a low source experiment (the 

height of the source Hs was 2 m) with stable to quasi-neutral 

conditions. A non-depositing tracer was released with an 

average rate of Q = 0.3 g/s and release time interval of 30 

minutes, except for experiment run 05, where the release 

time was 22 minutes. The measurements were performed at 

distances 100 m, 200 m, 800 m, 1600 m and 3200 m from the 
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source. The necessary micro-meteorological data for the 

parametrisation were provided by the experiment and are 

presented in Table 1. The height of the stable boundary layer 

(zi,s) was calculated using the relation zi,s=0.4(u∗L/fc)
1/2, 

where fc=1.46x10-4 is the Coriolis parameter. 

Table 1.  Micro-meteorological data for the Hanford experiment [10] 

Expt 
u (2m) 

(ms-1) 

u∗ 

(ms-1) 

L 

(m) 

zi,s 

(m) 

01 3.63 0.40 166 269 

02 1.42 0.26 44 112 

03 2.02 0.27 77 151 

04 1.50 0.20 34 86 

05 1.41 0.26 59 129 

06 1.54 1.54 71 152 

The Copenhagen campaign is a high source experiment 

(the height of the source Hs was 115 m) with convective 

conditions. The tracer sulphurhexafluoride (SF6) was 

released without buoyancy at a constant flow rate ranging 

from 2.4 to 4.7 g/s and release time interval of 60 minutes. 

The measurements were performed at distances ranging from 

1900 m to 6100 m from the source, depending on the 

experiment. The necessary micro-meteorological data for the 

parametrisation were provided by the experiment and are 

presented in Table 2. The convective velocity scale (w∗) was 

calculated using the relation w∗ = u∗(−zi/kL)1/3, where k is the 

Von Kármán constant. 

Table 2.  Micro-meteorological data for the Copenhagen experiment [11] 

Expt 
u (115m) 

(ms-1) 

u∗ 

(ms-1) 

L 

(m) 

w∗ 

(ms-1) 

zi 

(m) 

01 3.4 0.37 -46 1.76 1980 

02 10.6 0.74 -384 1.72 1920 

03 5.0 0.39 -108 1.15 1120 

04 4.5 0.39 -173 0.69 390 

05 6.7 0.46 -577 0.10 820 

06 13.2 1.07 -569 1.91 1300 

07 7.6 0.65 -136 2.11 1850 

08 9.4 0.7 -72 2.13 810 

09 10.5 0.77 -382 1.84 2090 

4.1. Stable Conditions 

The eddy diffusion coefficient for stable conditions 

proposed by Degrazia and Moraes [7] is based on the 

diffusion theory of Taylor [20] and the turbulent kinetic 

energy spectrum [17] and can be computed using the 

micrometeorological data set from table 1. 

(10) 

Here u∗ is the friction velocity, z is the observation height, 

zi,s is the height of the stable boundary layer, X is the 

dimensionless distance, n′ is the dimensionless frequency of 

the turbulent kinetic energy spectrum and (fm)w = (fm)n,w (1 + 

3.7 z/Λ) is the frequency of the spectral peak in the vertical 

eddy spectrum, where Λ = L(1 − z/zi,s)
1.5α1−α2 is the local 

Obukhov length, α1 = 1.5, α2 = 1.0 [14] and (fm)n,w = 0.35 is 

the frequency of the spectral peak in neutral stratification 

[15]. 

4.2. Convective Conditions 

The eddy diffusion coefficient for convective conditions 

proposed by Degrazia and Moreira [8] is also based on the 

diffusion theory of Taylor and the turbulent kinetic energy 

spectrum and can be computed using the 

micro-meteorological data set from Table 2. Considering     

α = x, y, z and i = u, v, w, the eddy diffusion coefficient for 

convective conditions is  

   (11) 

Here w∗ is the convective velocity scale, z is the 

observation height, zi is the inversion height, X is the 

dimensionless distance, n′ is the dimensionless frequency of 

the turbulent kinetic energy spectrum, ci = αi(0.5 ± 

0.05)(2πk)−2/3 is a constant [6], (fm∗)i is the normalized 

frequency of the spectral peak regardless of stratification and 

ψ is the dissipation function and has the form [13; 9] 

   (12) 

where L is the Obukhov length in the surface layer. The 

Copenhagen campaign is a two-dimensional experiment thus 

the three-dimensional solution (9) is integrated laterally and 

the eddy coefficient Ky vanishes, requiring only to calculate 

Kx and Kz. The values for the normalized frequency of the 

spectral peak are (fm
∗)u = 0.67 [15] and (fm ∗)w = z/(λm)w with 

(λm)w = 1.8zi [1 − exp(−4z/zi) − 0.0003 exp(8z/zi)] [5]. 

4.3. Wind Speed Profile 

In the further, we introduce a simplification, without 

imposing restrictions on our numerical findings. We assume, 

that our coordinate system has its x-axis aligned with the 

average wind speed, which is to a good approximation 

horizontal with respect to the Earth’s surface. In order to 
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determine the velocity field u=U(z)x with x a unit vector, we 

need to fix the vertical wind speed profile. The latter has 

been parametrised following Monin-Obukhov’s similarity 

theory manifest in the so-called OML-model [3], where 

close to the surface and because of its roughness, there is a 

raising profile, whereas sufficiently far from the surface the 

wind speed remains approximately constant. If zb = min(|L|, 

0.1zi), then 

(13) 

where z0 is the roughness length and Ψm is the stability 

function. For stable conditions the stability function is Ψm = 

(1 + 4.7 z /L) [4] and for convective condition is [18] 

 (14) 

with A = [1 − (16z/L)]1/4. 

5. Validation of the Model  

To simulate the results, it was used the complete data set 

of the Hanford experimental data, except those for the 

distances x = 100 m and x = 200 m and the complete data set 

of the Copenhagen experimental data. The comparison of 

observed (Co) against predicted (Cp) concentrations for a 

variety of reflection parameter ωb,g and number of reflections 

is shown in figures 4, 5, 6 and 7 for the Hanford experiment 

and in figures 8, 9, 10 and 11 for Copenhagen. 

The corresponding statistical indices [12], i.e. the 

normalized mean square error (NMSE), the correlation 

coefficient (COR), the fractional bias (FB) and the fractional 

standard deviation (FS) are shown in the tables 3, 4, 5 and 6 

for the Hanford experiment 7, 8, 9 and 10 for Copenhagen. 

A general comment is in order here, although the afore 

mentioned statistical evaluations are similar to those from 

parametric inference procedures, their interpretations are 

different in the present context. In parametric inference the 

best estimates for parameters were attained for NMSE → 0, 

but in the present consideration a deterministic model is 

compared to a relatively small data set from a stochastic 

phenomenon, so that one does not expect vanishing values 

for this error. Further, the correlation coefficient does not 

converge to unity, recalling that the observed data are one 

sample out of a distribution for a specific situation, that are 

parametrised using their specific micro-meteorological data. 

The fractional bias may be interpreted in terms of model 

fidelity, significant deviations from zero indicate, that the 

model lacks some relevant physical features. 

5.1. Hanford Experiment 

 

 

Figure 4.  Scatter plot for observed (Co) and predicted (Cp) concentrations for none and 1 reflection with the parameters ωg = 1.0 and ωb = 1.0 for the 

Hanford experiment 

Table 3.  Statistical evaluation for observed (Co) and predicted (Cp) concentrations with the parameters ωg = 1.0 and ωb = 1.0 for the Hanford experiment 

Reflection NMSE COR FB FS 

0 1.17 0.252 -0.474 -0.645 

1 0.505 0.379 -0.241 -0.15 
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Figure 5.  Scatter plot for observed (Co) and predicted (Cp) concentrations for none and 27 reflections with the parameters ωg = 0.01 and ωb = 0.01 for the 

Hanford experiment 

Table 4.  Statistical evaluation for observed (Co) and predicted (Cp) concentrations with the parameters ωg = 0.01 and ωb = 0.01 for the Hanford experiment 

Reflection NMSE COR FB FS 

0 1.17 0.252 -0.474 -0.645 

1 2.804 0.341 1.078 1.033 

2 0.586 0.618 0.456 0.507 

3 0.262 0.746 0.25 0.366 

4 0.159 0.808 0.159 0.313 

5 0.116 0.84 0.113 0.294 

6 0.096 0.858 0.087 0.29 

7 0.085 0.868 0.072 0.288 

8 0.079 0.874 0.062 0.287 

9 0.075 0.877 0.056 0.286 

10 0.073 0.879 0.052 0.285 

13 0.07 0.881 0.046 0.283 

20 0.069 0.882 0.043 0.282 

27 0.069 0.882 0.043 0.282 
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Figure 6.  Scatter plot for observed (Co) and predicted (Cp) concentrations for none and 85 reflections with the parameters ωg = 0.003 and ωb = 0.003 for the 

Hanford experiment 

Table 5.  Statistical evaluation for observed (Co) and predicted (Cp) concentrations with the parameters ωg = 0.003 and ωb = 0.003 for the Hanford 
experiment 

Reflection NMSE COR FB FS 

0 1.17 0.252 -0.474 -0.645 

2 2.804 0.378 1.086 1.080 

4 0.793 0.559 0.553 0.613 

6 0.368 0.664 0.302 0.395 

8 0.217 0.736 0.172 0.296 

12 0.112 0.814 0.050 0.210 

16 0.079 0.848 -0.002 0.183 

20 0.067 0.864 -0.027 0.177 

30 0.057 0.878 -0.05 0.172 

40 0.056 0.88 -0.056 0.171 

50 0.056 0.881 -0.058 0.17 

85 0.056 0.881 -0.059 0.17 
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Figure 7.  Scatter plot for observed (Co) and predicted (Cp) concentrations for none and 93 reflections with the parameters ωg = 0.01 and ωb = 0.003 for the 

Hanford experiment 

Table 6.  Statistical evaluation for observed (Co) and predicted (Cp) concentrations with the parameters ωg = 0.01 and ωb = 0.003 for the Hanford experiment 

Reflection NMSE COR FB FS 

0 1.17 0.252 -0.474 -0.645 

2 2.564 0.363 1.039 1.039 

4 0.774 0.527 0.528 0.587 

6 0.383 0.627 0.286 0.363 

8 0.238 0.702 0.162 0.263 

12 0.131 0.786 0.044 0.176 

16 0.096 0.823 -0.006 0.151 

20 0.081 0.842 -0.029 0.147 

30 0.068 0.860 -0.052 0.149 

40 0.066 0.865 -0.059 0.149 

50 0.065 0.866 -0.061 0.149 

60 0.065 0.867 -0.062 0.149 

93 0.065 0.867 -0.062 0.149 
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5.2. Copenhagen Experiment 

 

Figure 8.  Scatter plot for observed (Co) and predicted (Cp) concentrations for none and 1 reflection with the parameters ωg = 1.0 and ωb = 1.0 for the 

Copenhagen experiment 

Table 7.  Statistical evaluation for observed (Co) and predicted (Cp) concentrations with the parameters ωg = 1.0 and ωb = 1.0 for the Copenhagen 
experiment 

Reflection NMSE COR FB FS 

0 0.262 0.380 -0.074 0.28 

1 0.275 0.356 -0.085 0.251 

 

Figure 9.  Scatter plot for observed (Co) and predicted (Cp) concentrations for none and 4 reflections with the parameters ωg = 0.2 and ωb = 0.2 for the 

Copenhagen experiment 
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Table 8.  Statistical evaluation for observed (Co) and predicted (Cp) concentrations with the parameters ωg = 0.2 and ωb = 0.2 for the Copenhagen 
experiment 

Reflection NMSE COR FB FS 

0 0.262 0.380 -0.074 0.28 

1 0.165 0.645 0.046 0.431 

2 0.091 0.787 -0.006 0.174 

3 0.091 0.788 -0.007 0.166 

4 0.091 0.788 -0.007 0.166 

 

Figure 10.  Scatter plot for observed (Co) and predicted (Cp) concentrations for none and 5 reflections with the parameters ωg = 0.15 and ωb = 0.2 for the 

Copenhagen experiment 

Table 9.  Statistical evaluation for observed (Co) and predicted (Cp) concentrations with the parameters ωg = 0.15 and ωb = 0.2 for the Copenhagen 
experiment 

Reflection NMSE COR FB FS 

0 0.262 0.380 -0.074 0.28 

1 0.169 0.648 0.065 0.443 

2 0.09 0.794 -0.015 0.089 

3 0.09 0.795 -0.020 0.055 

4 0.09 0.795 -0.020 0.054 

5 0.09 0.795 -0.020 0.054 
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Figure 11.  Scatter plot for observed (Co) and predicted (Cp) concentrations for none and 7 reflections with the parameters ωg = 0.1 and ωb = 0.3 for the 

Copenhagen experiment. 

Table 10.  Statistical evaluation for observed (Co) and predicted (Cp) concentrations with the parameters ωg = 0.1 and ωb = 0.3 for the Copenhagen 
experiment 

Reflection NMSE COR FB FS 

0 0.262 0.380 -0.074 0.28 

1 0.189 0.651 0.120 0.491 

2 0.102 0.767 -0.021 0.115 

3 0.107 0.775 -0.042 -0.014 

4 0.11 0.775 -0.046 -0.04 

5 0.11 0.775 -0.046 -0.043 

6 0.11 0.775 -0.046 -0.043 

7 0.11 0.775 -0.046 -0.043 

 

One observes in the presented cases, that after inclusion of 

reflections the correlation of experimental and predicted data 

improve, which may be interpreted as an indication that with 

our reasoning we have at least made some point, even though 

we have not solved the important question of how the best 

values for ωb and ωs shall be obtained. The reflections are 

repeated until there is no more contribution to the solution, 

although in all cases the statistical indices seem to remain the 

same after only a few reflections, this happens as a result of 

rounding. 

6. Conclusions 

The present work can be considered an attempt to 

incorporate stochastic aspects in a deterministic model, i.e. 

the dispersion of pollutants in the atmospheric boundary 

layer modelled by the deterministic advection-diffusion 

equation. The effective boundary layer height may vary 

according to the turbulent flow dynamics it incorporates 

hence the boundary layer should have stochastic aspects. A 

more realistic flow may be thought of as a superposition of 
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various boundary layer problems but with different effective 

boundary layer heights. So far the intent was to evaluate the 

contribution of virtual sources superimposing them such as 

to mimic a finite size sample of a distribution from different 

boundary layer height realisations. 

A variety of trials have shown that partial reflection on the 

boundary layer horizon and the ground obtain the most 

significant correlations between model and data suggesting 

that effects on boundary are essential to model dispersion 

processes in the atmospheric boundary layer, even though 

the values for the reflection parameters were established ad 

hoc.  

This improvement in the solution can be associated with 

the fact that the deterministic equation predicts only mean 

values of an unknown distribution and is not capable to 

predict all stochastic properties, which in our case were 

modelled by the effects of the considered reflections. 

Moreover, the model does not consider deposition and 

adsorption on the ground, but the fact that concentration and 

vertical concentration fluxes are different from zero on the 

ground level one may reason, that the parameter ωg is 

somehow incorporating these properties. 
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