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Abstract  The present work reports on an analysis of the dynamic profile of plumes containing pollutant substances that 
are dispersed in the planetary boundary layer (PBL). In this line the current discussion is an attempt to describe the plume 
profile by its dominating physical mechanisms and its associated regions using first order perturbation theory in cylindrical 
coordinates. From our analysis we find that dispersion in a pollutant plume in the PBL is controlled by three physical 
mechanisms that compete with each other, dominating the process in different regions: advection in the centre, radial 
turbulence in the middle and radial diffusion at the periphery. 
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1. Introduction 
Air quality issues such as dispersion of pollution plumes 

in the planetary boundary layer (PBL) has undergone a 
considerable evolution from its pioneer era, due to advances 
in theoretical approaches based on Obukhov work 
combined with complete advection-diffusion models.  

However, the phenomenon with its complex turbulent 
structure is still manifest in parameterizations that hide 
physical details in phenomenological coefficients and it 
would be desirable to shade further light on at least some of 
involved properties. In this sense the current discussion is 
an attempt to describe the plume profile by its dominating 
physical mechanisms and its associated regions using a 
formulism known in the literature as first order perturbation 
theory. Since the plume originating from a pollutant source 
in a slowly varying wind field shows an approximate 
cylindrical symmetry along its propagation direction, we 
adopt cylindrical coordinates in the governing equations. 
The knowledge of the differential profile will them open 
pathways to extend the model, including in future works 
also thermal properties that are usually neglected due to the 
inherent complexity of the phenomenon.  

Evidently the analysis could be performed resorting to 
numerical methods that are, in general, more easily 
implemented, however suffer from severe difficulties when 
convergence and a mathematically sound error analysis is 
the subject. Differently, analytical approaches need a  

 
* Corresponding author: 
ccpellegrini@gmail.com (Cláudio C. Pellegrini) 
Published online at http://journal.sapub.org/ajee 
Copyright © 2015 Scientific & Academic Publishing. All Rights Reserved 

considerable investment when it comes to preparing the 
path towards solutions in analytical representation. Once 
such representations are found, the analysis of the solution 
and its dependence on physical an formal parameters is 
straightforward.  

Moreover, in the same spirit as the Gaussian solution (the 
first solution of the advection-diffusion equation with the 
wind and eddy diffusivity coefficients set constant in space), 
the former suggest the construction of operative analytic 
models. Gaussian models, so named because they are based 
on the Gaussian solution, are forced to represent real 
situations by means of empirical parameters, known as 
"sigmas". They are fast, simple, do not require complex 
meteorological input, and describe the diffusive transport in 
an Eulerian framework, making the use of measurements 
easy. For these reasons they are still widely employed for 
regulatory applications by environmental agencies all over 
the world in spite of their well-known intrinsic limits. 

A significant number of works regarding solutions of the 
advection-diffusion equation in analytical representation can 
be found in the literature [1-4] and references therein. All 
these analytical methods have in common the fact that 
three-dimensional, transient equations are not easy to treat. 
One way around this difficulty is to apply a first order 
perturbative analysis to the original problem before applying 
the transform technique. Recent meteorological literature 
contains a number of studies employing perturbation 
techniques, but none of them uses them to simplify the 
analysis via transform methods. In the literature some 
problems are obviously better suited for perturbation 
analysis due to the presence of a native small parameter, as is 
the case with the flow over smooth terrain. Regarding air 
pollution studies, however, very few results are found. An 
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example is [5] that use perturbation techniques to study the 
transient convection-diffusion equation in Cartesian 
geometry.  

The present study uses a first order perturbation 
technique, known as the Intermediate Variable Technique, 
in cylindrical coordinates to simplify the three-dimensional 
advection-diffusion equation. Here we consider a inert 
pollutant released on a statically neutral incompressible PBL 
by a point source with steady or slowly varying output. We 
further consider that the plume is released and remains inside 
the surface layer. Obtained physical profiles are compared 
with previous results from [5]. 

Our article is organized as follows. In section 2 we present 
a model analysis containing the mathematical model, the 
variable transformations, an order of magnitude analysis and 
some comments on the boundary condition dilemma. Section 
3 presents a discussion on our findings and we end, in section 
4, with our conclusions and future perspectives.  

2. Model Analysis 
2.1. The Model in Cylindrical Coordinates 

According to [6], the time-dependent three dimensional 
equations governing the dispersion of a passive pollutant 
released on a statically neutral incompressible PBL in 
cylindrical coordinates are 
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where eqn. (1) is the mass conservation equation for air and 
eqn. (2) for pollutant, valid in 0 < r ≤ Rp, 0 ≤ θ ≤ 2π and 0 ≤ z 
≤ Lp, where Rp = Rp(z) is the plume radius and Lp is its length, 
defined as the distance from the source where the 
concentration is still measurable. We consider the case of a 
punctual elevated source, located at the origin of the 
coordinate system.  

In eqns. (1) and (2), symbols have their usual meaning. 
Thus, c is the volumetric concentration of the passive 
contaminant (in units of g/m3 for example), V = (υr, υθ, υz) is 
the wind velocity vector with cylindrical orthogonal 
components in the directions r, θ and z, respectively, ρ is the 
air density and D is the molecular diffusivity of the pollutant 
in the air, considered constant and invariable in all 
directions.  

If we assume plume axial symmetry, then ∂( )/ ∂θ = 0 in 
eqns. (1) and (2). This hypothesis is consistent with the 
neutral atmosphere supposition. Moreover, the boundary 
conditions for the problem are υr (Rp, z, t) = υr0, υz (r, Lp, t) = 
υz0, c (Rp, z, t) = 0, c (r, 0, t) = cs(t), c (r, Lp, t) → 0, ∂c/∂r (0, 

z, t) = 0. Here (υr0, υz0) is the background velocity vector and 
cs (t) is the concentration at the source, that is elevated a 
height h above the ground. The source term is absent in eqn. 
(2) because it is included in the boundary conditions as 

(0, ) ( )u c r Q rδ⋅ =                 (3) 

where, Q is the emission rate at the point source and δ is the 
Dirac-delta function.  

The turbulent version of eqns. (1) and (2), to the best of 
our knowledge, do not exist in the literature, thus we present 
them below. Applying the Reynolds decomposition to those 
equations, every dependent variable is written as a slowly 
varying mean part plus a rapidly varying turbulent 
fluctuation. Taking the time averages and supposing axial 
symmetry yields the new equation system.  
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We note that in order to derive eqn. (6) the mass 
conservation equation multiplied by c’ was used to obtain the 
term in square brackets. Similar procedure may be found in 
standard literature to derive the turbulent Navier-Stokes 
equation.  

Here, bars over the variables represent time-averages and 
primes indicate turbulent fluctuations. The terms in the 
second pair of square brackets on the HRS of eqn. (6) are the 
turbulent fluxes of the contaminant. Due to the inherently 
tridimensional nature of turbulence, only the θ-derivatives of 
the mean variables were supposed to be zero in the derivation 
of eqn. (6). In other words, assuming axial symmetry does 
not imply zero tangential flux of turbulent quantities.  

The boundary conditions for eqn. (6) are 

0( , , )r p rR z tυ υ=                   (7) 

0( , , )z p zr L tυ υ=                   (8) 

( , , ) 0pc R z t =                      (9) 

(0,0, ) ( )sc t c t=                   (10) 

( , , ) 0pc r L t →                    (11) 

/ (0, , ) 0c r z t∂ ∂ =                  (12) 
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(0, ) ( )u c r Q rδ⋅ =                (13) 

2.2. Variable Transformations 

To cast eqns. (4) to (13) into nondimensional form, typical 
scales for all variables shall be chosen. The physics of the 
problem may shed some light on this choice.  

We propose to use the geostrophic wind velocity, Ug, for 
the axial velocity because υz is expected to vary between 
zero at the surface and Ug at the upper bound of the PBL. 
Local maxima or minima may occur on the interval, but υz is 
not expected to attain a larger order of magnitude there. An 
arbitrary velocity, Vc, may be used for υr and specified later, 
as we shall show. We may use the concentration at the source, 
cs(t),, to make the mean concentration dimensionless because 
it is an upper bound of its value and it is expected to 
monotonically decrease with distance from the source. Time 
may be rendered dimensionless using the characteristic time 
interval of variations in the PBL or a characteristic time 
interval of variations at the source output, tc. As we shall see, 
the smaller of the two defines the importance of the 
accumulation term in eqn. (6), because it appears in the 
denominator of the fraction defining a small parameter in 
eqn. (19). We choose the interval of variations in the PBL, 
typically one hour, by virtue of many real sources showing a 
slowly varying output.  

The friction velocity, u* = √τs /ρ, where τs is the total stress 
(molecular + turbulent) at the surface is a convenient choice 
for scaling the turbulent velocity fluctuations. According to 
[7], ‘During situations where turbulence is generated or 
modulated near the ground, the magnitude of the surface 
Reynolds’ stress proves to be an important scaling variable.’ 
This is a well accepted idea based on the fact that the stress 
assumes maximum value at the surface and remains 
approximately constant throughout the surface layer. Indeed, 
a constant stress layer is often adopted [7, pg. 10] as a 
definition for the surface layer. The present choice for 
scaling the turbulent fluctuations, of course, restricts our 
analysis to plumes released and remaining inside the surface 
layer. For the turbulent concentration fluctuation we use 

* *0( ' ') /r zc c uυ == − ,            (14) 

where 0( ' ')r zcυ =−  is the concentration flux at the source. 

The definition for *c  was first proposed by [1] for 

Cartesian coordinates as * *0( ' ') /zc w c u== −  and is 
inspired by the definition of scaling variables as 

* *0( ' ') /zw uθ θ == −  and * *0( ' ') /zq w q u== −  for 
potential temperature and moisture respectively [7].  

To render the space variables dimensionless we follow [1] 
and recognize that the PBL and the plume have different 
transversal length scales. Thus, for the atmosphere we use a 
characteristic horizontal PBL length, L, for both r and z but, 
for the plume we use L for z and Rp for r. In symbols, for the 
air R1 = r/L and Z = z/L and for the pollutant R2 = r/Rp and Z 

= z/L. The space variable θ is already nondimensional and, 
thus θ = Θ in both cases.  

Using upper case letters for the dimensionless variables 
and the transformations indicated above, eqns. (4) to (6) 
become: 

1

1 1

( )1 0gr z

c

UR V V
R R V Z

 ∂ ∂
+ = ∂ ∂ 

             (15) 

11

1 1 1

( ')( ') ( ')1 1 0r zR VR V V
R R R Z

θ∂∂ ∂
+ + =

∂ ∂Θ ∂
    (16) 

1

2

1 2
1 1 1

* *

1 1 1

1

' '' ' ' ' ' '

c
r z

g c g

g

r r z

g s

VL C C CV V
U t T U R Z

D C CR
U L R R R Z

C Vu c C V C V C V
U c R R R Z

θ

   ∂ ∂ ∂
+ +      ∂ ∂ ∂   

    ∂ ∂ ∂
= +      ∂ ∂ ∂    
   ∂∂ ∂

− + + +     ∂ ∂Θ ∂  

(17) 

valid in 0 < R1 ≤ 1 and 0 ≤ Z ≤ 1. Here, the average bars have 
been omitted for simplicity and the relation R2 = R1 L/Rp 
implied by the previous definitions of R1 and R2 have been 
used. Similar expressions may be obtained for the boundary 
conditions.  

Eqn. (15) requires that Vc = O(Ug) otherwise, considering 
leading order only, it degenerates, thus yielding solutions 
that do not satisfy the boundary conditions. Substituting this 
relation in eqns. (15) and (17) and introducing short hand 
notations for the small parameters (in parenthesis) we obtain 
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where εt = L/Ug tc, εD = D/Ug L, ε* = u*/Ug and εc* = c*/cs. The 
turbulent form of the conservation of mass equation, eqn. (16) 
remains invariant.  

Typical values for the variables involved in the definitions 
above (see refs. [7-9]) are tc = 3,600 s, u* = 0.3 m/s and Ug = 
10 m/s, D =10-5 m2/s ([8]), L = 1,000 m, Rp = 100 m, cs = 
O(10-7) kg/m3 and c* = O(10-8) kg/m3. The value for c* was 
obtained through comparison with specific humidity values, 
i.e., supposing that c*/ cs = O(q*/qmax), where q is the specific 
humidity, q* = 5⋅10-3 and qmax = 4⋅10-2. With the values listed 
above, the small parameters take the following typical 
numerical values: εt = 2.8⋅10-2, ε* = 3.0⋅10-2, εc* = 1.0⋅10-1, εD 
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= 1.4⋅10-9. With those values it is true that εD << (ε*εc*)2, a 
relation that is will be used ahead. 

To stretch the radial coordinates, different transformations 
for the mass conservation equations of air and pollutant must 
be used again. We propose  

1 1 /R R ε=                   (20) 

for the air and 

1 1(1 ) /R R ε= −                (21) 

for the pollutant, with ε varying in the interval [0,1].  
Transformations (20) and (21) reflect our expectations 

where to find the boundary layers in each case. For the air we 
assume, from our understanding of the PBL, that it is located 
near R1 = 0 (which means r = 0). This, of course limits our 
results to point sources near the ground, which is consistent 
with our previous hypothesis about the scaling velocities. 
For the pollutant, we assume the boundary layer to be at the 
outer boundary of the domain, at R1 = 1 (which means r = Rp). 
This is suggested by [11, pg. 155] based on the form of eqn. 
(19), specifically by the fact that the advective and molecular 
diffusion terms have opposite signs. The theorem presented 
in [11, pg. 155] applies to general linear ODEs, but here we 
follow the author in the hope that the idea also applies to 
nonlinear PDEs, specially because [1] showed in previous 
results using this assumption to compare well with the 
complete analytical solution obtained by [2] through GILTT 
(the Generalized Integral Laplace Transform Technique).  

2.3. Order of Magnitude Analysis 

Upon substituting eqns. (20) and (21) into eqn. (17) yields  
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for 1 (1)R O=  and ε in the interval [0,1], but to prevent the 
denominator of the second and third turbulent terms in eqn. 
(23) to become zero, we shall have ε of order less than one. 
This makes the second and third turbulent terms of order one. 
We also emphasize that all the advective terms have the same 
order of magnitude because of eqn. (22). This is a typical 
behaviour of boundary layers and was noticed as early as 
1908, by Blasius [10] in his famous analysis of the boundary 
layer over a flat plate.  

Rewriting eqn. (22) in order of magnitude form yields: 
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where 'Ac' stands for the accumulation term, 'Adv' for the 
advection term, 'Dif' for molecular diffusion and 'T' for 
turbulent diffusion. The subscripts in each term stand for the 
direction of the derivative and the numbers 1 and 2 for first 
and second terms in order of appearance in the equation.  

Table 1.  Distinguishing limits – cylindrical plume 
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The values of ε for which the various terms in eqn. (24) 
attain the same order of magnitude are known as the 
distinguishing limits for the equation. They can be found by 
comparing all possible pairs of terms in eqn. (24). Here we 
need not consider all of them because some terms are always 
of smaller order than others as ε  varies in the permissible 
interval (Difz and Difr, Ac and Adv, for example). Table 1 
shows the result of the analysis. 

Initially, three distinguishing limits seem to result from 
the analysis, indicating the existence of an inner, an 
intermediate and an outer region on the problem, with two 
boundary layers. In fact, however, only two distinguishing 
limits exist: ε = ε*εc*, where Adv = O (Tr1), and ε = εD /ε*εc*, 
where Difr = O (Tr1). The value of ε where Adv = O(Difr) 
does not constitute a valid limit because this region is 
actually dominated by the Tr1 term. The previously 
established relation εD << (ε*εc*)2 was used to set the order 
relations in Table 1, as for εD /(ε*εc*)2 << 1, for example, 
when comparing the Adv and Tr1 terms. 

If we now vary ε between the two distinguishing limits, 
the result is the domination of only one term in eqn. (24). 
More specifically, in the region where εD /ε*εc* << ε << ε*εc*, 
only Tr1 dominates. Allowing ε to vary in the whole 
permissible range will lead to five approximated different 
first order equations. Denominating the regions from the 
centre outwards with one to five, the first one is dominated 
by advection, so that the leading order equation to be solved 
is eqn. (25). The subsequent region, already discussed in 
Table 1, has an associated equation (26), with advection and 
turbulence contributions. The third layer is dominated by 
turbulence, consequently the solution of eqn. (27) determines 
the leading order characteristics. The fourth layer contains 
beside turbulence also molecular diffusion (eqn. (28)). Last 
not least, the outer layer shows molecular diffusion 
dominance, eq. (29). Figure 1 sketches the layers of the 
plume with their respective leading order terms according to 
eqns. (25) to (29), however out of scale. 
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To return the regions of validity of eqns. (25) to (29) to 
dimensional form, eqn. (21) was used, noting that after the 
stretching transformation 1 (1)R O=  shall hold. 

 

Figure 1.  Schematic drawing of the cylindrical pollutant plume, showing 
regions of dominance of the terms in eqn. (6) 

2.4. The Boundary Condition Dilemma 

The analysis of the previous section identified five regions 
with distinct dynamic characteristics. While for the shell 
with predominant molecular-diffusion, turbulent-diffusion 
and advection, respectively, an analytical solution may be 
constructed, this is not the case for the mixed molecular and 
turbulent diffusion or the advection and turbulent diffusion 
regions.  

A traditional solution of the first order approximations by 
the Matched Asymptotic Expansion methods would require 
a solution for eqns. (31) and (33), which have enough 
structure to represent the full original equation in their 
regions of validity. The necessary boundary conditions for 
them would come from eqns. (9) and (12) and from the 
matching condition at the common region of validity. As 
mentioned before, they are still too complicated to be solved 
by traditional analytical methods even with a simple 
turbulence closure model [8] where stochastic models are 
replaced by relations to their respective deterministic terms.  

The principal dilemma comes from the fact that, to a 
reasonable approximation, the centre and the outer boundary 
conditions may be employed for the inner boundary of the 
advection-turbulent diffusion shell and the outer boundary 
for the molecular-turbulent driven region. By reasonable 
approximation we mean that the error is of same order of 
magnitude than the terms neglected by the perturbative 
procedure in the equation. However, the matching between 
the two zones two and four at their overlapping zone seems 
out of reach here. An attempt to circumvent this problem is 
sketched as follows.  

Solving equations other than (31) and (33) may give some 
information, but the process still lacks appropriate boundary 
conditions. To illustrate this we solve eqn. (30) by 
integrating it twice, resulting in an equation 

Difr 

Difr & Tr1 

Tr1 

Tr1 & Adv 

Adv 

 



50 Cláudio C. Pellegrini et al.:  A Dynamic Profile of Pollutant Plumes   
through Perturbative Methods in Cylindrical Coordinates 

lnc A r B= +                      (35) 

valid for a region very near to the plume periphery, in which 
A and B are unknown functions of z. Using the boundary 
condition expressed by eqn. (9) yields 

ln
p

rc A
R

 
=   

 
                    (36) 

where A < 0, because r < Rp.  
Unfortunately there is no proper boundary condition 

available to obtain A from eqn. (36), once there is no region 
of common validity between eqns. (32) and (34), since the 
region in between is too tick to allow for overlapping. 
Moreover, solving eqn, (33) would yield yet another 
integration constant. Nevertheless, eqn. (36) could be solved 
in a flux-gradient approach, using a supposedly known 
pollutant flux at the plume periphery. A similar scheme can 
be used to obtain the well-known logarithmic law for a 
neutral surface layer over flat terrain [8] but will only work 
in a Cartesian coordinate system, because a simple 
turbulence model is necessary. Alternative trials without 
conclusive results so far are in progress and we consider this 
issue beyond the scope of the present discussion.  

3. Discussion 
From the previous analysis it follows that dispersion in a 

pollutant plume in the ABL is controlled by three physical 
mechanisms that compete with each other, dominating the 
process in different regions: advection in the centre, radial 
turbulence in the middle and radial diffusion at the periphery. 
Other mechanisms such as longitudinal diffusion and 
turbulence are lower order corrections to these dominant 
effects and can be neglected in a first order perturbation 
approach. The accumulation effect (positive or negative), 
due to time variations on the source, is only important if we 

suppose a rapidly varying source output, which is not an 
issue in the present discussion. 

The perturbation approach also shows that the three 
competing physical mechanisms balance each other in pairs, 
creating a typical two boundary layer kind of solution: 
internally, advection and radial turbulence balance and 
externally, radial diffusion and radial turbulence. Figure 2 
shows this behaviour where the order of magnitude of the 
three mechanisms depending on ε is shown. Furthermore, 
typical values of the small parameters mentioned in Section 
2.2 were used. Values of ε of order one represent the centre 
of the plume and values close to zero represent its periphery, 
as implied by eqs. (25) to (29).  

Figure 2 shows molecular diffusion effects dominating 
near the periphery of the plume (dotted line) and the inner 
distinguishing limit occurring at ε = 4.7.10-7 (at the 
intersection of the dotted and dashed lines). The second 
distinguishing limit is also evident at ε = 3.0.10-3 (at the 
intersection of the dashed and solid lines). The intersection 
of the dotted and solid lines represents the region where 
advection and diffusion are of the same order but where, as 
indicated before (Table 1), turbulence dominates. 
Non-dominant effects are not included in Figure 2.  

The problem of a pollutant plume dispersing in the 
atmospheric boundary layer has already been addressed by 
[1] Pellegrini et al. (2013), for the 3-D transient case in 
Cartesian coordinates. In this study the authors have 
successfully compared their predictions from magnitude 
order dominance with the analytical solution of the 
advection-diffusion equation with K-theory closure, 
obtained by [3] using GILTT (Generalized Integral Laplace 
Transform Technique). The authors took this analytical 
solution and switched off two out of three of the dominating 
dispersion mechanisms at a time to show where the 
remaining mechanism coincided with the findings from the 
perturbative approach. The analysis confirms the regions of 
dominance established by the perturbation analysis.  

 

Figure 2.  Order of magnitude of the terms in eqn. (6) 
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It is noteworthy that the results of the present study are 
very similar to those obtained in [5]. The author’s equation 
for the order of magnitude of the terms reads 
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     (37) 

It can be seen that this equation corresponds to eqn. (24), if 
one replaces the lateral distances y and z by the radial 
coordinate r of the present study and the longitudinal 
distance x by the present study z. The distinguishing limits 
and the regions of dominance are identical, leading 
essentially to the same structure: advection dominating in the 
centre, lateral turbulence in the middle and lateral diffusion 
at the periphery. Some noteworthy differences show up in 
the tangential turbulence (Tθ) and second radial turbulence 
(Tr2) terms which are of lower order here and are obviously 
not present in the Cartesian coordinate system analysis. The 
mentioned resemblances make us confident that the present 
analysis is physically sound even though we do not have 
direct experimental data to compare with.  

4. Conclusions 
The present study analysed the pollutant concentration 

profile in plumes, resulting from the perturbative analysis of 
the complete advection-diffusion equation. Differently from 
traditional approaches that use the boundary layer and the 
horizontal plane as references systems, this work uses the 
plume itself and associated cylindrical coordinate system. 
The authors are aware that using the plume physical 
characteristics to define typical scales demand a 
self-consistency verification.  

To this end, the full solution of the plume would be of 
need, in order to show whether the initially used scales that 
were necessary to define the distinguishing limits and thus 
the dominating mechanisms, are consistent with properties 
from the solutions. Evidently it would be desirable to 
determine them at the present stage of work, but we postpone 
this task to a future work. One of the major challenges is to 
elaborate a method such as a recursive scheme like the 
Adomian decomposition [12] that would allow constructing 
a complete solution in analytical representation.  

At the present stage of development in this research, 
however, the existence of those scales was assumed ad hoc, 
simply based on known behaviour of the variables involved.  

Nonetheless, the analysis showed that the plume can be 
divided in five regions, where only certain terms of the 
complete governing equation dominate in first order 
approximation in cylindrical coordinates. This result 
corroborates previous conclusions of [1] with respect to the 

physical mechanisms dominating each region and to the 
ordering of those regions.  
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