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Abstract  The present work shows a solution where the Navier-Stokes equation is coupled to the advection-diffusion 
equation. This extended model determines, besides the pollutant concentration also the mean wind field, which we assume to 
be the carrier of the pollutant substance. The coupled time dependent and two-dimensional advection-diffusion and 
Navier-Stokes equations are solved, following the idea of the decomposition method discussed by Adomian. To the best of 
our knowledge, until now there is no approach in the literature that treats pollution dispersion together with a dynamical 
equation for the wind field and with solution in analytical representation. Numerical results and comparison with 
experimental data are presented. 
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1. Introduction 
In present available literature increasing attention is paid 

to the task of searching for analytical solutions for the 
deterministic model governed by the advection-diffusion 
equation that allows to simulate contaminant dispersion in 
the planetary boundary layer. In fact, there exists an 
extensive literature to solve this kind of problem but for 
linearized versions, making the assuming the knowledge of 
the mean wind field. A variety of methods including the ones 
generating analytical representations for the solution are 
found. Among them, we mention the spectral GILTT 
technique (Generalized Integral Laplace Transform 
Technique), because this method solved a broad class of 
advection-diffusion problems for pollutant dispersion 
simulation in the atmosphere, considering appropriate eddy 
diffusivity for all atmospheric stability conditions as well as 
known wind profiles. 

To this point it is important to emphasize that the GILTT 
(Generalized Integral Laplace Transform Technique) 
technique is a solution for the pollutant concentration that 
this expansion in the advection-diffusion equation and taking 
moments, we come out with a set of linear differential 
ordinary equations that may be solved analytically by 
Laplace transform technique [1-7]. A complete review of the 
GILTT method is given in [9] and references therein. The 
GILTT method was also applied to simulate radioactive  
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pollution in atmosphere in accident scenarios [9] [10]. 
Recently some of the authors developed the 3D-GILTT 
method to solve the three dimensional advection-diffusion 
[11-15]. To reach that goal the spectral method was applied 
in the crosswind direction of the problem and the two 
dimensional resulting problem was solved by the GILTT 
method, where details may be found in [12]. Note that in all 
the works cited above the wind velocity field was known 
thus linearizing each of the studied problems. 

The present work may be considered an extension of 
previous works, where the Navier-Stokes equation is 
coupled to the advection-diffusion equation. This extended 
model determines, besides the pollutant concentration also 
the mean wind field, which we assume to be the carrier of the 
pollutant substance. The coupled time dependent and 
two-dimensional advection-diffusion and Navier-Stokes 
equations are solved, following the idea of the 
decomposition method discussed by Adomian [16-18]. The 
basic idea relies on writing the coupled advection-diffusion 
and Navier-Stokes equation in a set of equations, in which 
the advective terms are linearized and the non-linear 
remaining advective terms are considered as source term. 
This equation system is then solved in a recursive fashion. In 
each set of coupled linear equations of the recursive system 
the source term is evaluated using the solution of the 
previous equation. Further, the first equation system, i.e. the 
recursion initialization is subject to the boundary conditions 
of the original problem, whereas the remaining equations of 
all subsequent recursions satisfy homogeneous boundary 
conditions. 

To this end this article is organized as follows. In section 2 
we present the mathematical model, the variable 
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transformations, an order of magnitude analysis and some 
comments on the boundary condition dilemma. Section 3 
presents the experimental dataset, the turbulent 
parameterization and the numerical results. We end, in 
section 4, with our conclusions and future perspectives.  

2. Coupled Advection-Diffusion 
Navier-Stokes 

Our starting point is the 2 plus 1 dimensional space-time 
equation system composed by the advection-diffusion 
equation together with a reduced version of the 
incompressible Navier-Stokes equation:  
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Here t > 0, 0 < z < h and 0 < x < L, where h is the boundary 
layer height, L is the longitudinal extension of the domain, c 
denotes the mean concentration of a passive contaminant, u 
is the mean wind longitudinal velocity, υ is the kinetic 
viscosity and Kz is the vertical eddy diffusivity. The source 
condition is described by a short time emission point source 
that is implemented by the initial condition using the Dirac 
delta functional, which mimics a locally concentrated 
pollution substance at t=0. The boundary conditions are 
considered with zero flux at ground level and the top of the 
boundary layer respectively. 

Note, that because of the term, velocity times velocity 
change along the wind propagation direction the problem is 
nonlinear, so that one has to resort to a method that allows to 
construct a solution in analytical representation without 
linear approximations. To this end, the pollutant 
concentration and the wind speed are expanded in a series 
and replaced in the equation system  
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Here, the expansion in c is used to apply the GILTT 
formalism documented in references [19] [20]. Due to the 
nonlinear character of the Navier-Stokes equation a separate 
formalism is proposed. 

From the resulting equation a recursive set of linear 
coupled advection-diffusion and Navier-Stokes equation is 
constructed with the non-linearity considered as source term. 
Note, that the source term of the recursion initialization is 
identical zero by construction. Moreover, the construction of 
the recursion steps is not unique, and our specific choice 
allows to define the constitutive equations for all ck and uk 
such that the differential equation system is linear with the 
nonlinearities as source term. More specifically, the 
nonlinearity is decomposed in a way that the source term 
contains contributions from all previous recursion steps and 

thus is known. From the found solution, however with 
truncated series for c and u, numerical simulations are 
presented.  

To the best of our knowledge this approach is novel since 
the equation for the wind field is coupled to the equation that 
models pollution dispersion and thus renders the problem 
self-contained. Previous approaches started from a known 
wind field, so that this sort of solution is not found in the 
literature. 

The recursion initialization results in a problem already 
solved in previous works, whose the velocity term u0 is 
constant and the advection-diffusion equation is solved for 
fixed velocity as for instance discussed in Moreira et al. 
(2009a), 
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Due of the peculiarities of the adopted initialization is 
subject to the initial and boundary conditions. All subsequent 
recursion steps have null initial and homogeneous boundary 
conditions. 
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In order to solve problem (4), taking advantage of the 
well-known solution of the stationary problem with 
advection in the x direction by the GILTT [20], we apply the 
Laplace Transform technique in the t variable. This 
procedure leads to a pseudo stationary problem:  
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where C  denotes the Laplace Transform of the 
concentration in the t variable 

{ }rttzxcLrzxC →= );,,(),,( 0 .  
Following the works [1, 2, 9] we pose that the solution of 

problem (5) has the form:  
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where )(znΨ  are the eigenfunctions of the associated 
Sturm-Liouville problem, we mean, )cos()( zz nn λ=Ψ  
where hnn /πλ =  (n=0,1,2,…) are the respective 
eigenvalues.  

To determine the unknown coefficient ),( rxcn  we 
replace Eq. (6) in Eq. (5) and taking moments, we mean 

applying the operator dzz
h

m∫ Ψ
0

)() ( , we come out with the 

result:  
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Recasting Eq. (7) as a matrix ordinary differential 
equation, we read, 

0),(.),(' =+ rxYFrxY               (8) 

where ),( rxY  is the column vector whose components are 

{ }),( rxcn  and the matrix F is defined like 2
1

1 BBF −= . The 
entries of matrices B1, and B2 are respectively given by:  
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The integrals appearing in B1 and B2 are solved numerically 
via Gauss Legendre Quadrature. 

Similar procedure leads to the boundary condition
1)(),0(),0( −Ψ== AH

r
QrcrY smn , where A-1 is the inverse of 

matrix A having the entry: dzzzua
h

mnmn ∫ ΨΨ=
0

, )()( .  

Now, we are in position to solve problem (8), following 
the work [9], by the combined Laplace transform technique 
and diagonalization of the matrix H (H = XDX-1). By this 
procedure we come out with the result  

( ) ( ) )0(, 11 ZXDIsXrsZ −−+=           (9) 

where ( )rsZ ,  denotes the Laplace Transform of the vector 
Z(x,r). Here X is the matrix of the eigenvectors of the matrix 
H and X-1 it is the inverse. The matrix D is the diagonal 
matrix of the eigenvalues of the matrix H and the entry of the 
matrix (sI + D) has the form {s + dn}. Performing the 
Laplace transform inversion of Eq. (9), we come out:  

ξ).,(.),( rxGXrxZ =                 (10) 

where G(x,r) is the diagonal matrix with components xdne− . 
Further the new unknown arbitrary constant vector ξ is given 

by ξ = X-1Z(0).  
Once these unknown coefficients are evaluated we can 

construct the analytical solution to problem (6) applying the 
inverse Laplace transform definition. This procedure yields 
to the analytical result: 
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By analytical, we mean that no approximation is made 
along the derivation of solution (11). To overcome the 
drawback of evaluating the line integral appearing in Eq. 
(11), in the sequel, we report a closed-form solution for this 
integral, using the Gaussian quadrature scheme. By this 
procedure we get: 
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where kA  and kP  are the weights and roots of the Gaussian 
quadrature scheme tabulated in the book of Stroud and 
Secrest [21]. Regarding the issue of the adopted Laplace 
numerical inversion scheme, it is important to mention that 
this approach is exact if the integrand is a polynomial of 
degree 2M-1 in the r

1  variable.  

Before calculating the next correction term c1 to the 
solution, we update de velocity field by u1, 
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By virtue this is a nonlinear equation and may be solved 
by the decomposition method as follows, 
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(14) 
It is noteworthy that the recursive scheme (14) is 

organized in a way that the nonlinear terms left over from the 
previous decomposed equation is plugged into the 
subsequent equation as a source term. Once u1 is determined 
the next term of the concentration explained may be 
evaluated  
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The general scheme that emerges consists of the nonlinear 
Navier-Stokes type equation that is solved following the 
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analogue continuation of the recursion system (5) 
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Upon inserting the found term ui into the 
advection-diffusion equation results in an equation that is 
solved using ortogonality in the spatial degrees of freedom 
and reducing the time dependence to a pseudo-stationary 
problem by Laplace transform,  
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3. Validation against Experimental Data 
The solution procedure discussed in the previous section 

was coded in a computer program and will be available in 
future as a program library add-on. In order to illustrate the 
suitability of the discussed formulation to simulate 
contaminant dispersion in the atmospheric boundary layer, 
we evaluate the performance of the new solution against 
experimental ground-level concentrations.  

3.1. Turbulent Parameterization 

In atmospheric diffusion problems, the choice of the 
turbulence parameterization is a fundamental decision to 
model the pollutant dispersion. From the physical point of 
view the turbulence parameterization is an approximation to 
nature in the sense that we use a mathematical model as an 
approximated (or phenomenological) relation that can be 
used as a surrogate for the natural true unknown term, which 
might enter into the equation as a nonlinear contribution. The 
reliability of each model strongly depends on the way 
turbulent parameters are calculated and related to the current 
understanding of the ABL [22]. 

The present parameterization is based on the Taylor 
statistical diffusion theory and a kinetic energy spectral 
model. This methodology, derived for convective and 
moderately unstable conditions, provides eddy diffusivities 
described in terms of the characteristic velocity and length 
scales of energy-containing eddies. The time dependent eddy 
diffusivity has been derived by [23] and can be expressed as 
the following formula. 
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where h is the height (m) of the convective boundary layer, 
w* is the vertical convective velocity (m/s). 

3.2. Numerical Results 

The measurements of the contaminant dispersion in the 
atmospheric boundary layer consist typically from a 
sequence of samples over a time period. The experiment 
used to validate the previously introduced solution was 
carried out in the northern part of Copenhagen and is 

described in detail by [24] [25]. Several runs of the 
experiment with changing meteorological conditions were 
considered as reference in order to simulate time dependent 
contaminant dispersion in the boundary layer and to evaluate 
the performance of the discussed solutions against the 
experimental centerline concentrations. 

The essential data of the experiment are reported in the 
following. This experiment consisted of a tracer released 
without buoyancy from a tower at a height of 115m, and a 
collection of tracer sampling units were located at the 
ground-level positions up to the maximum of three 
crosswind arcs. The sampling unit distances varied between 
two to six kilometers from the point of release. The site was 
mainly residential with a roughness length of the 0.6m. The 
SF6 liberation started one hour before the sampling. The 
average of sample was of 1 h with 10 % of imprecisions. 
Table 1 summarizes the meteorological conditions of the 
Copenhagen experiment where u  is the mean wind 
velocity (m/s), L is the Obukhov length (m), h is the height of 
the convective boundary layer (m), w* is the convective 
velocity scale (m/s) and u* is the friction velocity (m/s). 

Table 1.  Meteorological conditions of the Copenhagen experiment [24] 

 
Exp. 

u
(10m) 
(ms-1) 

u
(115m) 
(ms-1) 

u* 
(ms-1) 

L 
(m) 

w* 
(ms-1) 

h 
(m) 

1 2.1 3.4 0.36 -37 1.8 1980 

2 4.9 10.6 0.73 -292 1.8 1920 

3 2.4 5.0 0.38 -71 1.3 1120 

4 2.5 4.6 0.38 -133 0.7 390 

5 3.1 6.7 0.45 -444 0.7 820 

6 7.2 13.2 1.05 -432 2.0 1300 

7 4.1 7.6 0.64 -104 2.2 1850 

8 4.2 9.4 0.69 -56 2.2 810 

9 5.1 10.5 0.75 -289 1.9 2090 

The wind speed profile used in the simulations is 
described by a power law expressed following the findings 
of reference [26]. 

n

z

z
z

u
u









=

11

                  (19) 

Here zu  and 1u  are the horizontal mean wind speed at 
heights z and z1 and n is an exponent that is related to the 
intensity of turbulence [27]. As is possible to see in [27], n = 
0.1 is valid for a power low wind profile in unstable 
condition. Moreover, US EPA suggests for rural terrain (as 
default values used in regulatory models) to use n = 0.15 for 
neutral condition (class D) and n = 0.1 for stability class C 
(moderately unstable condition). 

In order to exclude differences due to numerical 
uncertainties we define the numerical accuracy 10-4 of our 
simulations determining the suitable number of terms of the 
solution series. As an eye-guide we report in table 2 on the 
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numerical convergence of the results, considering 
successively one, two, three and four terms in the solution 
series. One observes that the desired accuracy, for the solved 
problem solved is attained including only four terms in the 
truncated series, which is valid for all distances considered. 
Once the number of terms in the series solution is determined 
numerical comparisons of the 3D-GILTT results against 
experimental data may be performed and are presented in 
table 3. 

Table 2.  Pollutant concentrations for nine runs at various positions of the 
Copenhagen experiment and model prediction by the new approach 

Run Adomian 
recursion depth 𝐜̅𝐜(𝐱𝐱, 𝐳𝐳, 𝐭𝐭) (10-4s.m-3) 

 0 2.28 1.76  

 1 6.55 3.87  

1 2 6.54 3.87  

 3 6.54 3.87  

 0 4.12 2.67  

 1 4.47 2.92  

2 2 4.47 2.92  

 3 4.47 2.92  

 0 3.49 2.70 2.24 

 1 7.95 5.11 3.94 

3 2 7.93 5.10 3.93 

 3 7.93 5.10 3.93 

 0 6.71   

 1 9.21   

4 2 9.24   

 3 9.24   

 0 6.42 4.96 4.11 

 1 8.60 6.60 5.31 

5 2 8.58 6.60 5.31 

 3 8.58 6.60 5.31 

 0 4.51 2.79 2.24 

 1 3.51 2.44 1.93 

6 2 3.51 2.44 1.93 

 3 3.51 2.44 1.93 

 0 3.27 2.13 1.79 

 1 4.46 2.67 2.17 

7 2 4.46 2.67 2.17 

 3 4.46 2.67 2.17 

 0 4.89 3.38 2.83 

 1 4.76 3.24 2.61 

8 2 4.75 3.24 2.61 

 3 4.75 3.24 2.61 

 0 3.97 2.56 2.00 

 1 4.28 2.78 2.11 

9 2 4.28 2.78 2.11 

 3 4.28 2.78 2.11 

Table 3.  Pollutant concentrations for nine runs at various positions of the 
Copenhagen experiment and model prediction. The concentration is divided 
by the emission rate Q 

Run 
Distance 

(m) 
Observed 
(10-4s.m-3) 

Predictions 
(10-4s.m-3) 

1 1900 6.48 6.54 
1 3700 2.31 3.87 
2 2100 5.38 4.47 
2 4200 2.95 2.92 
3 1900 8.20 7.93 
3 3700 6.22 5.10 
3 5400 4.30 3.93 
4 4000 11.66 9.24 
5 2100 6.72 8.58 
5 4200 5.84 6.60 
5 6100 4.97 5.31 
6 2000 3.96 3.51 
6 4200 2.22 2.44 
6 5900 1.83 1.93 
7 2000 6.70 4.46 
7 4100 3.25 2.67 
7 5300 2.23 2.17 
8 1900 4.16 4.75 
8 3600 2.01 3.24 
8 5300 1.25 2.61 
9 2100 4.58 4.28 
9 4200 3.11 2.78 
9 6000 2.59 2.11 

To perform statistical comparisons between GILTT 
results against Copenhagen experimental data we consider 
the set of statistical indices described by [28] and defined by 

NMSE = 
oppo CCCC 2)( − , 

COR = poppoo CCCC σσ))(( −− , 
FB = )(5.0 popo CCCC +− , 
FS = )(5.0)( popo σσσσ +− , 

where the subscripts o and p refer to observed and predicted 
quantities, respectively, and the bar indicates an averaged 
value. The best results are expected to have values near zero 
for the indices NMSE, FB and FS, and near 1 in the indice 
COR. Table 4 shows the findings of the statistical indices 
that show a fairly good agreement between the model 
predictions and the experimental data. 

Table 4.  Statistical comparison between the model results and the 
Copenhagen dataset, changing the mean wind (fixed value) 

u  NMSE COR FB FS 

u = 3 m/s 1.23 -0.11 0.78 1.38 

u = 4 m/s 0.65 0.40 0.56 1.23 

u = 5 m/s 0.38 0.64 0.40 1.01 

u = 6 m/s 0.23 0.73 0.28 0.80 

u = 7 m/s 0.15 0.77 0.20 0.62 

u = 8 m/s 0.11 0.79 0.12 0.48 
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In Figure 1 the scatter diagram of model results against 
experimental data is presented. It can be realized that the 
present models in good agreement with the observations.  

 

Figure 1.  Observed (Co) and predicted (Cp) scatter plot of centerline 
concentration using the Copenhagen dataset. Data between dotted lines 
correspond to ratio Co/Cp∈[0.5,2] 

Table 5.  Statistical comparison between the model results and the 
Copenhagen dataset 

Recursion depth NMSE COR FB FS 

0 0.27 0.50 0.251 0.453 

1 0.05 0.906 0.017 0.147 

2=3=4 0.05 0.907 0.017 0.147 

4. Conclusions  
The present discussion considers a combined advection 

diffusion equation for pollution dispersion in the atmosphere 
together with the Navier-Stokes equation that describes the 
turbulent wind velocity field. To the best of our knowledge, 
until now there is no approach in the literature that treats 
pollution dispersion together with a dynamical equation for 
the wind field and with solution in analytical representation. 
In the literature there may be found a variety of Eulerian 
approaches [29-35] but none with a Navier-Stokes 
complement, so that in this sense the present formalism is 
new. Moreover, the fact that we derived the solution in a 
closed recursive fashion, allows to estimate, and thus control, 
the numerical error. To be more specific, after each recursion 
step the precision of the solution may be evaluated and the 
recursion depth is related to the prescribed accuracy. The 
recursive system is set-up circumventing linearization, so 
that in the limit of an infinite recursion depth the solution is 
manifest exact. This is attained organizing the non-linearity 
as a known source term using the solutions of the previous 

recursion steps. It is noteworthy, that the present version of 
the decomposition method, although inspired by Adomian's 
original work, is of pure differential form instead of using 
source terms with integrals. 

Due to the construction of the model, the solution is 
adequate for moderate to strong wind velocities. The coupled 
advection-diffusion and Navier-Stokes equation describe 
only the mean values of concentration and wind velocity and 
thus have predominantly mechanical characteristics, 
although some thermal properties are already included in the 
eddy diffusivity parameterization. The authors are aware of 
the fact, that a more complete approach shall include also a 
coupling to an additional heat flux equation. A supporting 
argument is also manifest in the generated results for wind 
speeds between 3 m/s to 8 m/s (see table 4). The higher the 
wind speed, the better the correlations and the smaller the 
error, which indicates that from approximately 6 m/s, the 
model can be considered adequate. The omission of Kx is 
also compatible with these restrictions. Also the comparison 
of predicted to observed concentrations corroborate with 
these findings. 

The present time dependent approach was restricted to the 
wind and vertical direction, only, however an extension to 
three dimensions is straight forward, due to the fact, that the 
linear solution (recursion initialization) is known 
independent of the dimensionality, and the recursion scheme 
follows the prescription presented in equations (5)-(8). In a 
future work we extend the approach to the full three 
dimensional model and in a subsequent step add effects due 
to entropy production by adding a thermal equation besides 
the mechanical description by Navier-Stokes. 
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