
International Journal of Web Engineering 2013, 2(1): 1-8
DOI: 10.5923/j.web.20130201.01

Architecture for Real Time Communications over the
Web

S. Panagiotakis1, K. Kapetanakis2,*, A. G. Malamos2

1Department of Sciences/Division of Computer Science, Technological Educational Institute of Crete, Heraklion, Crete, GR 71410, Greece
2Department of Applied Informatics and Multimedia, Technological Educational Institute of Crete, Heraklion, Crete, GR 71410, Greece

Abstract The emergence of HTML5 and other associated web technologies can shape a diversity of future applications,
where the client-server operations will be obsolete. In particular, the Media Capture and Streams API of HTML5 enables
third party access to multimedia streams from local devices. Enriched with a WebSockets implementation, a web application
can communicate, stream and transfer media or other data to its clients at real t ime to support a full collaborative environment.
In this paper, we introduce an arch itecture that capitalizes on the above technologies to enable real time communicat ions over
the web. We also demonstrate the web applications we have developed in this context for live video streaming and web video
chat with no requirement for any plug-in installation.

Keywords WebSockets, HTML5, Video, Streaming, Conference, Web, Real-t ime Communications, Get User Media,
Web RTC

1. Introduction
So far, real time media communication between various

client devices, either one way (streaming) or two (chat or
conference), was, more o r less, a static and monolith ic
operation dominated by several platform-specific solutions.
In particular, the streaming of media required the setup of
ded icated s t reaming servers , the installat ion o f the
appropriate standalone app licat ions at client s ide and,
obviously , the support of the corresponding streaming
protocols for transferring the streamed packets. As far as it
concerns the latters , a whole family o f p rivate and
standardized ones is prov ided. Similar is the view with
respect to chatting and conferencing, which addit ionally
require the mediat ion of a session manager between clients
and the support of the corresponding session protocols.
With respect to communicatingat real time via the web,
until recently the streaming of media over HTTP was just a
myth, while the receipt of streaming media v ia web could
be accomplis hed on ly with the installat ion o f the
appropriate third party software (b rowser plug-in) to receive
and process the data streamed from the server. Additionally,
the popular media p layers p rov ide p lug -ins fo r most
browsers to allow video and audio streams to be played
back over the web. Web chatting and conferencing is also
possible only via plug-ins. SIP (Session Initiation Protocol)

* Corresponding author:
kapekost@epp.teicrete.gr (K. Kapetanakis)
Published online at http://journal.sapub.org/web
Copyright © 2013 Scientific & Academic Publishing. All Rights Reserved

[1] and XMPP (eXtensible Messaging and Presence
Protocol)[2] are the most popular protocols for such uses.

However, the emergence of HTML5[3] and other
associated web technologies have drastically changed the
whole view to a dynamic, browser-friendly and platform
independent approach. This is due to the fact that HTML5
introduced several extended functionalities to web-browsers
changing the way data are transferred, v isualizations are
displayed and graphics are processed using hardware
acceleration. This is mostly accomplished via several
JavaScript lib raries and custom JavaScript programming
which allow to web-pages to gain access to various device
features provided for media access and customizat ion. In
that context, the installation of flash player is not mandatory
for video streaming any more, since HTML5 provides an
element with the tag name “video” that can substitute the
requirement for any such plug-in. Furthermore, images can
be loaded in an element with the tag name “canvas”, a
container which can be used to draw graphics on the fly
with JavaScript. The canvas element is supported anymore
by the most popular desktop and mobile browsers.
Technologies such as WebGL(Web Graphics Library)[4],
SVG (Scalab le Vector Graphics)[5] and Quartz 2D[6] can
be combined with canvas element to draw 2D and 3D
graphics with support for user interaction. More crit ical, the
Media Capture and Streams API[7], part of the general
Device APIs[8], enables access via the web to a user’s
microphone and camera device. To this end the
GetUserMedia method is defined. Hence, the live streaming
of media, audio and video, from a user over the web can be
now a reality.

2 S. Panagiotakis et al.: Architecture for Real Time Communications over the Web

Additionally, an innovative approach takes place in the
recent browser releases with respect to the data transferring
protocols over TCP/IP. WebSockets[9][10] use standard
HTTP signaling to establish a persistent bidirectional TCP
connection and transfer data, in the form of Web Sockets
frames, between web clients and web servers. With
WebSockets web push, that is pushing data from a web
server to its clients, can be a reality. In many web servers,
WebSockets are ready and tested, following the
introduction of the new HTML5 APIs. WebSockets Servers
can be found written in many programming languages
including C, Python and Java.

In the same context, WebRTC[11] is an open pro ject
supported by Google, Mozilla and Opera that aims to bring
high quality Web Real Time Communications between
browsers using simple JavaScript and HTML5. WebRTC
uses the aforementioned getUserMedia method to access a
peer’s microphone and camera and stream med ia data to
another peer browser and vice versa. The peer-to-peer
connections are established via the Peer-to-Peer Data API
which implements JSEP (JavaScript Session Establishment
Protocol)[12]. JSEP signaling is used in the WebRTC
framework as SDP in SIP-based communications that is to
describe and negotiate a session between two browsers with
the mediating session manager. WebRTC does not mandate
the use of any session protocol, such as SIP or XMPP,
enabling implementation differentiat ion. Ericsson labs in[13]
presented the first implementation of WebRTC in 2011.

In this paper, we introduce an architecture for real time
communicat ions over the web. Using various HTML5
features and APIs we have created cross-device web
applications that can access the web-camera on client side,
capture video and transmit it over the web using a
WebSocket connection with an associated server. In this
paper we present the generic architecture that enables such
communicat ions and demonstrate the two web applications
we have developed for real time communication over the
web. The first one enables live video streaming over the
web and the second the video chatting between two browser
clients. Both solutions do not require the installation of any
plug-in or the support of any session description protocol
and have been successfully tested on several devices,
mobile or desktop. The only requirement is for a browser
compatible with HTML5 and WebSockets. So far, we are
not aware of other similar implementations in scientific
literacy apart from the sophisticated WebRTC. The rest of
the paper is organized as follows: section 2 presents some
related work, section 3 introduces to the proposed generic
architecture for real time communications over the web and
section 4 demonstrates the two web applications we have
developed for live video streaming and web video chatting.
Finally section 5 concludes the paper.

2. Related Work
HTML5 is rapidly implemented in the most popular

browsers. Additionally, portable devices such as tablets,

SmartPhones, even televisions are equipped with web -
browsers. The implementation of HTML5 in these devices
has already started. Not far from reality, s mart TVs are
already launched with HTML5 enabled browsers and are
able to stream video for broadcasting television programs
[14]. Thus, each application totally compliant with HTML5
will be device independent. However in each device the
input facilities vary. HTML5 has already taken into account
such occasions providing special APIs for touch events,
orientation alteration and other input data from new
sensors[8].

Researchers have recently rushed into video
implementations on web applications using HTML5. In[15]
Daoustet. al. present the HTML5 video element and
demonstrate an implementation of CSS that transforms the
displayed video on the fly. Additionally in this paper, they
analyze video streaming over HTTP and discuss the ability
of peer to peer streaming. HTML5 has also been used in
real-t ime communicat ions. For example, a web application
for presentations is introduced in[16]. In this paper, the
authors propose a framework fo r displaying slides
synchronized with a video stream over the web. To this end,
some JavaScript functions update the current slide according
to the timing in a SMIL document.

With respect to real time conference-like communicat ions
the SIP is the dominant signaling protocol so far. In such
communicat ions a Multi-point Control Unit (MCU) is
implemented to control the flow of data among the
connected users in the optimal way. Han et. al. in[17],
developed a four-way video conference system. This
application is based on a Distributed Mini-MCU running in
home servers. The signaling is implemented with SIP and the
video is encoded in MPEG-4. Feldmann et. al., in[18]
proposes some extensions to the European FP7 project
3DPresence. This project aimed at building a mult i-user 3D
tele-conferencing system. The system creates life-size video,
recognizes gestures and eye contact using depth map and
other techniques to create a realistic virtual table. In[29],
Davidset. al. present an ongoing web conference application
that is based on SIP for session management. Using an
adaptation mechanism they create a web-server for SIP
signaling over HTTP to establish bidirectional connections
using WebSockets.

With respect to the evaluation of WebSockets implement
ations we have evaluated on a smartphone, using a variety of
technological implementations, the resources consumed by a
web application as it displayed a 3D animat ion stream on the
browser[20]. The tested implementations included Ajax and
WebSockets and were based on HTML5 features. The
experiments showed that the WebSockets implementation
consumed the less network and memory resources. In the
same context, Gutwin et. al. in[21] compared three different
network implementations in the aspect of performance. They
compared simple Comet mechanisms, WebSockets and a
plug - in approach. Considering the plain browser
implementations, Ajax techniques induced a delay of 67ms
for LAN connection and 185ms for WAN, but using the

 International Journal of Web Engineering 2013, 2(1): 1-8 3

WebSockets implementation the LAN delay reduced to
11ms and the WAN to 86ms.

3. Architecture for Real Time
Communications over the Web

In this paper we present a blend of all above features and
technologies to introduce a generic architecture for real time
communicat ions over the web that can host powerful,
collaborative, web applicat ions. In total, our architecture
provides web-applications based fully on browsers, with no
requirement for any p lug-in installation or session
management protocol. Each peer client can stream video
data from his web-camera and receive v ideo data from a
remote camera in real time. The arch itecture comprises a
mediating WebSockets server that listens for incoming
connections and the client browsers that should be
compatible with HTML5 and WebSockets. At first, an
HTML5 peer client requests a web-page from a web server
that includes the required JavaScript for media access and
streaming over WebSockets. Using the Media Capture and
Stream API (GetUserMedia) the camera is captured and
image data, in form of JPEG images, are persistently
displayed on a canvas. Then, the peer client connects to the

WebSockets server using a WebSocket connection and starts
the process to send the video data from the canvas to the
server. The WebSocketsserver implements session
management, hence, it is responsible to bridge the data
transferredvia a WebSocketfrom one client peer to others
and vice versa. To this end, it maintains an array with all
active WebSocket sessions to forward the messages among
the involved peers. Each peer client receives and displays the
video on another canvas element.

Figure 1 illustrates the components of our proposed
architecture along with the involved signaling and data
flows. The HTTP signaling between client peers and web
server assumes access to the appropriate web page by each
client peer. The web page includes the required JavaScript
code for drawing a canvas and displaying on it the images
flow captured from the web-camera of the peer. In addition
it establishes a WebSocket connection with the WebSockets
server and streams the captured images from the canvas to it.
Finally, the web page includes some buttons for init iating /
releasing the data flow to the WebSocketsserver. The
platform independent nature of HTML5 enables our
architecture to also run on any smartphone device with an
HTML5-compliant browser. We have successfully run our
tests over Firefox for Android.

Figure 1. Proposed architecture for real t ime video communications over the web

4 S. Panagiotakis et al.: Architecture for Real Time Communications over the Web

3.1. The WebSockets Server

The WebSockets technology provides a bidirectional
communicat ion channel using a single TCP connection. It is
designed to be implemented in browsers and web-servers
and its API is being standardized by the W3C. The
connections are established over the regular TCP port 80,
which ensures that the system can run behind firewalls. The
life-cycle of a WebSocket session is depicted in Figure 2. At
first the client, a browser that supports the WebSockets
protocol, requests to establish a WebSocket connection. The
positive response from the server denotes the start of such a
WebSocket connection. The connection remains open for the
whole session, until any endpoint requestsits release with the
specified procedure. As a WebSocketremains active;
WebSocket frames can be transferred from server to client
and vice versa with no preceding request. In our
implementation the WebSockets server also hosts the service
logic part of our web-applications, which is responsible for
maintaining a listing of the client peers with active
WebSockets and session management. The service logic is
analyzed in the following section. Although logical
separated, the web server, the service log ic and the
WebSockets server could run on the same physical entity. In
our implementation we have used Java and Jetty[22] libraries
to run the WebSockets server.

Figure 2. Life-cycle of a WebSocket session

4. Web Applications for Real Time
Video Communications

Although the above architecture is generic enough to fit
several communication scenarios, we demonstrate it in this
paper via two web-applications: one for live v ideo streaming
and one for video chatting. Obviously, such applications can
find applicab ility in various domains including tele -
education, gaming, entertainment, b roadcasting/ multicastin
g, virtual meetings. Taking into account that it does not
require any plug-in installation or session protocol support, it
can definitely be the most convenient solution provided so
far to this end.

4.1. Live Video Streaming over the Web

This application involves one streamer (who streams his
camera to an audience via the web), one or more receivers
(who receive at their browsers the media stream of the
streamer) and the service logic (which orchestrates the
communicat ion). The applicat ion is available via a URL
common for both streamers and receivers. The scenario
assumes that any available stream can be either a broadcast
or a multicast event. Each event is associated with a unique
identifier that is called “group name”. Broadcast events are
available to anyone; hence their group names are propagated
by the web server to anyone interested to follow them, while
multicast events are close ones restricted to those knowing
the associated group names. The interactions that take place
are analysed as follows:

(a)

(b)

(c)

(d)

Figure 3. Web application for live video streaming

 International Journal of Web Engineering 2013, 2(1): 1-8 5

A client peer is connected via its HTML5- and
WebSockets- compatible browser to the URL of the
application. The web-page requests the user to enter the
“group name” of the multicast event he wishes to follow or to
select one group name from the list of the availab le broadcast
events. If the user enters a group name that has not been
registered previously with the web server, the server assumes
it is a new streaming event and registers the user as
“streamer”. Then, the user is asked to specify if it is a
multicast or a broadcast event. In the latter, the streamer
should also specify the starting time for the stream. When the
streamer submits this info to the server the JavaScript code
for the streamers runs at his browser and a WebSocket
connection to the WebSockets server is established. Along
with this standard signaling, the group name of the event is
transferred with a message via the WebSocket to the service
logic running on top of the WebSockets server. The service
logic registers the specific WebSocket as a streamer
WebSocket and associates it with the received group name.
Now the streamer can propagate the group name of this
available multicast stream to his audience. Whenever a client
peer connects to the URL of the application and enters the
group name of this multicast, the JavaScript code fo r the
receivers runs at his browser and he is being connected to the
WebSockets server via a WebSocket. The WebSocket is
registered at the service logic as a receiving WebSocket. In
parallel, the group name of the event is transferred to the
service logic with a message via the WebSocket. The group
name is used by the service logic to match the receiver with
the correct streamer WebSocket, so forwards the correct
video frames to it. Hence, the receiver displays at a canvas in
his browser the stream from the streamer. The same
procedure is repeated every time a receiver is connected to
the WebSockets server for the specific stream. In case a user
selects to follow a broadcast event, the procedures are the
same and the receiver is connected to the streamer
WebSocket that corresponds to this broadcast group name. It
is assumed here that any streaming event registered as a
broadcast one is included by the server to the list of such
events. Hence, propagation of a broadcast event to an
audience by its streamer is optional. Both streamer and
receivers have the option to terminate their session (that is
their WebSocket) at any time. Figure 3 illustrates the initial
web-page for the streamer (a) and for the receivers (b) o f our
web applicat ion, the display of the streamer (c) and the
display of the receiver (d).

4.2. Web Video Chatting

This web application is quite similar to the
aforementioned one as it concerns the general scenario. A
web user who wishes to initiate a video chat session with
another web peer visits the URL of the application and enters
the group name of the chat. If the given group name is not
previously registered with the application it is considered as
a new chat session and the user is marked as the “initiator” of
the session. Then the appropriate JavaScript run at his
browser and an “initiator” WebSocket is established with the

WebSockets server. The group name for the chat is also
transferred via the WebSocket to the service logic of the
application, which associates the specific init iator
WebSocket with th is. Then, the init iator can inform his chat
peer for this available group name. When the second peer
connects to the URL of the applicat ion and enters the group
name of this chat, the appropriate JavaScript connects his
browser with the WebSockets server and transfers the given
group name to the service logic. The WebSocket of the
second user is matched via the group name with the init iator
WebSocket and hence, the video frames from the init iator
peer are transferred to the second one via the WebSockets
server and vice versa. Both in itiator and second peer have the
option to terminate their session (that is their WebSocket) at
will. Figure 4 illustrates the initial web-page of our web
application asking the users to determine the group name of
the chat (a), (b), the display of the init iator (c) and the display
of the second peer (d).

(a)

(b)

(c) (d)

Figure 4. Web application for video chatting

Definitely, such a web application for video chat between

6 S. Panagiotakis et al.: Architecture for Real Time Communications over the Web

two peers could have been implemented via WebRTC,
which addit ionally assures peer-to-peer transfer of video
frames between the peers, that is, without the mediation of a
WebSockets server. However, the web application
demonstrated here is just the first step towards our goal,
which is the implementation of a web-based MCU for the
conference-like communication between several peers. Such
conferencing requires the mediation of a central MCU
justifying thus our implementation approach. In addition, it
is worth noticing here that our approach is simpler than
WebRTC, since it only requires the support of HTML5 and
WebSocket protocol by the clients. Session management
here is implemented by our service logic without the
requirement for JSEP or other session description protocol
by the peers.

4.3. The Service Logic

The service logic for both applications runs on top of the
WebSockets server (Figure 1) and in our development is
responsible for implementing the communication between
the client peers. In part icular, it receives the messages sent by
one client peer over one active WebSocket, and delivers
them to its connected client peers over the corresponding
WebSockets. Hence, the service logic is responsible for
implementing session management in our arch itecture. To
this end, a java connection-object that holds the data
associated with each active WebSocket is created. In
addition, an Array List correlates the connection objects for
all act ive sessions. The Group name transferred by each peer
within its WebSocketis used as the key for session
identification and peers correlation. Hence this Array holds
the participants in each session. To realize service logic we

are overwriting methods such as the onOpen, onMessage and
onClose on the server. In particular, the onOpen method is
triggered whenever a new WebSocket connection is
established. As opposed to this action, the onClose method is
triggered whenever a request for releasing a WebSocket
arrives and, hence, the ArrayList object is updated
accordingly. The onMessage method is triggered whenever a
new message arrives from a client peer. Messages from one
client peer are forwarded to all active client peers in the
session.

4.4. Our Test-bed

To set up our test-bed we used the Jetty-8 server for
WebSockets implementation. Our desktop client peers run
Chrome browser (Version 22.0.1229.79 m) and our mobile
one (an Android LG P970 Smartphone) a Firefox browser
(Version 15.0.1). The service logic has been implemented in
Java, on top of the Jetty-8 WebSockets server, using the
eclipse IDE. We used HTML web pages with embedded
JavaScript code for capturing media streams and opening
WebSockets and an apache web server to deliver them on
request. The main technologies we used for the applications
include: the getUserMedia method for capturing the media
streams when required, WebSockets for the communication
between client peers via the service logicand A jax for
updating the DOM and reconstructing the web page at client
side according to the requests. Our web applications run
equally on desktop and portable environments. As Figure 5
depicts, we use a laptop computer as streamer and a variety
of computers and mobile devices as receivers. Figure 6
illustrates a web chatting session between two portable
devices.

Figure 5. Test-bed for the streaming application

 International Journal of Web Engineering 2013, 2(1): 1-8 7

Figure 6. Test-bed for the chatting application

5. Conclusions
A web application using HTML5 and WebSockets

technologies can run not only on any operating system, but
also on any device with an HTML5- and WebSockets-
compliant browser. In this paper we p resented a generic
architecture that implements HTML5 and other new
technologies recently introduced with HTML5. In particu lar,
the canvas element supports video display by a camera and
graphics design on the fly. Furthermore, the WebSockets
protocol establishes a bidirectional connection between a
server and a browser. Taking advantage of these
technologies, we demonstrated two cross - device,
collaborative web applicat ions. Both applications use the
browser to establish a communication with a web-camera.
The data from the camera is streamed over a WebSocket
connection to a server and is finally delivered to the
connected clients. The first applicat ion enables live video
streaming to all connected users and the second a web chat
between two users.

Our approach is simpler than other similar attempts (e.g.
the WebRTC), since it only requires the support of HTML5
and WebSocket protocol by the client peers. Session
management is implemented by our service logic without the
requirement for any session description protocol by the
peers.

Our future plans include the stress test of our test-bed to
optimize its performance and make it able to handle as many
simultaneously connected users and sessions in both
applications. So far our system has run with up to 10
client-peers without serious performance degradation, but
further testing with more act ive peers and parallel sessions is
required.

Additionally, we plan to evolve the server logic of our web
chatting application to an optimal and fast web MCU that
will be able to manage conference groups of three or more
client peers.

As the above technologies mature and their adoption in
commercial browsers increases, the development alternative
s for such applications will vary. This can help in more
optimal implementations. For example, in our implementati

ons we are repeatedly capturing pictures from the camera of
a client peer which are then drawn on a canvas before
streaming in a WebSocket. The very fast iterat ion of this
procedure is that offers the illusion of video streaming.
Definitely, this is a heavy procedure for both client and
transmission. But at the time of our implementation this was
the only available solution. When the direct capturing and
streaming of media from the camera to the WebSocket is
enabled, the intermediate step of drawing on the canvas will
be obsolete and the whole procedure will be lightened.

REFERENCES
[1] The Session Initiation Protocol (SIP), IETF RFC 3261.

[2] The Extensible Messaging and Presence Protocol (XMPP),
IETF RFC 6120.

[3] HTML5, http://www.w3.org/html/wg/drafts/html/master/ (as
visited on 6/22/2013).

[4] WebGL, https://www.khronos.org/registry/webgl/specs/1.0/
(as visited on 6/22/2013).

[5] SVG, http://www.w3.org/TR/SVG/ (as visited on 6/22/2013).

[6] Quartz 2D, http://en.wikipedia.org/wiki/Quartz_2D (as
visited on 6/22/2013).

[7] Media Capture and Streams, http:// www. w3. org/ TR/
mediacapture -streams/ (as visited on 6/22/2013).

[8] Device APIs Working Group, http://www.w3.org/2009/dap/
(as visited on 6/22/2013).

[9] The WebSocket Protocol, IETF RFC 6455.

[10] The WebSocket API, http://dev.w3.org/html5/websockets/
(as visited on 6/22/2013).

[11] WebRTC 1.0: Real-time Communication Between Browsers,
http://dev.w3.org/2011/webrtc/editor/webrtc.html (as visited
on 6/22/2013).

[12] Javascript Session Establishment Protocol (JSEP), draft-ietf-
rtcweb-jsep-03.

8 S. Panagiotakis et al.: Architecture for Real Time Communications over the Web

[13] Ericsson LABS BLOG about WebRTC, visited on
3/16/2013,“ https://labs.ericsson.com/blog/web-real-time-co
mmunication-api---the-next-step “

[14] Daoust François, "Adopting HTML5 for Television: Next
Steps ", in proceedings of 2011 NEM Summit, Torino, Italy,
September 27-29, 2011.

[15] Daoust François, Philipp Hoschka, Charalampos Z. Patrikakis,
Rui S. Cruz, Mário S. Nunes, and David Salama Osborne,
"Towards Video on the Web with HTML5", NEM Summit,
Barcelona, Spain, Oct. 13-15, 2010.

[16] Cazenave, Fabien, Vincent Quint, and Cécile Roisin,
"Timesheets. js: When SMIL meets HTML5 and CSS3" , in
Proceedings of the 11th ACM symposium on Document
engineering, pp. 43-52. ACM, 2011.

[17] Han Intark, Hong-Shik Park, Young-Woo Choi, and
Kwang-Ro Park, "Four-way video conference and its session
control based on distributed mini-MCU in home server ", in
proceedings of IEEE International Conference on Consumer
Electronics (ICCE 2008), pp. 1-2, 2008.

[18] Feldmann I., O. Schreer, P. Kauff, R. Schäfer, Z. Fei, H. J. W.

Belt, and Ò. DivorraEscoda, " Immersive multi-user 3d video
communication", in Proceedings of International Broadcast
Conference (IBC 2009), Amsterdam, Netherlands. 2009.

[19] Davids Carol, Alan Johnston, Kundan Singh, Henry
Sinnreich, and Wilhelm Wimmreuter, "SIP APIs for voice
and video communications on the web", in Proceedings of the
5th International Conference on Principles, Systems and
Applications of IP Telecommunications, ACM, 2011.

[20] Kapetanakis Kostas, and Spyros Panagiotakis, "Evaluation of
techniques for web 3D graphics animation on portable
devices”, in proceedings of the the IEEE International
Conference on Telecommunications and Multimedia (TEMU
2012), pp. 152-157. July-August 2012.

[21] Gutwin Carl A., Michael Lippold, and T. C. Graham,
"Real-time groupware in the browser: testing the performance
of web-based networking", in Proceedings of the ACM
conference on Computer supported cooperative work, pp.
167-176, 2011.

[22] The Jetty project, http://www.eclipse.org/jetty/about.php (as
visited on 6/22/2013).

	1. Introduction
	2. Related Work
	3. Architecture for Real Time Communications over the Web
	4. Web Applications for Real Time Video Communications
	5. Conclusions

