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Abstract  Estimates of the autocorrelation in monthly temperature series are obtained in two steps. Firstly, a proper 
seasonal-adjustment method is applied which also works in the case of a time-varying seasonal pattern. Secondly, the 
seasonally adjusted series are subjected to a simple graphical procedure which enables the immediate and unbiased 
assessment of the magnitude of the first-order autocorrelation. The highest values occur in the northern part of the subpolar 
gyre. The autocorrelation there rises in the early 1940s from around 0.7 to around 0.8 and finally in the late 1990s to just 
under 0.9. The changes happen abruptly rather than steadily. There are no indications of a further rise beyond 0.9 towards 1, 
which some researchers would interpret as a sign of an imminent collapse of the Atlantic Meridional Overturning Circulation. 
On the contrary, there are indications that global warming is finally catching up with this region too. The consequence of this 
development would be that the rising trend will mask the Atlantic Multidecadal Oscillation, which contributes significantly to 
the autocorrelation, and thereby cause even a drop in the autocorrelation. Overall, the results are ambivalent. On the one hand, 
the new methods allow for more precise and up-to-date tracking of early-warning signs. On the other hand, the empirical 
evidence points to structural breaks and identification problems that make it impossible at this point in time to determine 
whether and when the system will collapse.  
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1. Introduction 
It does not happen often that the results of a largely 

statistical study make it into the headlines of the major 
international news media. One example is the prediction  
of the imminent collapse of the Atlantic Meridional 
Overturning Circulation (AMOC) by Ditlevsen & Ditlevsen 
(2023). In view of the significance of such an event for  
the global climate, it is not surprising that their study has 
caused quite a stir. However, Reschenhofer (2023a) pointed 
out some of the weaknesses of this study. Indeed, it looks  
at first glance like voodoo statistics when the possible 
transition from the present strong AMOC mode to a weak 
AMOC mode is equated with the transition of some AMOC 
proxy from a stationary state with first-order autocorrelation 
ρ less than one to a nonstationary state with ρ=1. This 
magical connection results from the choice of a specific 
stochastic differential equation for the description of the 
dynamics of the AMOC proxy and the application of a set 
of more or less plausible assumptions and approximations 
(for an in-depth critical examination see Reschenhofer, 
2023a). But  even if there were  no serious flaws  in this  
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approach, there would still be the difficult task of 
extrapolating the autocorrelation. The underlying dynamic 
model provides only the monotone transformation intended 
to make the increase in autocorrelation reasonably linear. 
The beginning of the rise in autocorrelation and the size  
of the rolling estimation window must be chosen in       
a more subjective manner. Ditlevsen & Ditlevsen (2023) 
accomplished this by trying out many different values, 
which clearly increases the risk of a data-snooping bias and 
impairs any subsequent inference. But that does not matter 
anyway in view of Reschenhofer’s (2023a) finding that the 
autocorrelation increases erratically rather than steadily, 
which makes forecasting based on extrapolation basically 
impossible.  

Apart from methodological issues, there are also data 
issues. Since direct measurements of the AMOC are only 
available for relatively short periods (Smeed et al., 2014), 
proxies for the strength of the AMOC must be used instead. 
Such a proxy is typically defined as the difference between 
the mean sea surface temperature (SST) in some northern 
sea region with below-average warming and some global or 
hemispheric benchmark. The most widely used region is the 
subpolar gyre (see Rahmstorf et al., 2015), which contains 
the 17 grid points represented by circles with black borders 
in Figure 1. Examples of benchmarks are the Northern 
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Hemisphere mean surface temperature (Rahmstorf et al., 
2015) and the global mean SST (Caesar et al., 2018). 
Ditlevsen and Ditlevsen (2023) used two times the global 
mean SST in order to compensate for polar amplification 
(see Holland and Bitz, 2003). However, Reschenhofer 
(2023a) argued that the subtraction of a benchmark may  
be counterproductive when the main task is to monitor 
early-warning signs like a rising autocorrelation. For the 
estimation of autocorrelation, the trend must be removed 
anyway, regardless of whether it is just the regional trend or 
the combined regional and global trend. So all that remains 
is the noise. But why would anyone want to pollute the 
interesting regional measurements with global noise or even 
two times global noise? 

 

Figure 1.  Nine clusters (purple, blue, turquoise, green, yellow green, 
yellow, red, orange, brown) of grid points and two stations (Valentia 
Observatory, Ireland: dark green, Vardo, Norway: dark blue)  

Another factor of uncertainty is the definition of the sea 
region that is used for the construction of the AMOC proxy. 
Reschenhofer (2023b) identified a region in the north of  
the subpolar gyre which appears to be still defying global 
warming. However, a closer look revealed seasonal differences. 
Recently rising temperatures in the months from July to 
October suggest that global warming is finally catching   
up with this region. From a statistical point of view, this 
development creates two problems. Firstly, the emergence 
of any distinct trend will inevitably mask the Atlantic 
Multidecadal Oscillation (AMO), which contributes 
significantly to the autocorrelation because of its large 
amplitudes and long cycle lengths. In the course of a 
standard trend-removal procedure, the AMO will then    
be removed together with the trend and the estimated 
autocorrelation will therefore show a non-genuine decline. 
Secondly, any change in the seasonal pattern will inevitably 
distort the estimation of the autocorrelation if the seasonal 
adjustment is carried out in the usual naive way. Temperature 
measurements are typically expressed as anomalies from 
the base period 1961-1990 (CRU, University of East  
Anglia) or 1951-1980 (NASA GISS), where the average 

temperature for each calendar month in the base period    
is regarded as normal. Alternatively, the anomalies may  
be obtained by subtracting the monthly means over the  
full observation period. Clearly, either method is only 
appropriate in the case of a constant seasonal pattern. 

In the next section, a more sophisticated procedure will 
be proposed which allows for the simultaneous removal  
of the trend and any constant or time-changing seasonal 
pattern. Afterwards, a graphical procedure will be presented 
in Section 3 which allows for the instantaneous and 
unbiased assessment of the size of the autocorrelation. Both 
procedures will be applied to monthly temperature series. 
The empirical results will be discussed with regard to the 
usefulness of the estimated autocorrelation as a potential 
early-warning sign. Section 4 concludes.  

2. Seasonal Adjustment and Detrending  
The dataset HadCRUT5 Analysis, which combines   

land [CRUTEM5] and marine [HadSST4] temperature 
anomalies from the base period 1961-1990 on a 5° by 5° 
grid with greater geographical coverage via statistical 
infilling (Morice et al., 2021), was downloaded from the 
website https://crudata.uea.ac.uk/cru/data/temperature/ of 
the Climatic Research Unit (CRU) of the University of East 
Anglia. Station data were downloaded from the website 
//data.giss.nasa.gov/gistemp/ of NASA's Goddard Institute 
for Space Studies (GISS). These are adjusted, cleaned data, 
homogenized to account for urban effects (GISTEMP Team, 
2023; Lenssen et al., 2019). The common analysis period 
for both types of time series is from January 1880 to 
November 2023 (n=1727 months). For the statistical analysis, 
the free statistical software R (R Core Team, 2022) was used.  

Figure 1 shows nine clusters of grid points with similar 
temperature trends according to Reschenhofer (2023b) as 
well as the meteorological stations Valentia Observatory 
(51.9394N, 10.2219W) and Vardo (70.3670N, 31.1000E). 
The main reason for the selection of these two stations was 
the availability of the data. There is only one missing value 
in the case of Valentia Observatory, namely in November 
1942, which was replaced by the average of the values    
in October 1942, December 1942, November 1941, and 
November 1943, and also only one missing value in the 
case of Vardo, namely February 2023, which was replaced 
by the average of the values in January 2023, March 2023, 
and February 2022. In addition to the two stations, three 
grid points were selected for further analysis, namely 11, 16, 
and 29. The first represents the cluster with the most noticeable 
changes in the seasonal pattern (see Reschenhofer, 2023b), 
the second represents the northern part of the subpolar gyre, 
and the third is of interest because of its proximity to 
Valentia Observatory. The data from CRU are anomalies 
from the base period 1961-1990 whereas the data from GISS 
are absolute values. In the case of the anomalies, a seasonal 
pattern only becomes visible when it changes over time.  
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Let 𝑋𝑋1, . . . ,𝑋𝑋𝑛𝑛  be any one of the five time series of 
anomalies or absolute values. For each calendar month, i.e., 
j=1,...,12, the trend of the subseries 

 𝑋𝑋𝑗𝑗 ,𝑋𝑋𝑗𝑗+12,𝑋𝑋𝑗𝑗+24, . .. (1) 

can be estimated by smoothing with the Hodrick-Prescott 
(HP) filter (using the R function hpfilter of the package 
mFilter), i.e., by minimizing  

∑ (𝑋𝑋𝑡𝑡 − 𝐹𝐹𝑡𝑡)2
𝑡𝑡=𝑗𝑗 ,𝑗𝑗+12,... +  

 𝛬𝛬 ∑ ((𝐹𝐹𝑡𝑡 − 𝐹𝐹𝑡𝑡−12) − (𝐹𝐹𝑡𝑡−12 − 𝐹𝐹𝑡𝑡−24))2
𝑡𝑡=𝑗𝑗+24,𝑗𝑗+36,...  (2) 

where the tuning parameter Λ determines the degree of 
smoothing. The estimated monthly trends obtained with 
Λ=2.5∙10^3 and Λ=2.5∙10^4, respectively, are shown for 
each of the five time series in Figure 2. Strictly speaking, 
only the latter can be regarded as trend estimates. The more 
volatile trend lines obtained with the smaller value of Λ  
are only meant to make significant oscillations like the 
AMO visible. As the upward trend picks up speed, it might   
soon mask the AMO even in regions like the subpolar gyre 
and thereby make the monitoring of the autocorrelation 
pointless. For purely technical reasons, there can be no further 
increase under these conditions. 

 

Figure 2.  HP trends (Λ=2.5∙10^3) from January 1880 to November 2023 
for each calendar month (January: purple, February: blue, March: turquoise, 
April: dark green, May: green, June: yellow green, July: red, August: pink, 
September: yellow, October: orange, November: brown, December: gray) 
as well as smoother HP trends (Λ=2.5∙10^4 , black) (a)-(c): Grid points 11, 
16, and 29, (d): Valentia Obs., (e): Vardo  

What is also striking in Figure 2 are the discrepancies 
between different calendar months, e.g., a strongly 
above-average temperature rise from January to March in 
the case of grid point 11 and a strongly above-average 
temperature drop from January to March in the case of grid 
point 16. In such a situation, the naive seasonal-adjustment 
method of just subtracting the monthly means is not 

appropriate. Figure 3 compares the naive method with the 
more sophisticated method which subtracts the monthly HP 
trends (Λ=2.5∙10^4). The first column of Figure 3 shows the 
downloaded data, which are in the case of the three grid 
points anomalies and have therefore already been adjusted 
by subtracting the monthly means over the base period 
1961-1990. The time series in the second column were 
adjusted by subtracting the monthly means over the full 
observation period. They were plotted together with HP 
trends obtained with a much larger value of the tuning 
parameter, namely Λ=2.5∙10^9. This choice is due to the 
much higher frequency. In contrast to the monthly subseries 
(1), there are now 12 values per year instead of only one.  
In addition, HP trends with Λ=2.5∙10^7 were also included 
to illustrate the strength of the AMO. The time series in the 
third column were obtained by subtracting monthly HP 
trends (with Λ=2.5∙10^4). As was to be expected, there is no 
longer a trend here because this adjustment method removes 
the seasonal pattern and the trend simultaneously.  

 

Figure 3.  First column: Downloaded data (Jan. 1880 - Nov. 2023) Second 
column: Adjusted by subtracting monthly means (with fitted HP trends, 
Λ=2.5∙10^9 : yellow, Λ=2.5∙10^7 : magenta) Third column: Adjusted by 
subtracting monthly HP trends (Λ=2.5∙10^4) (with fitted HP trends, 
Λ=2.5∙10^9 : yellow, Λ=2.5∙10^7 : magenta) First 3 rows: Grid points 11, 
16, 29. Last 2 rows: Valentia Obs., Vardo  

Clearly, it depends on the respective type of analysis how 
serious the consequences of a botched seasonal adjustment 
are. The next concrete task we are facing is to look      
for indications of a rising variance or a rising first-order 
autocorrelation, which have both been used as early-warning 
signs for an AMOC collapse by Boers (2021) and Ditlevsen 
and Ditlevsen (2023). Figure 4 examines the extent to which 
the choice of the seasonal-adjustment method influences  
the estimation of the second moments. Three variants are 
considered, namely the two naive methods which simply 
subtract the monthly means over the base period 1961-1990 
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and the full observation period, respectively, and the more 
sophisticated method which subtracts the monthly HP 
trends (with Λ=2.5∙10^4). In the first two cases, the 
seasonally adjusted time series will still have a trend, which 
has to be removed with the help of another HP filter before 
second moments can be calculated. For this purpose,    
the value Λ=2.5∙10^9 was chosen. For the residuals 𝑈𝑈𝑡𝑡  
remaining after seasonal adjustment and detrending, the 
statistics 𝑈𝑈𝑡𝑡2/𝑁𝑁 and 𝑅𝑅𝑡𝑡/(𝑁𝑁 − 1) were plotted cumulatively 
against time, where  

 𝑅𝑅𝑡𝑡 = 𝜏𝜏 𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖(𝑈𝑈𝑡𝑡−1𝑈𝑈𝑡𝑡)𝑚𝑚𝑚𝑚𝑚𝑚(|𝑈𝑈𝑡𝑡−1|/|𝑈𝑈𝑡𝑡|, |𝑈𝑈𝑡𝑡|/|𝑈𝑈𝑡𝑡−1|) (3) 
and 𝜏𝜏 = 𝜋𝜋/(𝜋𝜋 − 2) (Reschenhofer, 2017a, 2017b, 2019). 
These cumulative graphs allow the detection of any changes 
without the delay caused by a large estimation-window 
width of 50 (Ditlevsen and Ditlevsen, 2023) or even 70 
years (Boers, 2021). Remarkably, the actual changes in the 
variance (shown in the first column of Figure 4) and the 
autocorrelation (in the second column) are easier to explain 
by structural breaks in the slope than by a steady growth of 
the slope, which corroborates earlier findings (Reschenhofer, 
2023a, 2023b). Regarding the differences between the 
different adjustment methods, one would expect that any 
remaining part of the seasonal pattern will cause a rise  
both in variance and autocorrelation. Indeed, the variance 
appears to be consistently higher whenever a naive 
adjustment method is used. To a lesser extent, this is also 
true for the autocorrelation.  

 

Figure 4.  Cumulative estimation of variance (from Jan. 1880) left and 
cumulative estimation of autocorrelation (from Feb. 1880) right Adjustment 
methods: Subtracting monthly HP trends (blue) Subtracting monthly means 
over full observation period (green) Subtracting monthly means over the 
base period 1961-1990 (red) First 3 rows: Grid points 11, 16, 29. Last 2 rows: 
Valentia Obs., Vardo  

The statistic 𝑅𝑅𝑡𝑡  is a severely biased estimator for the 
first-order autocorrelation ρ unless ρ is close to zero. 
However, when we are mainly interested whether ρ is rising 
or not, a possible bias does not matter that much. Nevertheless, 
an alternative, unbiased monitoring procedure will be used 
in the next section. 

3. Estimation of Autocorrelation 
Assuming that any trend or seasonal pattern has already 

been removed from the time series 𝑈𝑈1, . . . ,𝑈𝑈𝑛𝑛  by subtracting 
monthly HP trends (as described in Section 2), the current 
variance and first-order autocovariance can easily be estimated 
by 𝑈𝑈𝑡𝑡2 and 𝑈𝑈𝑡𝑡𝑈𝑈𝑡𝑡−1, respectively. In the case of the first-order 
autocorrelation, it is not that simple. The replacement of the 
highly unstable least squares estimator 

 𝜌𝜌�𝑡𝑡 = 𝑈𝑈𝑡𝑡𝑈𝑈𝑡𝑡−1/𝑈𝑈𝑡𝑡−1
2  (4) 

by Burg’s estimator 
 𝜌𝜌𝑡𝑡� = 2𝑈𝑈𝑡𝑡𝑈𝑈𝑡𝑡−1/(𝑈𝑈𝑡𝑡−1

2 + 𝑈𝑈𝑡𝑡2) (5) 

 

Figure 5.  Comparing the cumulative first-order autocovariance (red) from 
February 1880 to November 2023 with 1 (black), 0.9 (blue), 0.8 (green), and 
0.7 (yellow) times the cumulative variance. The second column is obtained 
from the first by subtracting the red line from the other lines. First 3 rows: 
Grid points 11, 16, 29. Last 2 rows: Valentia Obs., Vardo  

(Burg, 1967, 1975) does bring a certain stabilization 
because the latter does not take values outside the open 
interval (-1,1) with positive probability, but there is still a 
large bias. Unfortunately, the same is true for the estimator 
(3), which has been designed for the monitoring of financial 
data under the assumption of a weak autocorrelation. In the 
case of temperature data, an assumption such as 𝜌𝜌𝑡𝑡<0.2 (see 
Reschenhofer, 2017a) is certainly highly implausible (see 
Figure 4). So, if we are also interested in the size of the 
autocorrelation and not just whether it goes up or down,   
we need an alternative method. For the determination of   
the direction alone it would be sufficient to plot the  
statistics (3) or (5) cumulatively against time. In contrast, 
plotting the statistics 𝑈𝑈𝑡𝑡𝑈𝑈𝑡𝑡−1 seems to be pointless at first 
glance because it is impossible to tell whether a rise in the 
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auto-covariance is due to a rise in the variance or a rise in  
the autocorrelation. At second glance it is the solution. 
Indeed, plotting the statistics 𝑈𝑈𝑡𝑡𝑈𝑈𝑡𝑡−1  together with the 
statistics 𝑐𝑐𝑈𝑈𝑡𝑡2 for various values of c allows the unknown 
auto-correlation to be determined with sufficient accuracy 
for practical use. Alternatively, the differences 𝑐𝑐𝑈𝑈𝑡𝑡2 −
𝑈𝑈𝑡𝑡𝑈𝑈𝑡𝑡−1  can be plotted which often results in a clearer  
display. Both types of plots are shown in Figure 5. The 
autocorrelation is very weak in the case of the two stations 
and very high in the case of grid point 16 which lies in    
the subpolar gyre and can therefore possibly serve as an 
indicator for the strength of the AMOC. In the latter case, the 
cumulative differences 𝑐𝑐𝑈𝑈𝑡𝑡2 − 𝑈𝑈𝑡𝑡𝑈𝑈𝑡𝑡−1  are remarkably flat 
for c=0.7 (yellow line) until the early 1940s, for c=0.8 (green 
line) until the late 1990s, and finally slightly increasing for 
c=0.9 (blue line), indicating that the autocorrelation is first 
about 0.7, then about 0.8, and finally slightly below 0.9.   
In each period, the respective cumulative graph is roughly 
linear. Moreover, there is no indication of a smooth transition 
from one period to the next. The transitions rather look like 
structural breaks.  

4. Discussion 
The prediction of an imminent collapse of the AMOC 

(Ditlevsen and Ditlevsen, 2023) is based on a specific 
dynamic model for a specific AMOC proxy and on the 
assumption that the model parameter λ, which is related to 
the first-order autocorrelation ρ of the AMOC proxy via 

  𝜆𝜆 ∝ − 𝑙𝑙𝑙𝑙𝑙𝑙2(𝜌𝜌), (6) 
grows linearly over time until it reaches a critical point 𝜆𝜆𝑐𝑐=0, 
where the dynamical system will move to a different state. 
While the model and the proxy have already been discussed 
at length in previous papers (Reschenhofer, 2023a, 2023b), 
the focus of the present paper is solely on the estimation of ρ, 
which is an important part of the prediction because the time 
of transition is found by extrapolating estimates of ρ up to the 
point where the value 1 is reached.  

In light of evidence that global warming affects the 
different seasons differently, the standard method to remove 
seasonal patterns by simply subtracting monthly means is  
not suitable. Instead, HP smoothing is carried out separately 
for each calendar month, which allows to remove trends and 
seasonal patterns simultaneously just by subtracting the HP 
trends. This method saves the effort to keep time-changing 
trends and time-changing seasonal patterns cleanly apart.  

After the removal of any trend and seasonal pattern,    
the time-changing autocorrelation of the residuals 𝑈𝑈𝑡𝑡  can be 
estimated. In order to avoid any delay caused by using      
a rolling estimation window, this is done by examining   
the slopes of the cumulative differences 𝑐𝑐𝑈𝑈𝑡𝑡2 − 𝑈𝑈𝑡𝑡𝑈𝑈𝑡𝑡−1 for 
various values of c. The results obtained for the sea surface 
temperature in a region that is often used for the construction 
of AMOC proxies show that ρ is still smaller than 0.9    
and there is no indication of a further increase toward 1.  
The method of predicting the time of a possible AMOC 
collapse by extrapolation therefore lacks any basis. 
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