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Abstract  A Geographically Weighted Regression (GWR) is considered to compare results provided using two different 

kernel weighting functions: adaptive bi-square kernel and adaptive Gaussian kernel. To provide a baseline reference 

comparison, resulting data are also considered relative to Global Regression Analysis (GRA) calculations, which are obtained 

without the inclusion of geographical variability location data. For the analysis, data associated with a total of 214 crash cases 

for the dates between January 2016 and December 2019 are studied for a rural county in Alabama. Associated crash records 

are extracted from the Critical Analysis Reporting Environment (CARE) database. Six independent variables, including 

travel time, time of the day, day of the week, weather, lighting conditions, and crash severity are modeled in regard to their 

influences on EMS Response Time (ERT). Results from GWR analyses, using both weighting functions, show important 

quantitative and qualitative differences in regard to coefficient values as each independent variable is individually addressed, 

especially as the number of considered variables is altered, relative to the addressed variable. Mean square (MS) values 

associated with GWR Residuals are 276.6 for the adaptive bi-square kernel function and 332.4 for the adaptive Gaussian 

kernel function. Such differences within ANOVA table data indicate that GWR analysis, with an adaptive bi-square kernel 

weighting function, often yields improved model performance, relative to GWR with an adaptive Gaussian kernel weighting 

function. ANOVA table data also evidence improved model performance with the inclusion of geographical variability 

location data. 
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1. Introduction 

Recent reports from the World Health Organization 

(WHO) indicate that road traffic injuries (RTIs) account  

for about 1.3 million deaths worldwide annually [1,2].   

Of particular concern is a continual increase of RTI rate   

of mortality [3]. Conclusions from recent investigations 

indicate that most RTI deaths occur prior to hospital arrival, 

either at the at the crash scene, or during patient transport 

[4,5], that 86 percent of trauma-related deaths occur in the 

pre-hospital phase [6], and that 39 percent of associated 

deaths are preventable [4,6]. Within the United States, 

motor vehicle crashes (MVC) also continue to be a  

leading cause of death and injury, in spite of important 

improvements to road infrastructure, vehicle design, and 

traffic safety legislation [7]. Because emergency medical 

services provide the critical link between injury and  
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definitive critical care [8], the time between the occurrence 

of a MVC and delivery of a patient to this care is a vital 

factor in regard to the potential and probability of MVC 

mortality [9]. The importance of EMS travel delays and 

arrival times, and the strong connections between MVC’s, 

EMS Response Time (ERT), and patent mortality, are 

further illustrated by numerous additional studies [10-17].  

EMS Response Time (ERT) is the travel time interval 

between the initial reporting of a crash and the arrival of 

EMS personnel at the crash site [18,19,20]. Many factors 

influence the magnitude of ERT, such as crash site location 

(rural, suburban, or urban), road conditions, weather 

conditions, locations of ambulances within the service zone, 

transportation times, measures of rurality, on-scene and 

transport times, access to trauma resources, and traffic 

safety laws [11,12,21,22]. Results for rural/wilderness 

locations, as well as for urban/suburban settings, indicate 

that 9.9% and 14.1% of crash fatalities, respectively, are 

associated with prolonged response times [12]. According 

to Byrne et al. [12], such mortality rates have important 

implications for trauma system design and health policy 

[12].  
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Related results are also provided by Eftekhari et al. [23] 

which show that poor management of time is one of the  

six major challenges related to preventable deaths in   

RTIs. According to Ma, et al. [24], ERT, in addition to  

age, gender, seating position, and manner of collision,   

are all statistically significant in regard to the possibility   

of a fatality. These researchers further indicate that     

“the marginal smooth influential pattern of the ERT is 

non-monotonic” in regard to the relationship between 

longer ERT and the probability of a death. He et al. [25] 

employ spatial regression methods to demonstrate that 

establishing EMS performance measures is critical for the 

improvement of a rural community's access to Emergency 

Medical Services. According to these investigators, low 

service coverage measure means that improved strategic 

establishment or relocation of service stations are needed.  

The present investigation employs Geographically 

Weighted Regression (GWR) with two different kernel 

weighting functions: adaptive bi-square kernel and adaptive 

Gaussian kernel. Results from these functions are compared, 

for a wide range of experimental conditions, using ANOVA 

tables and analytic tools to determine the arrangement 

which gives the most physically realistic results. To provide 

a baseline reference comparison, resulting data are also 

considered relative to Global Regression Analysis (GRA) 

calculations. Crash records data for Pickens County 

Alabama for dates between January 2016 and December 

2019 are used for this study. The impacts of the 

combination of six independent variables on the EMS 

Response Time (ERT) are modeled, including travel time, 

time of the day, day of the week, weather, lighting 

conditions, and crash severity. The present study is unique 

and different from previous studies because different kernel 

weighting functions are considered and employed with 

GWR, and because the present data are collected from      

a rural county in Alabama with only one EMS dispatch 

center. 

2. Analytic Analysis Methods 

2.1. Test Environment Data 

Crash records for Pickens County Alabama are obtained 

from the Critical Analysis Reporting Environment (CARE) 

database. Pickens County is a county located on the west 

central border of the U.S. state of Alabama. The medical 

center for the Pickens County is located at 241, Robert     

K Wilson Dr., Carrollton, AL 35447. There is only one 

Emergency Medical Services (EMS) dispatch location 

within the entire county. The longitude and latitude 

coordinates for the EMS dispatch center are used as the 

hospital location. For the dates between January 2016 and 

December 2019, the total number of crashes reported is 214. 

From the crash data, EMS response time (ERT), travel 

time, crash severity, day of the week, time of the day, 

lighting condition, and weather are considered as the 

variables for this study. Travel time is calculated between  

the Pickens County hospital location and each of the crash 

sites using Google Maps with travel time recorded in 

minutes for the fastest route. GWR4 software [26] is    

used to analyze the data using Global Regression Analysis 

(GRA), Geographically Weighted Regression (GWR)   

with an adaptive bi-square kernel weighting function,    

and Geographically Weighted Regression (GWR) with an 

adaptive Gaussian kernel weighting function. Figure 1 shows 

a map of Pickens County, with the hospital (EMS) location, 

and including four crash site locations. 

 

Figure 1.  Pickens County map with hospital (EMS) location and four 

examples of crash sites 

2.2. Regression Analysis Using Geographically Weighted 

Regression (GWR) 

Employed within the present investigation is GWR4 

statistical software, which is specially developed for 

Geographically Weighted Regression (GWR) modeling 

[26]. Within this analytic code, a semi-parametric Gaussian 

GWR model is described using the equation given by 

       (1) 

where yi, xk,i and εi are the dependent variable, kth 

independent variable, and the Gaussian error at the location i, 

respectively. Quantities (ui,vi) are the latitude and longitude 

coordinates of the ith location, and coefficients βk (ui ,vi)  

are varying with location. As such, xk,i are local variables.  

zl,i is the ith independent variable with a fixed coefficient γl. 

Variables zl,i do not vary with location, and are thus, global 

variables. With this configuration, the analytic model uses 

both geographically local terms and geographically global 

terms. For GWR analysis, β coefficients, for the local 

variables, are not constant like global variables. Each 

coefficient β value varies based on the geographical location. 



 International Journal of Statistics and Applications 2022, 12(1): 1-9 3 

 

 

Hence, instead of a singular estimate for the coefficient, for 

the GWR results, the mean, standard deviation, minimum, 

and maximum values of each β coefficient are provided for 

the local variables. In contrast, for global variables, the 

coefficient estimate, standard error (SE) and the t-statistic 

values are provided. The standard error (SE) is an estimate of 

the standard deviation of the coefficient for all considered 

test cases. Standard error is thus a measure of the precision 

with which the regression coefficient is measured. The 

t-statistic is the coefficient estimate divided by the associated 

standard error. As such, the t-statistic value indicates how 

strongly each independent variable is associated with the 

dependent variable, as given by 

𝐭𝐤 =
𝛃𝐤

𝐒𝐄𝐤
                   (2) 

where tk, βk, and SEk are the t-statistic, coefficient estimate, 

and standard error of the kth independent variable.  

2.3. Weighting Functions for Geographically Weighted 

Regression (GWR)  

In GWR modeling, local parameters for each location are 

estimated based upon observations from nearby locations. 

Parameters associated with a location are more strongly 

affected by the observations occurring close by, relative to 

observations which are farther away.  

The influence factor to account for such variations      

in regard to location is the weighting function, wij. 

Observations are considered to be crash data for one 

particular location. The weighting function value for each 

crash data case indicates the influence of this case on the 

regression estimate of a different crash case. The weighting 

function value of cases closer to a particular crash location is 

then higher than the weighting function value of cases which 

are farther away.  

Two commonly used kernel weighting functions for this 

purpose are Gaussian and bi-square, as expressed using the 

following equations. 

Fixed Gaussian:                   (3) 

Fixed bi-square:   (4) 

Adaptive bi-square: (5) 

Adaptive Gaussian:               (6) 

Within Eqns. (3)-(6), i is the regression point index, j is the 

locational index, wij is the weight value of observation at 

location j for estimating the coefficient at location i, and dij is 

the Euclidean distance between i and j. Parameter h is a fixed 

bandwidth size, defined by a distance metric measure, and 

hi(k) is an adaptive bandwidth size defined as the kth nearest 

neighbor distance. 

Both Gaussian and bi-square kernel functions incorporate 

a distance decay function which allocates more weight to 

properties closer to a regression point compared properties 

located farther away. If a fixed kernel function is selected, 

the geographic extent for local model fitting to estimate 

geographically local coefficients is constant over space.    

On the other hand, adaptive kernel functions change locally 

by controlling the kth nearest neighbor distance for each 

regression location.  

With GWR, the size of the bandwidth is optimized by 

either distance (fixed kernel) or the number of neighboring 

observations (adaptive kernel). Gaussian kernel weight 

continuously and gradually decreases from the center of the 

kernel but never reaches zero. Such a Gaussian kernel is 

suitable for fixed kernels since it can mitigate the possibility 

of no data within a kernel range of values. A bi-square kernel 

function then has a defined range, where kernel weighting is 

non-zero, and is thus useful to clarify local extents for model 

fitting.  

2.4. Regression Analysis Approach - Global Regression 

Analysis (GRA) 

In contrast to GWR, Global Regression Analysis or GRA 

does not account for geographical variability. For this 

approach, the model is given by the following equation  

             (7) 

where yi, xk,i and εi are dependent variable, kth independent 

variable, and the Gaussian error, respectively. Hence, the 

value of the estimate is the coefficient β for the 

corresponding variable.  

The regression intercept value is the mean for the 

dependent variable when all independent variables are equal 

to 0. The intercept is needed to determine predicted values. 

For GWR results, the intercept term is generally specified as 

a local varying term since other coefficients often cause a 

variation of the intercept. Note that a regression without   

an intercept value indicates that the regression line goes 

through the origin, wherein the dependent variable and the 

independent variable are both equal to zero.  

3. Analytic Results 

3.1. Results Using Geographically Weighted Regression 

(GWR) with Adaptive Gaussian Kernel Weighting 

Function 

Here, results are obtained using GWR with an adaptive 

Gaussian kernel weighing function, as expressed using   

Eqn. (6). With this arrangement, Gaussian kernel weight 

continuously and gradually decreases from the center of the 

kernel, but never reaches zero. Longitude and latitude of the 

crash site are used for location data. ERT is the dependent 

variable. Independent variables are day of the week, time of 
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the day, weather, crash severity, lighting conditions, and 

travel time. Based on the geographical variability results, all 

the independent variables except travel time are local terms. 

Variance inflation factor (VIF) values are also  

determined for different combination of variables. The VIF 

value quantifies the severity of multi-collinearity within  

least squares regression analysis results. The present VIF 

values are calculated using R-Square values obtained using 

Analysis ToolPak within Microsoft Excel software. 

Resulting VIF values for multiple combinations of variables 

from the present study range between 1.0002 and 2.0943. 

Because these VIF values are close to one and very low 

compared to 5, the six independent variables are not strongly 

correlated with each other. Note that VIF values greater than 

5 indicate that multi-collinearity between parameters (or 

variables) is high. 

3.1.1. Travel Time - Global Independent Variable  

Table 1 shows GWR results for ERT as the dependent 

variable and travel time as only one independent variable. 

The effect of travel time on ERT is indicated by the 

coefficient estimate, which is positive indicating that ERT 

increases with an increase in the travel time. According to 

the coefficient value, the average ERT is 1.1% longer than 

actual travel time when no other independent variables are 

considered. The standard error (SE), which indicates the 

variation of estimate, is 0.257. The t-statistic value is for 

travel time is 3.939. This magnitude of t-statistic indicates 

that travel time has a significant impact on the EMS response 

time (ERT). The value of the intercept is not significant for 

the analysis, because variables are quantified using code 

numbers. 

3.1.2. Travel Time - Global Independent Variable with Other 

Local Independent Variables 

Tables 2a-2c show GWR results for ERT as the dependent 

variable and travel time as one independent variable, with 

additional independent variables added to the analysis. 

According to these data, travel time always has a positive 

impact on the ERT, such that, as travel time increases,    

the ERT also increases. The coefficient of the variable  

travel time ranges between 0.828 and 1.020, as different 

independent variables are added to the analysis. The 

coefficients also indicate that ERT is shorter than travel time 

for most of the combinations of variables. Data from Tables 

2a-2d also show that the impact of travel time on ERT 

variation is very small, as other variables are added to the 

analysis. Adding variables time of the day, lighting 

conditions, weather, and crash severity to the analysis 

reduces the coefficient estimate for travel time. In contrast, 

adding variable day of the week increases the coefficient 

estimate value.  

The t-statistic value greater than 1 indicates that the 

coefficient estimate is larger than the standard error, which 

indicates that the independent variable has a significant 

influence on the dependent variable. The t-statistic value for 

variable travel time ranges between 3.264 and 4.064. This 

indicates that travel time has a significant impact on the EMS 

response time (ERT) value. The t-statistic magnitude for 

travel time increases by adding variable day of the week to 

the analysis. In contrast, including variables time of the day, 

lighting condition, weather, and crash severity to the analysis 

slightly reduces the t-statistic value. 

3.2. Global Regression Analysis (GRA) Results  

Global Regression Analysis (GRA) does not account   

for variations due to spatial location, which means      

that associated model results are generally independent     

of location. Estimated coefficient values are thus 

spatially-averaged global values, and all independent 

variables are global. Within the present investigation, results 

obtained with this approach (without location influences) are 

used for comparison. 

Table 3 shows results for ERT as dependent variable with 

one independent variable. Table 4 shows results for ERT   

as dependent variable and travel time as one independent 

variable with five additional independent variables. For both 

sets of data, the coefficient of travel time is always lower 

than one. Results in Table 4 indicate that travel time, time of 

the day, and day of the week have a positive impact on ERT, 

which is qualitatively similar to GWR analysis results. 

Evidence is also provided by Table 4 data that weather has a 

negative impact on ERT.  

The t-estimate values for travel time, from Tables 3 and 4, 

are 3.425 and 3.148, respectively. In Table 4, t-statistic 

values for lighting condition and day of the week show that 

these two variables have a significant impact on ERT. 

Weather and time of the day have a lower t-statistic value 

which indicates minor impact on ERT. As mentioned, the 

magnitude of the t-statistic value indicates the importance of 

the independent variable, such that a value greater than 1 

indicates that the independent variable has a significant 

impact on the dependent variable. 

 

Table 1.  Results obtained using Geographically Weighted Regression (GWR) with an adaptive Gaussian kernel weighing function for EMS response time 
(ERT) as dependent variable and travel time as only one independent variable 

Type of variable Independent variables Coefficient estimate Standard Error t (Estimate/ SE) 

Global Travel time 1.011 0.257 3.939 

Type of variable Independent variables Mean Standard Deviation Coefficient of Variance 

Local Intercept 10.571 2.798 0.265 
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Table 2a.  Results obtained using Geographically Weighted Regression (GWR) with an adaptive Gaussian kernel weighing function for EMS response time 
(ERT) as dependent variable and travel time as one independent variable with two additional independent variables 

Type of variable Independent variables Coefficient estimate Standard Error t (Estimate/ SE) 

Global Travel time 1.020 0.251 4.064 

Type of variable Independent variables Mean Standard Deviation Coefficient of Variance 

Local 

Weather 0.263 1.183 4.503 

Day of the week 8.392 4.978 0.593 

Intercept -443.624 237.495 -0.535 

 

Type of variable Independent variables Coefficient estimate Standard Error t (Estimate/ SE) 

Global Travel time 0.964 0.255 3.776 

Type of variable Independent variables Mean Standard Deviation Coefficient of Variance 

Local 

Time of the day 0.589 0.802 1.363 

Day of the week 7.945 4.961 0.624 

Intercept -438.559 265.063 -0.604 

 

Type of variable Independent variables Coefficient estimate Standard Error t (Estimate/ SE) 

Global Travel time 0.871 0.253 3.438 

Type of variable Independent variables Mean Standard Deviation Coefficient of Variance 

Local 

Weather 0.302 0.961 3.184 

Time of the day 1.343 0.792 0.590 

Intercept -112.165 132.359 -1.180 
 

 

Table 2b.  Results obtained using Geographically Weighted Regression (GWR) with an adaptive Gaussian kernel weighing function for EMS response time 
(ERT) as dependent variable and travel time as one independent variable with three additional independent variables 

Type of variable Independent variables Coefficient estimate Standard Error t (Estimate/ SE) 

Global Travel time 0.956 0.254 3.763 

Type of variable Independent variables Mean Standard Deviation Coefficient of Variance 

Local 

Weather 0.299 1.227 4.110 

Time of the day 0.694 0.840 1.210 

Day of the week 8.178 4.710 0.576 

Intercept -485.258 252.152 -0.520 
 

 

Table 2c.  Results obtained using Geographically Weighted Regression (GWR) with an adaptive Gaussian kernel weighing function for EMS response time 
(ERT) as dependent variable and travel time as one independent variable with five additional independent variables 

Type of variable Independent variables Coefficient estimate Standard Error t (Estimate/ SE) 

Global Travel time 0.828 0.254 3.264 

Type of variable Independent variables Mean Standard Deviation Coefficient of Variance 

Local 

Time of the day -0.696 1.332 -1.914 

Day of the week 7.920 4.084 0.516 

Weather 0.096 1.104 11.462 

Lighting Condition 1.861 0.940 0.505 

Crash severity 0.410 1.314 3.202 

Intercept -507.702 218.865 -0.431 
 

 

Based on the coefficient estimates, when six independent 

variables are considered, data indicates that travel time has a 

greater influence on ERT with GWR analysis than with the 

GRA approach. Lighting condition, and crash severity have 

higher influence with GRA than the GWR model. The 

t-statistic values in Table 4 show that variables travel time, 

crash severity, lighting condition, and day of the week have 

statistically significant impacts upon ERT, whereas variables 

weather, and time of day have lower significance.  
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Table 3.  Results obtained using Global Regression Analysis (GRA) for 
EMS response time (ERT) as dependent variable with one independent 
variable 

Independent 

variables 

Coefficient 

estimate 

Standard 

Error 

t (Estimate/ 

SE) 

Travel time 0.748 0.218 3.425 

Intercept 15.267 3.923 3.892 

Table 4.  Results obtained using Global Regression Analysis (GRA) for 
EMS response time (ERT) as dependent variable and travel time as one 
independent variable with five additional independent variables 

Independent 

variables 

Coefficient 

estimate 

Standard 

Error 

t (Estimate/ 

SE) 

Travel time 0.696 0.221 3.148 

Time of the day -0.552 1.700 -0.325 

Day of the week 4.845 2.890 1.677 

Weather -0.134 1.292 -0.104 

Lighting 

condition 
2.315 1.417 1.634 

Crash Severity 1.246 1.566 0.795 

Intercept -384.609 197.840 -1.944 

3.3. Comparisons of GRA Results, GWR Results with an 

Adaptive Gaussian Kernel Weighting Function, and 

GWR Results with an Adaptive Bi-Square Kernel 

Weighting Function  

Figures 2-7 show variations of the coefficient for each 

independent variable, as additional variables are added,   

for GRA, and GWR analyses with both kernel weighting 

functions. Note that the value of the coefficient is averaged, 

as different variable combinations are employed, when two 

and three variables are considered.  

 

Figure 2.  Coefficient for travel time variation as additional variables are 

added, determined using GRA, GWR with Adaptive Gaussian Kernel 

Weight Function, and GWR with and Adaptive Bi-Square Kernel Weighting 

Function 

Figure 2 shows that the coefficient for travel time varies 

only slightly as additional variables are added, for up to    

3 variables. Somewhat larger variations are evident as    

the number of variables exceeds 3, for all three analysis 

approaches. For each variable number, GRA gives the lowest 

coefficients, whereas GWR with an adaptive bi-square 

kernel weighting function gives the highest coefficients.  

For all three analysis methods, Figure 3 shows that the 

coefficient for time of the day decreases in a progressive 

fashion, as additional variables are considered. Here, GRA 

coefficient values are consistently higher for all variable 

numbers, when compared to both GWR analysis methods. 

All three analysis methods give positive coefficients when 

up to four variables are employed, and negative values when 

a total of 6 variables are utilized.  

 

Figure 3.  Coefficient for time of the day variation as additional variables 

are added, determined using GRA, GWR with an Adaptive Gaussian Kernel 

Weighting Function, and GWR with an Adaptive Bi-Square Kernel 

Weighting Function 

 

Figure 4.  Coefficient for day of the week variation as additional 

variables are added, determined using GRA, GWR with an Adaptive 

Gaussian Kernel Weighting Function, and GWR with an Adaptive 

Bi-Square Kernel Weighting Function 

Figure 4 shows the variation of coefficient for day of the 

week as additional variables are added for all three analysis 

methods. Coefficient values are consistently positive for all 

three methods and for all variable numbers, such that the 
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highest values are associated with GWR with an adaptive 

Gaussian kernel weighting function, and the lowest values 

are associated with GRA. The variation of coefficient for 

weather is shown in Figure 5 as additional variables are 

added. Here, coefficients are mostly positive for both GWR 

analysis approaches, but mostly negative when GRA is 

utilized. The highest values, as additional variables are added, 

are associated with GWR with an adaptive Gaussian   

kernel weighting function. Figures 6 and 7 show variations      

of coefficients for lighting conditions and crash severity, 

respectively, as additional variables are added. Associated 

coefficients are consistently positive for all analysis methods 

and variable numbers, where the highest value for each 

variable number is associated with the GRA analysis 

method.  

 

Figure 5.  Coefficient for weather variation as additional variables are 

added, determined using GRA, GWR with an Adaptive Gaussian Kernel 

Weighting Function, and GWR with an Adaptive Bi-Square Kernel 

Weighting Function 

 

Figure 6.  Coefficient for lighting conditions variation as additional 

variables are added, determined using GRA, GWR with an Adaptive 

Gaussian Kernel Weighting Function, and GWR with an Adaptive 

Bi-Square Kernel Weighting Function 

 

Figure 7.  Coefficient for crash severity variation as additional variables 

are added, determined using GRA, GWR with an Adaptive Gaussian 

Kernel Weighting Function, and GWR with an Adaptive Bi-Square Kernel 

Weighting Function 

 

3.4. ANOVA Comparisons of GRA Results,       

GWR Results with an Adaptive Gaussian Kernel 

Weighting Function, and GWR Results with      

an Adaptive Bi-Square Kernel Weighting Function  

ANOVA, or analysis of variance, results are provided  

to compare the performance characteristics of GRA,  

GWR with an Adaptive Gaussian Kernel Weighting 

Function, and GWR with an Adaptive Bi-Square Kernel 

Weighting Function. As results from these different analysis 

methods are compared, ANOVA values indicate if adding 

geographical variability location data leads to significant 

improvements in model performance. With the ANOVA 

approach, determined are Source, Sum of Squares (SS), 

Degrees of Freedom (DF), Mean Square (MS), and 

F-statistic values. Values of SS are calculated for GRA and 

GWR residuals, and the difference between the GRA 

residual and the GWR residual is the GWR improvement. 

The MS value of GWR improvement, divided by the MS 

value of the GWR residual, is then the F-statistic.  

Table 5 shows the ANOVA Table for geographically 

weighted regression (GWR) analysis with bi-square kernel 

weighting function, with six independent variables. The 

table indicates that SS is lower for GWR than for GRA, 

with a GWR improvement of 28111. Such characteristics 

mean that the GWR model provides a better fit to data, with 

more physically representative results. The MS value of the 

GRA model is 350.473. The MS value of the GWR model 

with a bi-square kernel function is 276.551. The F-statistic 

within Table 5 is 2.195. Because the MS value is lower, 

improved performance of the GWR model (with a bi-square 

function) is again indicated, relative to the GRA model. 

Table 6 shows the ANOVA Table for geographically 

weighted regression (GWR) analysis with Gaussian  

kernel weighting function, with six independent variables. 

The table shows that SS is lower for GWR than for GRA, 
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with a GWR improvement of 8909. The MS value of the 

GWR model with a Gaussian kernel function is 332.401. 

The F-statistic within Table 6 is also greater than one, with 

a value of 1.724. Both characteristics indicate improved 

performance for the GWR model (with a Gaussian function), 

relative to the GRA model. 

Comparing values in Tables 5 and 6 indicates that better 

modelling is provided using the bi-square kernel weighting 

function, compared to using the Gaussian kernel weighting 

function, since the associated MS value is lower. Note that 

results in Tables 5 and 6 both evidence improved model 

performance with the inclusion of geographical variability 

location data.  

Note that Yacim, and Boshoff [27] also compare and 

discuss kernel function selection in geographically weighted 

regression.  

Table 5.  ANOVA Table for geographically weighted regression (GWR) 
analysis with bi-square kernel weighting function, with six independent 
variables 

Source SS DF MS F 

Global Regression 

Residuals 
72547.941 207.000 350.473 

 

GWR Improvement 28111.033 46.317 606.922 
 

GWR Residuals 44436.908 160.683 276.551 2.195 

Table 6.  ANOVA Table for geographically weighted regression (GWR) 
analysis with Gaussian kernel weighting function, with six independent 
variables 

Source SS DF MS F 

Global Regression 

Residuals 
72547.941 207.000 350.473 

 

GWR Improvement 8909.742 15.550 572.983 
 

GWR Residuals 63638.199 191.450 332.401 1.724 

4. Summary and Conclusions  

EMS response time (ERT) variation for data for a rural 

county in west Alabama, Pickens County, is investigated   

for a total of 214 crash cases for the dates between  

January 2016 and December 2019. The choice of this   

test environment is unique because only one EMS  

dispatch center is located within the county. The present 

investigation is undertaken to demonstrate and compare the 

use of Geographically Weighted Regression (GWR) using 

two different kernel weighting functions: adaptive bi-square 

kernel and adaptive Gaussian kernel. These two weighting 

functions are considered to provide different analytic   

tools to account for geographical variability location data. 

To provide a baseline reference comparison, resulting data 

are also considered relative to Global Regression Analysis 

(GRA) calculations, which are obtained without the 

inclusion of geographical variability location analysis. 

Considered are different combinations of six independent 

variables. Based upon geographical variability results, day 

of the week, time of the day, weather, crash severity, and 

lighting conditions are local independent variables, and 

travel time is a global independent variable.  

Results from GWR analyses, using both weighting 

functions, show important quantitative and qualitative 

differences in regard to coefficient values as each 

independent variable is individually addressed, especially as 

the number of considered variables is altered, relative to the 

addressed variable. From GWR ANOVA table data, values 

of SS are lower for GWR, using both kernel weighting 

functions, compared to GRA, with substantial GWR 

improvement values. Such characteristics mean that both 

GWR models provide a better fit to data, with more 

physically representative results. ANOVA table F-statistic 

and MS value data indicate that GWR analysis, with        

an adaptive bi-square weighting function, often yields 

improved model performance, relative to GWR with an 

adaptive Gaussian kernel weighting function. ANOVA 

table F-statistic data also evidence improved model 

performance, with the inclusion of geographical variability 

location data. This conclusion is based upon the result that 

both GWR analysis tools provide a lower MS value, 

indicating better performance relative to the GRA tool.  

With the adaptive Gaussian kernel weighting function,  

all observations are considered, with weightings that tend 

towards zero as distance from the travel location increases. 

The adaptive bi-square approach gives observations with 

decreasing weight with distance, such that weight is zero 

beyond a certain distance h, called the bandwidth. Based on 

standard deviation data, the adaptive Gaussian kernel 

weighting function provides adequate representation of 

physical behavior for some experimental conditions. 

However, function values for observations beyond a certain 

distance are often inaccurate, resulting in unrepresentative 

coefficient values. Because of these issues, GWR with an 

adaptive bi-square kernel weighting function provides data 

which are physically more accurate for a wider range of 

experimental conditions.  

Overall, the GWR and GRA analysis results indicate that, 

as the travel time increases, the EMS response time also 

increases. When different local independent variables are 

considered, EMS response time is larger on weekends than 

on weekdays. The EMS response time is larger in the 

evening and at night, when compared to morning. When the 

weather is clear or cloudy, the EMS response time is shorter. 

But when the weather is extreme, with mist, fog, or rain, the 

EMS response time is longer. When roads are dark, the 

EMS response time is longer, and when daylight is present, 

the EMS response time is shorter. If the crash is fatal, the 

EMS response time is longer compared to situations when 

crash injuries are non-severe. 
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