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Abstract  In this paper, the estimation of the parameters for the Marshal-Olkin extended linear exponential (MOLELE) 

distribution is discussed in the presence of outliers or extreme observations. Three methods are used to estimate the 

parameters, maximum likelihood, percentile, and M methods. A simulation study is conducted in the presence of outliers to 

examine the performance of the estimation methods. The results confirmed that, the M-estimation method is a suitable 

estimation method than the other methods when there are outliers in the data. Also, a real dataset application is carried out to 

confirm these results. 
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1. Introduction 

The linear exponential (LE) distribution is a 

two-parameter distribution was introduced by Kodlin (1967) 

as a possible model for response time. The linear exponential 

distribution has many applications. It has been used by  

many biometricians, statisticians, mathematicians, medical 

scientists and others, for example, Broadbent (1958) used it 

to describe the service of milk bottles that are filled in a dairy, 

circulated to customers, and returned empty to the dairy. 

Also, Carbone et al (1967) used it to study the survival 

pattern of patients with plasmacytic myeloma.  

In the literature, various methods have been used to 

generalize linear exponential distribution. Sarhan and Kundu 

(2009) introduced a generalization of the linear exponential 

distribution, named as the generalized linear failure rate 

distribution. Also, Mervoci and Elbatal (2015) introduced a 

four-parameter generalized version of the linear exponential 

distribution which is called Kumaraswamy linear 

exponential distribution.  

Marshall and Olkin (1997) introduced a new family of  

the distributions based on adding a new parameter  , this 

distribution called Marshall-Olkin extended distribution. 

Suppose that    1F x F x   be the survival function of 

the baseline distribution. Then, the survival function of the 

Marshall-Olkin extended distribution can be defined as 

following 
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Where 0  is an additional parameter and 1   . 

Hence, the probability distribution (pdf) and the cumulative 

distribution for the new distribution are given by, 

respectively 
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Okasha and Kayid (2016) introduced a new family of 

Marshall-Olkin extended generalized linear exponential 

distribution, the unknown parameters are estimated by the 

maximum likelihood method.  

In the presence of outliers in the data, the traditional 

methods of estimation do not give good results. So, the 

robust method of estimation can be used to estimate      

the unknown parameters. Kantar and Yildirim (2015) 

considered various robust estimators for the extended Burr 

Type III distribution for complete data with outliers by using 

different methods of robust estimation. Mousa (2017) used 

M-estimation as a robust method to estimate the prameters  

of the Marshal-Olkin extended burr III distribution for 

complete data with outliers. Almongy and Almetwally (2020) 

discussed robust estimation for point estimation of the shape 

and scale parameters for generalized exponential (GE) 

distribution using a complete dataset in the presence of 

various percentages of outliers.  
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The rest of this paper is organized as follows: Section (2) 

is concerned with describing the MOELE distribution. The 

maximum likelihood, Percentile and M estimators are given 

in Section (3). A simulation study is carried out in Section (4). 

Finally, a real data example is given in Section (5). 

2. Marshall - Olkin Extended Linear 
Exponential Distribution 

Let X  be a random variable that have a linear 

exponential distribution with shape parameters 0c  and 

0k . Then the probability density function is given by 
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And, the cumulative density function is given by  
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Substituting (4) and (5) in (2) and (3) we obtain a 

Marshall-Olkin Extended Linear Exponential distribution 

denoted by MOELE distribution with the following pdf and 

cdf, respectively 
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In particular for 1   the original distribution, i.e.,    

the linear exponential distribution is recovered. Also, for 

1, 0c    the MOELE becomes the Rayleigh distribution. 

And, for 1, 0k   , the MOELE becomes exponential 

distribution. 

MOELE distribution is more flexible than the linear 

exponential distribution, because of the presence of the 

shape parameter. Figure (1) shows the plots of pdf for 

MOELE distribution for some values of the parameters. 

3. Parameters Estimation 

In this section, we consider three procedures to estimate 

the parameters of the MOELE distribution. 

 

Figure (1) 

 
 

0 1 2 3 4

0
.0

0
.2

0
.4

0
.6

0
.8

pdf of MOELE dist.

x

f(
x)

0 1 2 3 4

0
.0

0
.2

0
.4

0
.6

0
.8

 

 

0 1 2 3 4

0
.0

0
.2

0
.4

0
.6

0
.8

 

 

0 1 2 3 4

0
.0

0
.2

0
.4

0
.6

0
.8

 

 

2 c 0.5 k 0.5

3 c 1 k 1

4 c 0.5 k 1

5 c 0.5 k 0.25



14 Ayman Orabi and Dalia Ziedan:  Robust Estimators for Marshal-Olkin Extended Linear Exponential Distribution  

 

 

3.1. The Maximum Likelihood Estimation 

Suppose that 1 2, ,....., nx x x  is a random sample from 

 , ,MOELE c k , then the log-likelihood function, 

 , ,L c k , is given by 
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The normal equations become: 
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Since the above normal equations cannot be solved 

analytically, we will use some numerical methods to solve it.  

3.2. Estimators Based on Percentiles 

This method was originally explored by Kao (1958, 1959). 

In this case, the estimators are obtained by fitting a straight 

line to the theoretical points obtained from the distribution 

function and the sample percentile points. Now, we apply 

this approach on the MOELE distribution to obtain 

estimators based on percentile (PC). Since, the MOELE 

distribution has the form 
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Now, let   iiX x  be the ith  order statistics, 

1 2 ...... nx x x , then the quantile function is  
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so, 

 , ,i i ix m c k u               (13) 

where, ip  denotes some estimate of  ; , ,iG x c k  and iu  

is the error term, then the estimate of ,c k and  can be 

obtained by minimizing  
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In fact, there are several estimators of ip , the unbiased 

estimator of them of  ; , ,iG x c k  is  1ip i n  , so we 

consider it. Hence, 
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and (17) is a non-linear system. So, it is possible to use some 

numerical methods to estimate ,c k and  simultaneously. 

These estimators we call as percentile estimators  sPCE . 

3.3. Robust Estimation for the MOELE Distribution 

Robust estimation is an estimation method that is used 

when there are some outliers that affect the model. Robust 

estimation is used to detect outliers and provide results that 
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are resistant to the outliers. One of the robust estimation 

methods is M estimator. In the past three decades, there   

are considerable works in the literature devoted to 

developing statistical procedures that are resistant to outliers 

and stable (or robust) with respect to deviations from a   

given distributional model. In particular, methods for  

robust regression, estimation, and testing on regression 

models have received much attention. Among these, 

procedures based on M-estimators play an important and 

complementary role.  

In this paper we proposed a robust estimation method 

based on M-estimation method proposed by Huber (1964). 

The robust M-estimator method to estimate the parameters of 

the MOELE distribution is performed as following: 

 , ,i i ix m c k e                (18) 

where  , ,im c k  is the quantile function was given in 
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Where, iu  is the error term was given in equation (9), 
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Now, minimize the objective function    for all 

invariant errors with respect to the parameters ,c k and . 

There many   functions used in robust statistical analysis, 

we will use Tukey's Bisquare and Huber's weight [See Huber 

(1981)]. 

Tukey's Bisquare objective function is 
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with derivative is 
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where 4.685a   the tuning constant determines if an 

observation is an outlier or not. 

Huber's weight objective function is 
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where 1.345a   

Since   is differentiable, M estimates can be obtained 

for the two selected objective function by minimize 
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Since equations (24) - (26) are non-linear equations, so the 

numerical methods will apply to solve these equations.  

4. Simulation Study 

In this section, a simulation study is conducted in the 

presence of outliers to examine the performance of the 

estimation methods was given in section 3. The data were 

generated from the MOELE distribution by using inverse 

transform method, and the different values of ,c k and  are 

used. The procedures are performed as: 

Step (1): We generate random samples 1 2, ,....., nx x x  of 

sizes 20, 40n  100and  from the MOELE distribution. 

We have taken parameter values  , ,c k   3,2,1 ,

 2,1,1 ,  2,1,0.5and . 

Step (2): For each random sample, the outliers are 

generated from the uniform distribution as  4 , 7U x s x s  , 

where x  is the sample mean and s  is the standard 

deviation of 1 2, ,....., nx x x . For the small sample size 

 20n   one outlier is taken, for the moderate sample size 

 40n   two outliers are taken and for the largest sample 

size  100n   five outliers are taken. [See Wei and Fung 

(1999)]. 
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Step (3): Solve equations (8) - (10) simultaneous to  

obtain the ML estimators, and solve equations (15) - (17) 

simultaneous to obtain the PC estimators. Also, solve 

equations (24) - (26) simultaneous to obtain the M 

estimators.  

Step (4): Calculate the bias and the mean square error 

(MSE) for the estimators obtained in step (3). 

Step (5): Steps from (1) to (4) will be repeated 100 times.  

The tables from 1 to 3 show the values of the bias and the 

RMSE for the ML, PC and robust (Tukey and Huber) 

estimators under different values of  , ,c k  and different 

values of n  in the presence of outliers. It is obvious from 

the tabulated results that:  

(i)  The robust estimator based on Tukey's Bisquare 

function has the smallest bias and the smallest RMSE 

in the most. 

(ii)  The robust estimator based on Huber's weight 

function has bias and RMSE smaller than ML and PC 

estimators. 

 

Table 1.  The Bias and RMSE for    , , 3,2,1c k   and different sample sizes 

n=20 with one outlier 

methods 
  c  k  

bias RMSE Bias RMSE bias RMSE 

MLE 1.08081 1.131003 1.221879 1.131851 0.927393 0.92632 

PC 0.938655 0.933885 0.923202 0.789228 0.65826 0.789228 

Huber 0.710563 0.723149 0.689234 0.601699 0.315546 0.601699 

Tukey 0.493915 0.478535 0.47977 0.36217 0.197385 0.36217 

n=40 with two outlier 

MLE 0.8877 0.91842 0.73914 0.54862 0.39185 0.5388 

PC 0.565074 0.793638 0.594504 0.468144 0.34344 0.454638 

Huber 0.395437 0.462812 0.457996 0.350196 0.229397 0.343581 

Tukey 0.263145 0.28355 0.30689 0.117035 0.137075 0.114706 

n=100 with five outlier 

MLE 0.39086 0.52333 0.42712 0.14972 0.1996 0.146741 

PC 0.344664 0.408168 0.278586 0.126369 0.157257 0.123854 

Huber 0.251377 0.259994 0.101612 0.058303 0.101493 0.057143 

Tukey 0.15959 0.02711 0.05786 0.01467 0.032035 0.014378 

Table 2.  The Bias and RMSE for    , , 2,1,1c k  and different sample sizes 

n=20 with one outlier 

methods 
  c  k  

bias RMSE Bias RMSE bias RMSE 

MLE 0.95668 0.85349 0.97078 0.84697 0.77054 0.85945 

PC 0.829188 0.699066 0.861093 0.75744 0.553059 0.740196 

Huber 0.632625 0.436191 0.640346 0.51443 0.363293 0.49525 

Tukey 0.44637 0.29022 0.435215 0.21374 0.23923 0.314955 

n=40 with two outlier 

MLE 0.88752 0.46909 0.82421 0.35963 0.47182 0.4721 

PC 0.759879 0.389916 0.679788 0.307377 0.395181 0.401823 

Huber 0.555884 0.293139 0.474551 0.217217 0.290094 0.268709 

Tukey 0.36939 0.2093 0.257545 0.13614 0.166385 0.144775 

n=100 with five outlier 

MLE 0.67983 0.39442 0.2715 0.18836 0.28073 0.27744 

PC 0.475074 0.303669 0.198603 0.155223 0.200403 0.223758 

Huber 0.340683 0.22176 0.143241 0.06608 0.154665 0.125489 

Tukey 0.21664 0.09884 0.096455 0.040875 0.043675 0.04678 
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Table 3.  The Bias and RMSE for    , , 2,1,0.5c k  and different sample sizes 

n=20 with one outlier 

methods 
  c  k  

bias RMSE Bias RMSE bias RMSE 

MLE 0.866871 0.746289 0.772308 0.747522 0.506889 0.604593 

PC 0.637875 0.553889 0.599746 0.482657 0.28966 0.437388 

Huber 0.38088 0.353475 0.418325 0.32671 0.18707 0.2914 

Tukey 0.866871 0.746289 0.772308 0.747522 0.506889 0.604593 

n=40 with two outlier 

MLE 0.60812 0.52511 0.60684 0.6254 0.32069 0.49515 

PC 0.512064 0.465489 0.533196 0.441666 0.248814 0.342819 

Huber 0.391321 0.356139 0.39032 0.322238 0.168875 0.24472 

Tukey 0.18424 0.253695 0.231925 0.20639 0.118105 0.08093 

n=100 with five outlier 

MLE 0.34717 0.47392 0.4421 0.39958 0.23562 0.1264 

PC 0.223938 0.370134 0.348183 0.301779 0.202581 0.091611 

Huber 0.153209 0.255703 0.265335 0.229726 0.119686 0.067711 

Tukey 0.105625 0.1523 0.15668 0.14498 0.08149 0.020315 

 

5. Real Data Example 

In this section, we apply on a real data set to verify how 

our estimators work in practice. The data given by shao 

(2000) is used. This data is used by Mousa (2017) to fit a 

Marshall –Olkin extended Burr III distribution. The data set 

is resulted from the study of influence of the proportion of 

toxicity of chromium in marine water. Table (4) contains 36 

values for chromium marine water. 

To estimate the parameters, the values of data set      

are divided by 365 for more fitting to MOLE distribution  

and Kolmogorov-Smirnov (KS) test is used. The estimation 

of the unknown parameters  , ,c k  and P-values are 

obtained in table (5). 

Table 4.  Chromium in marine water 

2000 776.25 89.13 2000 177.83 1174.89 

12.59 1258.93 4.79 199.5 540 9.55 

199.53 3311.31 8800 2.4 1456 3090.3 

4 39.81 10000 728 2511.89 602.56 

56 2630.27 1600 1122.02 1200 1995.26 

264.03 187.2 602.56 140 478.63 210 

Table 5.  Estimation of parameters for real data set 

method   c  k  k S  p-value 

MLE 0.78027 0.70017 0.00156 1.321 0.061 

PC 0.7692 0.6972 0.0034 1.312 0.064 

Huber 0.3856 0.41898 0.0406 1.168 0.131 

Tukey 0.36934 0.42023 0.03747 1.125 0.159 

From table (5), we note that 

(i)  The Tukey estimator is the best estimator because the 

KS value is the smallest value and the P-value is the 

biggest value. 

(ii)  the Huber estimator is better than the ML and PC 

estimators based on the values of KS an P-value. 

6. Conclusions 

In this paper, the estimation of the unknown parameters 

for the MOELE distribution is discussed in the presence of 

outliers. The traditional estimation methods such as ML and 

PC methods are used. Also, the M-estimation method is used 

based on the two objective functions, i. e. tukey's Bisquare 

and Huber. The simulation study and the real data are proved 

that, the M- estimation method is more efficient in estimating 

the unknown parameters of the MOELE distribution than the 

traditional methods when the data contains outliers or 

extreme observations. 
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