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Abstract  This study aimed at identifying the determinants of Under Five Child mortality (U5CM) based on Kenya 

Demographic and Health Survey (KDHS, 2014). One of the key challenges with Demographic and Health Survey datasets 

involves extreme imbalance between the mortality and non-mortality classes. In this particular research only 6.4% of children 

experienced under five years mortality while 94.6% survived beyond five years. To establish the determinants of U5CM, we 

opted to handle the class imbalance using four different balancing techniques: Random Under-sampling, Random 

Over-sampling, Both-sampling, and Synthetic Minority Over-sampling technique. We then did variable selection using 

Random Survival Forests following the four techniques. The variables selected from each of the four datasets were then used 

in a Cox-PH regression to determine the effect of select covariates on child mortality, after conducting appropriate model 

diagnostics. After the analysis, the variables which resulted in increased hazard of child mortality include V206 (Sum of 

demised sons), V207 (Sum of demised daughters), V203 (Sum of daughters living at home), V218 (Sum of existing children), 

V238 (Number of deliveries in the last 3 years), HW72 (Weight for height standard deviations) and interaction between B1 

(Child’s Month of birth) and V206. Based on model selection indices, Under-sampling balancing schemes performed well 

for identification of U5CM determinants. By grouping these variables, this study identified birth characteristics of the child 

(such as age at birth), reproduction factors of the mother (such as number of siblings born before), feeding conditions and 

anthropometric measurements as key determinants of U5CM.  

Keywords  Under five mortality, Balanced Random Survival Forests, Class Imbalance in data, Cox-PH regression in 

Survival analysis 

 

1. Introduction 

1.1. Background 

The desire to understand the determinants of Under 5 

Child Mortality (U5CM) poses a very important aspect of 

research, as countries aim to achieve the Millennium 

Development Goals (MDG 2015 – 2030). The Demographic 

and Health Surveys (DHS) program has been very 

instrumental for obtaining and disseminating authentic, 

national representative data on family planning, fertility, 

maternal and child health, among other health issues. The 

most recent DHS survey conducted in Kenya was KDHS 

2014.  

This study aims at identifying the determinants of U5CM 

in Kenya. Comparisons shall be made between mortality and 
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non-mortality groups from the KDHS 2014 data. Mortality 

group composes a very minority class (less than 7%) of the 

entire population, while the non-mortalities constitute the 

majority class. Imbalanced classification is a common 

problem with most datasets including mortality data, fraud 

data, fraud detection, claim prediction, default prediction, 

spam detection among others. Handling imbalanced 

classification has received prominence in many studies ([1], 

[2], [3], [4], [5]).  

The KDHS data is associated with 1,099 variables and 

20,964 rows of data. Due to high dimensionality of the data, 

one needs to identify effective variable selection techniques 

in order to handle a problem such as to identify determinants 

of child mortality. Machine learning techniques (that require 

no distributional assumptions on data) such as Random 

Survival Forests, support vector machine among others have 

received wide application in studies involving high 

dimensional datasets ([6], [7], [8], [9], [10], [11], [12]). 

These machine learning techniques have been useful when 

dealing with problems such as missing data imputation, 

classification imbalance and variable selection.  

mailto:hwaititu@cuea.edu


 International Journal of Statistics and Applications 2020, 10(5): 118-130 119 

 

 

Besides, DHS data is often associated with missing data 

problem. This is often one of the main data analysis tasks 

before running the desired models. In this case, we did 

multiple imputation using RF algorithms, before proceeding 

with RSF classification. In this study however, we dwelt 

more on handling the challenge of imbalanced classification 

in mortality data. 

The remaining part of the paper is laid out as follows: 

Section 2 discusses the methodology employed in this study, 

from description of the data, exploratory data analysis, 

effects of data imbalance, the theory behind Random 

Survival Forests, the structure of the COX-PH model used, 

and finally model selection criteria using concordance 

statistic. Section 3 summarizes the results of the study both 

from variable selection using RSF to the Cox-PH fit. Finally, 

section 4 offers a discussion of our results against other 

ongoing research on determinants of U5CM.  

2. Methodology 

2.1. Data Description and Ethical Approval 

The data for this research was drawn from the 2014 Kenya 

Demographic and Health Survey (KDHS) data [13]. This is 

the sixth Demographic and Health Survey (DHS) conducted 

in Kenya since 1989. KDHS is a national research 

undertaking conducted every five years with an intention of 

collecting a wide range of data with a strong interest on 

indicators of reproductive health, fertility, mortality, 

maternal and child health, nutrition and self-reported health 

habits among adults [14]. It is a household sample survey 

data with a national representation where households are 

selected at random from Kenya National Bureau of Statistics 

(KNBS) sampling frame. 

The survey procedures, instruments and sampling 

methods used in the KDHS 2014 acquired ethical 

recommendation from the Institutional Review Board of 

Opinion Research Corporation (ORC) Macro International 

Incorporated, a health, demographic, market research and 

consulting company situated in New Jersey, USA. We 

sought official registration on the DHS website and got 

permission to use the KDHS 2014 data. The data was 

downloaded in SPSS format and constituted 1,099 variables 

and 20,964 observations. Using package foreign, the data 

was imported to R software version 3.6 for analysis. 

Variables with 100% missing observations and those  

which were correlated were deleted from the data reducing 

the number of variables to 786. Survival time and status 

variables which are important considerations when 

analyzing survival data were calculated and included in the 

dataset. 

2.2. Data Exploration and Analysis 

The data was explored and analyzed using R software. 

This involved summarizing and visualizing characteristics of 

the variables within the dataset. The entire dataset was found 

to be highly imbalanced with the mortality class having 871 

observations, constituting 4% of the overall data while the 

majority class had 20,093 observations constituting 96%. 

For this analysis, we singled out on the Nairobi dataset only 

from the KDHS (2014) data. Different covariates including 

region, residence, sex, level of education, wealth index, 

among others, were also found to have high class imbalance 

(between survivors and non survivors), with the minority 

class size ranging between 3% and 6%.  

The aim of this research is to find an effective way of 

applying the variable selection technique called Random 

Survival Forest (RSF), to analyze data with imbalance. 

KDHS data is a national survey data which is classified into 

8 regions, constituting former provinces in Kenya. For this 

work, we analyzed data only for Nairobi region, being a 

unique urban system in Kenya. It’s a metropolitan region 

with improved health facilities and access, while also having 

high levels of socio-economic disparity among populations. 

Nairobi hosts some of the largest slam settlements of the 

world including Kibera, Mukuru, Mathare and Kangemi. 

However, majority of Nairobians are in the middle and upper 

class by socio-economic status classification enjoying 

sufficient access to proper health and nutrition for their 

children. 

In the KDHS 2014 data, Nairobi region alone was 

associated with 788 covariates and 532 observations. Some 

variables in this subset of data were found to have 100% 

missing information and others were highly correlated. 

These variables were deleted leaving 757 variables. Some of 

the variables that were deleted from Nairobi data include 

variables related to medication for fever that are currently 

out of use, for example ML15A (time when the individual 

began malaria drugs), ML15B (days when child took malaria 

drugs), ML15C (first source of fansidar), ML23C (first 

source for other anti-malaria) among others. Other variables 

like V000 (country code), V024 (De facto region of 

residence), among others were also deleted from Nairobi 

data set.  

The data was found to have high level of missing 

information. The algorithm “missForest,” which is a random 

forest-based algorithm for missing data imputation [15] was 

applied to handle missing data. 

Nairobi dataset equally showed high level of class 

imbalance. This imbalance between mortality and survivor 

classes is clearly shown on Table 1(a) with 6.4% minority 

class (mortality class) representation. Similarly, the variables 

in the data (covariates) show high imbalance in the mortality 

class. Table 1(b) shows the imbalance between mortality and 

survivor classes in one of the covariates – child sex. 

Table 1(a).  Imbalance in KDHS 2014 Nairobi region data 

Status Total Percentage 

Survivors (Censored cases) 498 93.6% 

Mortality (No. of observed Events) 34 6.4% 

Sum total 532 100% 
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Table 1(b).  Imbalance in the KDHS 2014 Nairobi region data by 
Covariate (Child Sex) 

Status/ Child Sex Female Male Total 

Survivors (Censored cases) 254 244 498 

Mortality (No. of observed Events) 17 17 34 

Sum Total 271 261 532 

Percentage of Events 6.3% 6.5% 6.4% 

Such imbalance may lead to lack of information and under 

representation in the mortality class which is of great interest 

in our study. This may in turn lead to false conclusions.  

Imbalanced data has been seen to severely hamper the 

classification performance of learning algorithms, inclusive 

of Random Forests and other ensemble methods, since their 

opinions are determined from classification error [16]. In 

such imbalanced datasets, the classifiers often show biased 

behavior supporting the majority class and present the 

minority class lightly [17]. We are therefore interested in 

construction of classifiers that are skewed toward the 

minority class, while still maintaining the precision of the 

majority class. 

2.3. Imbalance and Its Effects in Datasets 

A dataset is said to be technically imbalanced if its class 

distributions are not equal. However, when there is a 

significant, or in some cases extreme, disproportion among 

the number of examples of each class of the problem, then 

the dataset is said to be imbalanced [18]. For instance, in a 

cohort of 1000 children, its often the case that mortality 

group over the study period composes of less than 50 

children (representing less than 5%) or less, hence leaving an 

entire 95% plus as the non-mortality group.  

Imbalanced data classes are common in many real-life 

situations including mortality data where the survivors 

greatly outnumbers the mortality, rare disease diagnosis data 

records where large number of patients do not have the 

disease, fraud detection, among others. In most of the 

imbalanced data situations, it is the underrepresented class 

which is of most interest, since despite its being rare, the 

minority class may carry important and useful knowledge 

required in prediction. 

When dataset is imbalanced and one class dominates the 

other, machine learning algorithms such as random forests 

among others have issues classifying correctly. The 

algorithms are sensitive to proportions of different classes. 

They often show biased behavior supporting the majority 

class and present the minority class lightly [16], [19]. This 

leads to higher rate of misclassification in the minority class 

samples [20], [21] which in turn results in weak predictive 

accuracy of the minority class and misleading high 

predictive accuracies in the majority class, as a result of 

correct classification [22], [23], [24]. Thus, the performance 

of such algorithms is decreases significantly when it comes 

to predicting the minority class. 

Many machine learning algorithms are designed to 

maximize overall accuracy. This can be misleading in 

imbalanced datasets because the minority class holds a small 

effect of this measure. However, when data is balanced, 

accuracy rates tend to decline [25]. This is attributed to the 

fact that balanced data reduces the training set size leading to 

degeneracy of the model through omission of cases 

encountered to the test set. 

The machine learning algorithms aim at minimizing the 

overall error rate instead of paying attention to the minority 

class. Therefore, they do not make accurate prediction for the 

minority class if they don’t get the necessary amount of 

information. 

[25] in his research demonstrating problems encountered 

when unbalance data is used in data mining algorithms found 

that algorithms tend to degenerate by assigning all cases to 

the majority class when data is highly imbalanced and still 

achieve high accuracy scores. Hence, evaluating algorithm 

performance using predictive accuracy alone is inappropriate 

when data is imbalanced.  

In order to overcome these issues it is important, when 

working with such machine learning algorithms to work with 

balanced classification. However, this is in most cases 

overlooked. We are therefore interested in construction of 

classifiers that are skewed toward the minority class, while 

still maintaining the precision of the majority class. 

2.4. Data Balancing Techniques 

Various techniques have been suggested to solve 

problems associated with class imbalance. We can group 

these techniques into four categories, subject to how they 

deal with imbalance. The categories includes data level (or 

external/ re-sampling techniques), algorithm level (or 

internal) techniques, cost-sensitive learning techniques and 

ensemble-based methods. There is no open directive that 

indicates the best strategy to use. However, many studies 

have shown that, external techniques greatly improve the 

ultimate performance of the classification in comparison 

with non-preprocessed data set for various types of 

classifiers [18]. In addition, re-sampling techniques are 

independent of the classifier, can be easily implemented for 

any problem and do not need adaptation of any algorithm to 

the dataset [26]. They are also able to effectively balance the 

dataset resulting in training sets that are suitable for 

satisfactory calibration of machine learning algorithms [27]. 

[28], [29] and [16] have proved the effectiveness of 

balancing class distributions using data level techniques. 

In this research we apply the Data level Preprocessing (or 

external) techniques. The methods re-balance the sample 

space aiming to lessen the effect of the imbalanced class 

distribution in the learning process. The Data level 

techniques are further classified into three groups [30] which 

are: under-sampling methods, over-sampling methods and 

hybrids methods which combine both sampling methods. 

The Data level techniques used in this research are: 

a) Random under-sampling 

This aims at balancing dataset by randomly eliminating 

examples of the majority class up to when the dataset is 

balanced. The major drawback of this method is that there is 
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a high possibility of discarding potentially useful data 

pertaining to majority class leading to a possibility of 

information loss. 

b) Random over-sampling 

While the under-sampling method involves removal of 

samples from the majority group, over-sampling method 

generates new samples for the minority class. To balance the 

data using this method, the observations from the minority 

class are reduplicated. New instances are created from the 

existing ones; hence over-sampling does not increase 

information but raises the weight of the minority class by 

replication. One advantage of over-sampling methods is that 

there is no information loss. However, since over-sampling 

simply makes exact copies of the minority class observations, 

it increases the chances of over fitting due to replication. 

Therefore, even if there will be improvement in the training 

accuracy of the data the overall accuracy of the data may be 

worse. In addition, while dealing with large imbalanced data 

sets, over-sampling may increases computational work and 

execution time [31].  

c) Both-sampling 

This method combines both under-sampling and 

over-sampling methods by performing over-sampling with 

replacement on the minority class while the majority class 

undergoes under-sampling without replacement.  

d) Synthetic Minority Oversampling technique (SMOTE). 

This is a hybrid method in re-sampling techniques where 

both under-sampling and over-sampling approaches are 

combined with an aim to overcome their drawbacks. 

SMOTE has become one of the most outstanding approaches 

in data balancing field [18]. The key idea in SMOTE 

proposed by [32] is to produce new samples of the minority 

class artificially. This helps to avoid over fitting brought 

about by reduplication of minority class instances. 

Additionally, the majority class examples are under-sampled, 

giving rise to a more balanced dataset. 

Generation of Synthetic samples takes the following steps: 

  Randomly select a minority and its 𝑘 nearest minority 

class neighbors. The value of 𝑘 is determined by the 

amount of oversampling needed. 

  Calculate the difference between the vector of selected 

minority and that of one of its nearest neighbors. 

  The difference got is then multiplied by a random 

number between 0 and 1. The result is added to the 

selected minority vector. By so doing a new random 

point is added along the line joining the two vectors 

under consideration. 

SMOTE is thus implemented as follows. Let 𝑥𝑖  be the 

feature vector for the selected minority and 𝑥𝑗  be the feature 

vector of a randomly chosen neighbor. A new synthetic 

minority 𝑥𝑠 is generated in the feature space as: 𝑥𝑠 = 𝑥𝑖 +
𝛾(𝑥𝑖 − 𝑥𝑗 ) where 𝛾 ∼ Uniform(0; 1), is a uniform random 

variable. An arbitrary point is selected along the line  

segment between two points under consideration. Thus, the 

synthetically generated data can be interpreted as a randomly 

sampled point along the line segment between the two 

minority samples in the feature space. 

In the R environment, Package DMwR [33] and ROSE 

package [34] are used to enhance data balancing. ROSE 

package [34] is used to enhance data balancing using 

under-sampling, over-sampling and both-sampling methods. 

On the other hand, package DMwR [33], assists in data 

balancing using SMOTE. In SMOTE the parameters 

𝑝𝑒𝑟𝑐. 𝑜𝑣𝑒𝑟  and 𝑝𝑒𝑟𝑐.𝑢𝑛𝑑𝑒𝑟  respectively control the 

amount of over-sampling and under sampling to be done. If a 

completely balanced data set is required, the minority cases 

are doubled while the majority class is halved. 

In this study, we used under-sampling, over-sampling, 

both-sampling and SMOTE methods to balance the Nairobi 

region data. The balanced data was analyzed using RSF 

algorithm. 

2.5. Random Survival Forest Algorithm 

The KDHS dataset has a total of 1099 variables that are 

possible candidates for predicting child mortality. After 

some data management exercise, the number of candidate 

covariates reduced to 757 possible covariates. Before fitting 

a regression type model in order to embark on the exercise of 

determining the effect of child mortality predictors, we 

needed to do a variable selection exercise in order to further 

reduce the variables of importance to a manageable subset of 

important variables. A Random Survival Forest technique, 

supplemented by our own intuition of sensible covariates for 

child mortality resulted into a reduced set of utmost 20 

covariates for the regression steps that followed. 

Random Survival Forest algorithm is described as follows 

[35]: 

a)  The procedure starts by randomly drawing 𝑛𝑡𝑟𝑒𝑒 

bootstrap samples from the initial data consisting of 𝐺 

samples. On average, each bootstrap sample sets aside 

37% of the data called out of bag (OOB) data with 

respect to the bootstrap sample and each sample has 𝑅 

predictors. 

b)  For each of the drawn samples, a survival tree is 

grown. Construction of survival tree begins with 

randomly selecting 𝑚𝑡𝑟𝑦  out of 𝑅  possible 

predictors in 𝑥 for splitting on. The value of 𝑚𝑡𝑟𝑦 

depends on the number of available predictors and is 

data specific. All the 𝑛𝑡𝑟𝑒𝑒  bootstrap samples are 

designated to the top most node of the tree which is 

also referred to as the root node. This root node is then 

separated into two daughter nodes each of which is 

recursively split progressively maximizing survival 

difference between daughter nodes/ increasing 

within-node homogeneity. 

c)  Trees are grown to full size up to the point when no 

new daughter nodes can be formed due to the stopping 

criterion that the end node (most extreme node in a 

saturated tree) should have larger than or equal to 

𝑛𝑜𝑑𝑒𝑠𝑖𝑧𝑒 unique events. 

d)  After the tree is fully grown, cumulative hazard 

function (CHF) is computed as well as the mean over 

all CHFs for the 𝑛𝑡𝑟𝑒𝑒 trees. This is done to attain the 
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ensemble CHF. 

e)  By using out-of-bag (OOB) data only, the ensemble 

OOB error is calculated using the first 𝑏 trees, where 

𝑏 = 1, . . . ,𝑛𝑡𝑟𝑒𝑒. 

2.5.1. Node Splitting 

From the RSF algorithm, a forest originates from 

randomly drawn 𝑛𝑡𝑟𝑒𝑒 bootstrap samples. Each bootstrap 

sample becomes the root of each tree in the forest. There are 

𝑅  predictors in each bootstrap sample. From the 𝑅 

predictors, we randomly select 𝑚𝑡𝑟𝑦 predictors for splitting 

on. Suppose we take ℎ  to be the ℎ𝑡ℎ  node to be split    

into two daughter nodes. Within node  ℎ, let there be 𝑛 

observations each with survival time denoted by  𝑇𝑙 , and 

censoring status given by 

 𝛿𝑙 =  
0                if individual l is censored 
1   if individual l experienced death

  

In right censored data, all details of developing a forest 

take into consideration the outcome. For right censored data, 

the outcome is survival time and censoring status [36].  

The information at time 𝑡𝑖  can be summarized as in Table 

2 below. 

Table 2.  Summary table of information at time 𝑡𝑖  

Time 𝑡𝑖  Event set Survivors Risk Set 

Node 1 𝑑𝑖 ,1 𝑌𝑖 ,1 − 𝑑𝑖 ,1 𝑌𝑖 ,1 

Node 2 𝑑𝑖 ,2 𝑌𝑖 ,2 − 𝑑𝑖 ,2 𝑌𝑖 ,2 

Total 𝑑𝑖  𝑌𝑖 − 𝑑𝑖  𝑌𝑖  

Where, 𝑑𝑖 ,𝑗  stands for the number of events in daughter 

node 𝑗 = 1,2 at time  𝑡𝑖  , 𝑑𝑖 = 𝑑𝑖 ,1 + 𝑑𝑖,2 

𝑌𝑖,𝑗   represents individuals who are alive in daughter node 

j, 𝑗 = 1,2  at time 𝑡𝑖 , 𝑌𝑖,1 is the number of  𝑇𝑖 ≥ 𝑡𝑖 , 𝑥𝑖 ≤ 𝐶, 

where 𝑇𝑖  is the duration of survival for the 𝑖𝑡ℎ  individual 

and 𝑡𝑖  the distinct event time in node ℎ 

𝑌𝑖,2 is the number of 𝑇𝑖 ≥ 𝑡𝑖 , 𝑥𝑖 > 𝐶 

𝑌𝑖 = 𝑌𝑖,1 + 𝑌𝑖,2 

From the 𝑚𝑡𝑟𝑦 predictors in node  ℎ, take any predictor 

𝑥 (for example age). Using predictor x, find a splitting value 

𝑐  (for example from predictor age, the splitting value could 

be 2 years). The splitting value 𝑐 is chosen in such a way 

that the survival difference for predictor 𝑥 between 𝑥 ≤ 𝑐 

and 𝑥 > 𝑐 is maximized. 𝑥 ≤ 𝑐 separates to the left node 

while 𝑥 > 𝑐 goes to the right node. The survival difference 

between the two nodes is calculated using a predetermined 

splitting method. This procedure is repeated with another 

splitting value 𝑐  until we get a value which results in 

maximum survival difference in predictor  𝑥 . The same 

procedure is repeated for the remaining 𝑚𝑡𝑟𝑦 − 1 

predictors in node  ℎ. This is done until we get predictor   

𝑥∗ and split value 𝑐∗ which results in maximum survival 

difference between the two daughter nodes [37]. This 

process is repeated at every node. When survival difference 

is maximum, unlike cases with respect to survival are  

pushed apart by the tree. Increase in the number of nodes     

causes dissimilar cases to separate more. This results in 

homogeneous nodes in the tree consisting of cases with 

similar survival. 

Splitting criteria is one of the aspects of growing a tree. In 

this research, log rank splitting rule was used in splitting the 

node.  

2.5.2. Log Rank Splitting Rule 

The log-rank splitting rule separates the nodes by selecting 

the split that yields the largest log rank test. The log rank test 

is the most frequently used statistical test to compare two or 

more samples non-parametrically in censored data. PH 

assumption is the key requirement for the optimality of log 

rank test. For a split using covariate 𝑥 and its splitting value 

𝑐 , the goodness of fit will be measured using log rank 

statistics represented as;  

 𝐿(𝑥, 𝑐) =
  𝑑𝑖,1 −

𝑑𝑖

𝑌𝑖
 𝑌𝑖,1 

𝑁
𝑖=1

  
𝑌𝑖,1
𝑌𝑖

𝑁
𝑖=1  1 −

𝑌𝑖,1
𝑌𝑖

  
𝑌𝑖 − 𝑑𝑖

𝑌𝑖 − 1
 𝑑𝑖

 

This equation measures the magnitude of separation 

between two daughter nodes. The best split is given by the 

greatest difference between the two daughter nodes which is 

given by the largest value of  L(x, c)  .  

RSF gives a measure of variable importance (VIMP) 

which is totally nonparametric. In this study, using the RSF 

model, the highly predictive risk factors from the four 

balanced datasets were extracted. The extracted important 

predictors were then fitted in the Cox PH model in order to 

estimate the effect of statistically significant predictors. 

2.6. Determining Predictors of Child Mortality 

The Cox ph model [38] is frequently used to determine 

collectively the effect of various risk factors on survival 

duration. The formula for the Cox ph model is written as  

ℎ(𝑡,𝑋) = ℎ0(𝑡)exp   (

𝑝

𝑖=1

𝛽𝑖𝑋𝑖)  

This formula displays the risk at time 𝑡 for an individual 

specified by a set of covariates X. In this case, 𝑋 is a group 

of variables that are used in the model for prediction of the 

risk of the given observations. From the formula, the risk at 

time 𝑡 is a product of  ℎ0 𝑡  , the baseline hazard function 

and  exp  (
𝑝
𝑖=1 𝛽𝑖𝑋𝑖) , the exponential to the sum of the 𝑝 

predictor variables in  𝑋 . the baseline hazard function 

indicates what the risk would be when there are no covariates. 

The coefficient 𝛽𝑖  gives the magnitude of the influence of 

the covariates. 

2.6.1. Checking the COX-PH Assumptions 

For appropriate use of the Cox proportional hazards 

regression model, there are several important assumptions 

that need to be checked. 

These include: 

  The proportional hazard assumption. Schoenfeld 

residuals were used to test this assumption. 
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  Functional relationship between the log hazard and the 

covariates. Martingale residual were used to assess this 

assumption. 

  Possible presence of outliers or influential observations. 

Deviance residual was used to examine possible 

presence of influential observations. 

2.7. Model Selection Criterion 

Comparison of prediction accuracy of the different models 

was done based on concordance index. In survival analysis,  

a pair of observations is said to be concordant if for the 

individual that got the event fast the model predicts a higher 

risk of event. Harrell’s concordance index (C-index) [39] is 

used to estimate prediction error. It estimates the likelihood 

that in a pair of cases selected at random, the case that came 

to have an event first had a worse predicted result. Suppose 

we have two observations whose outcome is predicted. If the 

observation predicted to have the worst outcome experiences 

an event first, then the two observations are said to be 

concordant (i.e. they have the appropriate practice). 

Computation of concordance error rate is as given below. 

a) The procedure begins by forming all potential pairs of 

observations from the entire data.  

b) A pair is omitted if: 

  The observation with shorter duration of survival is 

censored. 

  Duration of survival is equal for the pair but one or both 

observation is censored. 

c) After the omissions are done, we remain with all the other 

pairs which are referred to as permissible pairs. 

A score of value 1 is given to a permissible pair if: 

  For all pairs having unequal survival durations resulting 

in prediction being worse for the observation with 

shorter survival duration.  

  For all pairs having uniform survival durations resulting 

in similar prediction results. 

  For all pairs having equal survival duration given that 

not both observations are events, the observation with 

event results in a worse prediction outcome. 

A score of value 0.5 is given to a permissible pair if: 

  For all pairs having unequal survival duration, the 

prediction outcome is equal.  

  For all pairs having equal survival duration, prediction 

outcomes are not equal. 

  For all pairs having equal survival duration given that 

not both observations are events, prediction outcome is 

worse for the observation with censored results. 

If we denote the sum of all the permissible pairs as 

Concordance, then the concordance index, C is defined as 

𝐶 =
𝑐𝑜𝑛𝑐𝑜𝑟𝑑𝑎𝑛𝑐𝑒

𝑝𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑏𝑙𝑒
 

The error rate, 𝐸  is given by 𝐸 = 1 − 𝐶  where 

0 ≤ 𝐸 ≤ 1 .  𝐸 = 0  indicates perfect accuracy while 

𝐸 = 0.5 is equivalent to random guessing. 

3. Results  

3.1. Balancing Schemes 

The sample sizes obtained after different balancing 

methods are shown in Tables 3(a) and 3(b) 

Table 3(a).  Balanced KDHS 2014 Nairobi region data 

Balancing Method Status Total Percentage 

Under-sampling 

Censored 34 50% 

Uncensored 34 50% 

Total 68 100% 

Over-sampling 

Censored 498 50% 

Uncensored 498 50% 

Total 996 100% 

Both sampling 

Censored 520 52% 

Uncensored 480 48% 

Total 1000 100% 

SMOTE 

Censored 68 50% 

Uncensored 68 50% 

Total 136 100% 

Table 3(b).  Balance in KDHS 2014 Nairobi survival data grouped by child 
sex 

Balancing Method Status Female Male Sum 

Under-sampling 

Censored 17 17 34 

Uncensored 17 17 34 

Total 34 34 68 

Over-sampling 

Censored 254 244 498 

Uncensored 242 256 498 

Total 496 500 996 

Both sampling 

Uncensored 275 245 520 

Censored 248 232 480 

Total 523 477 1000 

SMOTE 

Censored 28 40 68 

Uncensored 33 35 68 

Total 61 75 136 

The different methods of data balancing resulted in 

different sample sizes. Under-sampling method resulted in 

the smallest sample size of 68 with both the mortality and 

survival classes each taking 34 observations. The two tables 

3(a) and 3(b) show balance in mortality and non mortality 

classes in the overall data as well as in sample covariates.  

The balanced data is then analyzed for variable selection 

using RSF algorithm. The results of running the RSF 

algorithm using balanced data are given in the Table 4. 

3.2. Variable Selection Using RSF after Different 

Balancing Schemes 

From the results in table 4, a forest of 1000 trees was 

grown for each data set. This was done by drawing 1000 

bootstrap samples from the respective initial data with the 

sample sizes given in the table. The size of each bootstrap 
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sample drawn is given as resample size used to grow trees  

in table 4. The bootstrap samples are of different sizes 

depending on the sample size of the initial data and the 

balancing method used. Each of the 1000 bootstrap samples 

is designated to the root of the tree. To develop each tree, 28 

out of the 757 possible predictors are selected at random for 

splitting. The root node is then split into two daughter nodes 

each of which is recursively split progressively maximizing 

survival difference between daughter nodes. Node splitting 

continues until each tree if fully grown. This is achieved 

when the most extreme node has no fewer than 15 different 

events. This implies that the samples with bigger number of 

events will form bigger trees. Hence, the more the number of 

events, the bigger the average number of terminal nodes and 

the smaller is the error rate. Over-sampling method with the 

biggest number of events has the smallest error rate while 

under-sampling method with the smallest number of events 

has the highest error rate. Even though the sample sizes are 

different, the number of variables in the four samples is the 

same. This explains why the number of variables tried at 

each split and the numbers of random split points are equal in 

the four samples.  

The identified predictors based on balanced random 

survival forest (BRSF) using the different balancing methods 

are presented in table 5. 

Table 4.  Application of RSF in Balanced data sets 

Description Under-sampling Over-sampling Both sampling SMOTE 

Sample size 68 996 1000 136 

No. of deaths 34 498 480 68 

Number of trees 1000 1000 1000 1000 

Forest terminal node size 15 15 15 15 

Average no. of terminal nodes 2.518 20.461 19.867 5.41 

No. of variables tried at each split 28 28 28 28 

Total no. of variables 757 757 757 757 

Resample size used to grow trees 43 629 632 86 

No. of random split points 10 10 10 10 

Error rate 13.33% 7.11% 7.5% 13.32% 

Table 5.  Important variables from the different balanced datasets (selected variables had a variable importance > 0.02. For variable names, refer to the 
Appendix) 

 Balancing method 

 Under- sampling Over-sampling Both sampling SMOTE 

 Variable Importance Variable Importance Variable Importance Variable Importance 

1 B7 0.0029 B7 0.0251 B7 0.0219 V206 0.0153 

2 HW72 0.0086 HW71 0.0157 HW70 0.0105 V207 0.0103 

3 HW70 0.0079 HW70 0.0124 HW73 0.0103 V219 0.0055 

4 B12 0.0076 HW73 0.0111 HW72 0.0091 B7 0.0055 

5 V219 0.0069 HW72 0.0111 HW71 0.0086 V218 0.0044 

6 HW71 0.0057 B12 0.0075 V206 0.0063 V419 0.0038 

7 HW73 0.0052 V206 0.0074 V214 0.0062 V238 0.0037 

8 B8 0.0052 V214 0.0057 B12 0.0056 V203 0.0024 

9 V206 0.0042 B8 0.0049 V207 0.0039 V417 0.0022 

10 V207 0.0024 M1E 0.0035 B1 0.0035   

11   V419 0.0029 V218 0.0035   

12   H4M 0.0029 B8 0.0034   

13   V208 0.0028 V419 0.0031   

14   V218 0.0027 M1E 0.0026   

15   V418 0.0024 V219 0.0026   

16   V219 0.0024 HW1 0.0024   

17   HW1 0.0022 V208 0.0024   

18   B1 0.0020 V418 0.0023   

19   V230 0.0020 V417 0.0021   

20   V207 0.0020     
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The bigger the importance value, the higher the predictive 

ability of the variable. Variables with VIMP exceeding  

0.002 were considered predictive. From table 5, the 

oversampling method which resulted to 498 events, 

extracted the highest number of important predictors (20 

predictors). Both-sampling method, which resulted into 480 

events, extracted 19 important variables. SMOTE method 

extracted the smallest number of predictors (9 predictors) 

followed by under sampling method (10 samples). 

3.3. Determining the Variable Effects 

In order to measure the effects of the selected variables on 

child mortality, we fit a Cox PH model on the covariates 

from each variable selection exercise. Before the predictors 

are fitted in the Cox model, ph assumptions were tested. 

3.3.1. Testing Cox Proportional Hazards (PH) Assumptions 

Table 6 displays the results of proportional hazards 

assumption. The global test gives a general picture of 

proportional hazards violations among the variables in the 

model. Therefore, p.value < 0.05 suggests one or more 

violations. For variables that do not satisfy the assumption, 

interaction with time varying covariate is included. Variables 

that finally do not satisfy the assumption even after 

interaction with time varying covariate are not supposed to 

be included in the model. 

From table 6, the test is observed to be statistically 

insignificant for each of the predictors in the Under-sampling 

method (p.values >0.05). The global test is also statistically 

insignificant in Under-sampling method. This is after 

removal of variable B7 from the model which had a p.value 

less than 0.05 showing statistical significance hence did not 

meet the requirements of PH assumption and was deleted 

from the model. In SMOTE method, two variables did not 

meet the PH assumptions and are not included in table 6. 

In over-sampling and both sampling methods, quite a 

number of variables as well as the global p.value resulted in 

statistically significant test. Only a few which are given in 

table 6 satisfy the PH assumption which is supported by a 

non significant test of hypothesis result. We therefore 

assume proportional hazard assumption is met for the 

variables in table 6. Column “Rho” represents the Pearson 

product moment correlation between the scaled Schoenfeld 

residuals and log (time) for each predictor. 

In the Schoenfeld residuals graphs shown in Fig 1, the 

broken lines representing a standard error band around the fit 

while the continuous line represents a smoothing spline fit to 

the plot. The line of fit is expected to stay close to the 

horizontal axis within the whole expanse of time, in order to 

conclude that the PH assumption holds. This is the case for 

all covariates selected from the Under-sampling scheme.  

The pattern of the deviance residuals shown in Fig 2 looks 

fairly symmetric around zero. The positive values represent 

individuals who died too soon compared to the expected 

survival times while the negative values represent 

individuals who lived too long. The very large or very small 

values are the outliers which are poorly predicted in the 

model. In general, we have symmetry along the zero – line 

and have no fear for presence of outliers or influential 

observations in the data. 

 

Table 6.  Statistical tests 

Under sampling method SMOTE 

Covariate Rho Chi-square P.Value Covariate Rho Chi-square P.Value 

V206 0.1609 0.872 0.350 V206 -0.0166 0.0136 0.9073 

V207 0.1956 0.888 0.346 V207 0.0740 0.1944 0.6593 

V219 -0.1931 0.856 0.355 V203 0.2104 2.8585 0.0909 

B8 -0.2369 1.075 0.300 V218 -0.2186 3.5175 0.0607 

B12 -0.2004 2.322 0.128 V219 0.1316 1.0958 0.2952 

HW70 -0.0496 0.177 0.674 V238 0.1183 0.9276 0.3355 

HW71 -0.1515 1.285 0.257 V419 0.0684 0.2812 0.5959 

HW72 0.0529 0.153 0.695 Global NA 12.8034 0.0770 

HW73 0.1674 1.870 0.171     

Global NA 10.882 0.284     

Over sampling method Both sampling method 

Covariate Rho Chi-square P.Value Covariate Rho Chi-square P.Value 

HW72 -0.1667 0.9343 0.334 V206 0.101 3.05 0.0807 

H4M -0.0355 0.0474 0.828 V207 0.136 4.85 0.0277 

B1:V206 -0.0248 0.2277 0.633 Global NA 5.54 0.0627 

Global NA 1.0825 0.781     
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Figure 1.  Schoenfeld residuals for variables in under sampling method 

 

Figure 2.  Deviance residuals for under sampling method 

3.3.2. Parameter Estimates  

From the previous section, we noted that the different 

balancing methods yielded different sample sizes and 

different predictors from the RSF classification. After 

diagnostic tests on Cox PH models, the respective predictors 

were fitted to the parsimonious Cox PH model [37] in order 

to check concurrently the effect of different risk factors on 

survival time. 

The results of fitting the Cox model are shown in Table 7. 

The regression coefficient column marked “Coefficient” 

gives estimates of the logarithm of the hazard ratio between 

the two groups. From the estimates, a positive coefficient is 

said to increase the risk of death (hazard) and thus decrease 

the expected (average) survival time. On the other hand, a 

negative coefficient reduces the risk of death and thus raises 

the expected survival span.  

In explaining the determinants of child mortality, one 

therefore is interested in the variables with positive 

coefficient, which are positively related with the event 

(mortality) probability, and consequently negatively related 

with the length of survival. From table 7, under-sampling 

method resulted in 9 predictors, out of which only 3 were 

likely to increase the risk of death. Similarly, SMOTE 

returned 5 predictors that are likely to increase the risk of 

death out of 7 important variables which satisfy PH 

assumptions. Over-sampling and both-sampling method had 

3 and 2 predictors respectively all of which had positive 

coefficients. 
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Table 7.  Result of fitting the respective predictors in Cox PH model 

Under sampling method SMOTE  

Predictor Coefficient Exp(coefficient) Se(coefficient) 𝑝𝑟(>  𝑧 ) Predictor Coefficient Exp(coefficient Se(coefficient) 𝑝𝑟(>  𝑧 ) 

V206 2.0637 7.8753 0.3988 2.29e-07 V206 2.2819 9.7956 0.3499 6.94e-11 

V207 1.5189 4.5675 0.3728 4.61e-05 V207 1.8688 6.4805 0.3111 1.88e-09 

V219 -0.1912 0.8259 0.2032 0.3466 V203 0.0922 1.0966 0.2903 0.7509 

B8 -0.8111 0.4444 0.3636 0.0257 V218 0.3171 1.3732 0.4721 0.5017 

B12 -0.0589 0.9428 0.3246 0.0697 V219 -0.1723 0.8418 0.4972 0.7289 

HW70 -0.0002 0.9998 0.0014 0.8667 V238 0.6561 1.9273 0.2286 0.0041 

HW71 -0.0005 0.9995 0.0011 0.6490 V419 -0.6068 0.5451 0.3061 0.0474 

HW72 0.0022 1.0022 0.0010 0.0340      

HW73 -0.0013 0.9987 0.0010 0.2124      

Over sampling method Both sampling method 

Predictor Coefficient Exp (coefficient) Se(coefficient) 𝑝𝑟(>  𝑧 ) Predictor Coefficient Exp (coefficient Se (coefficient) 𝑝𝑟(>  𝑧 ) 

HW72 0.0001 1.0000 2.152e-05 4.4e-09 V206 1.8300 6.2339 0.0763 <2e-16 

H4M 0.0244 1.025 0.02115 0.25 V207 1.5285 4.6112 0.0730 <2e-16 

B1:V206 0.1854 1.025 0.01161 <2e-16      

 

Its often useful for interpretation to look at the 

“Exp(coefficient)” column, which indicates the actual hazard 

ratio (HR) associated with the covariates. A value of 

regression coefficient greater than zero is equivalent to a 

hazard ratio greater than one, which shows that as the   

value of the 𝑖𝑡ℎ  predictor increases (for continuous type 

covariates), the event hazard increases and thus the length of 

survival decreases. 

From table 6 for example, variable V206, in 

under-sampling method has (𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡) = 𝑒𝑥𝑝(2.0637) 

= 7.8753. HR value which is clearly greater than 1 implies 

that variable V206 increases the hazard by a factor 7.8753. 

This is deduced from the fact that a predictor is related with 

increased risk when the value of HR>1, and decreased risk 

when HR<1. When the HR value is close to 1, the predictor 

has no impact on survival. From our results, there are 2 

predictors in under-sampling method associated with 

increased risk, 0 in over-sampling, 2 in both-sampling and 4 

in SMOTE (refer to Table 6 above). 

The column marked 𝑝𝑟(>  𝑧 )  gives the value of the 

Wald statistic. Wald statistic evaluates whether the 

explanatory variables in a model are significant. A variable is 

said to be statistically significant when its p.value is less than 

0.05. 

3.3.3. Model Goodness of Fit Statistic  

The concordance statistic was used to analyze the 

performance of the models on prediction of mortality. 

Concordance values are given in Table 8 below. 

High values of concordance indicate that for higher 

observed survival duration, the model predicts higher 

probabilities of survival. Concordance values ranges from 0 

to 1. A perfect Concordance results in a value of 1 while 0.5 

is as good as random guessing. All our models gave high 

concordance values above 0.7 with standard errors less than 

0.02 as shown in Table 7. Hence all the models represent a 

good fit according to the concordance Index. 

Under-sampling method gives largest concordance value of 

0.91 indicating the best model fit while over-sampling had 

the smallest concordance value. SMOTE and both-sampling 

methods have almost equal concordance value. 

Table 8.  Model fit statistics: Concordance measure 

Description/ 

Method 

Under- 

sampling 

Over- 

sampling 

Both- 

sampling 
SMOTE 

Sample size 68 996 1000 136 

Concordance 0.91 0.781 0.8644 0.8645 

Standard error 0.0262 0.01206 0.0091 0.0243 

Discordant 1386 248084 257769 5325 

Concordant 137 69549 26991 830 

Tied.x 0 0 31815 13 

Tied.y 158 33849 23690 471 

Tied.xy 0 3621 10434 6 

4. Discussions 

The study attempts to understand the determinants of 

under five mortality using survey data from DHS. In this 

case, Kenya DHS survey 2014 dataset was used for the 

analysis. The dataset (after variable cleaning) is composed of 

757 variables that are candidate determinants of Under five 

Child mortality. This poses a problem of variable selection 

from such high dimensional datasets preceding a proper 

analysis in which the intention is to explain variable effects. 

Besides, there is too much class imbalance in the datasets 

particularly where interest is to compare mortality and non 

mortality groups. For instance, 6.4% of children experience 

mortality while 93.6% survived up to the age of 5 years. This 

imbalance is too huge that a direct comparison (before 

balancing) between two such groups is likely to yield biased 
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results. 

Two challenges were addressed in this study. One 

problem involved trying to balance the dataset classes before 

making comparisons between mortality and non mortality 

cases. The other challenge was due to variable selection. One 

needs to conduct a proper variable selection exercise in order 

to identify the correct set of variables to use for the 

regression analysis.  

Most studies explore determinants of child mortality using 

DHS survey data. [6] used Uganda 1996, 2000, 2006 DHS 

dataset, [7] used Uganda 2011 DHS, [8] analyzed the data 

from complete birth histories of four Nepal Demographic 

and Health Surveys (NDHS) done in the years 1996, 2001, 

2006 and 2011, among many other studies. In this study,  

we have also tapped into the richness of KDHS (2014) 

dataset, to establish the determinants of U5CM. The key 

improvement over many studies that have used DHS data  

to answer the same question lies in our choice to ensure   

the following remedies are done: (i) class imbalance is 

eliminated before comparisons are done, (ii) imputation for 

missing data is done using a machine learning approach (the 

missForest package in R software used), (iii) variable 

selection is accomplished again using a machine learning 

algorithm (RSF). In most studies, researchers often use self 

intuition or previous studies to determine which covariates to 

add to their regression models. All these remedies were done 

before applying a Cox PH regression on the data to reduce 

chance of reporting biased findings.  

Many studies commonly employed regression techniques 

to explore the determinants of U5CM. Cox PH regression 

was used by [6], [7], [8] among others. Although we     

also used the Cox PH model, we preceded it diagnostics 

including multiple imputation, classification balancing, 

variable selection, and Cox PH assumptions tests, to ensure 

that the results from the Cox PH are more reliable.  

Our findings show that child mortality is associated with 

variables related to: child characteristics at birth (such as  

age at birth), reproduction factors of the mother (such as 

number of siblings born before), feeding characteristics and 

anthropometric measurements. This is in line with other 

findings such as [6] who used Cox PH regression and 

established that region of residence, sex of the child, type of 

birth (multiple), birth interval (less than 24 months after   

the preceding birth), and mother's education were related 

with an increased risk of children mortality before their fifth 

birthday. [7] also established that factors related to mother 

characteristics and previous births such as sex of the child, 

sex of the head of the household and the number of births   

in the past one year was found to be significant. [8] explored 

the effect of mother’s education, child's sex, rural/urban 

residence, household wealth index, regions ecological zones 

and development.  

It’s worth to note that even though most of the studies that 

rely on DHS datasets ([6], [7], [8]) are challenged with high 

dimensional data and a variable selection dilemma, there is 

no mention of any statistical form of variable selection. DHS 

datasets typically are composed of over 700 variables that 

are candidate determinants of child mortality and one need to 

carefully select which variables to include in the resultant 

regression type models. Majority of the studies explore the 

effect of a predetermined, select group set of covariates, 

based on self intuition or variables explored from previous 

studies. We attempted to do a variable selection using a 

machine learning algorithm, before subjecting the selected 

variables to Cox PH regression.  

Other than finding the determinants of under five 

mortality, different data balancing methods were used and 

model selection done using concordance index. In their 

research [40] used SMOTE to balance data before 

integrating it with RSF. In this research, under-sampling 

method resulted in a better model with a concordance index 

of 0.91 as compared to other balancing methods used. 

SMOTE generates synthetic samples along the line segment 

joining two minority samples. By so doing there is a 

tendency of generating a decimal value in factor or numeric 

variables which are not meant to be in decimal form. In as 

much as under-sampling method may discard potentially 

useful data in majority class there is no loss of data in the 

minority class which is our main class of interest. 

5. Conclusions 

In this research, we presented a framework for 

determination of under five child mortality using the 2014 

KDHS data. The framework involved data balancing, 

variable selection using RSF method and variable prediction 

using Cox PH model. Various challenges and effects of 

working with imbalanced data are discussed in this  

research as well as the various data balancing methods. 

Analysis of four data balancing methods; over-sampling, 

under-sampling both-sampling and SMOTE techniques was 

conducted where under-sampling model emerged the best 

with a concordance index of 0.91. Based on this research, 

child mortality is associated with variables related to child 

characteristics at birth (such as age at birth), reproduction 

factors of the mother (such as number of siblings      

born before), feeding characteristics and anthropometric 

measurements. 
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Appendix 

Table 9.  Description of Important variables 

Category Variable Description 

Child characteristics 

at birth 

B1 Month of birth of child. 

B7 Age at death of the child in completed months. 

B8 Current age of the child in single years for all living children. 

B12 
Succeeding birth interval is calculated as the difference in months between the 

current birth and the following birth, counting twins as one birth. 

Reproduction 

(siblings 

information) 

V203 Total number of daughters living at home. 

V206 Total number of sons who have died. 

V207 Total number of daughters who have died. 

V208 
Total number of births in the last five years is defined as all births in the months 

0 to 59 prior to the month of interview, where month 0 is the month of interview. 

V214 Imputed duration of the current pregnancy. 

V218 Total number of living children. 

V219 Total number of living children including current pregnancy. 

V230 Year of the last pregnancy termination. 

V238 Total number of births in the last three years. 

Maternity and 

Feeding 

V417 Number of entries in the pregnancy and postnatal care history. 

V418 Number of entries in the immunization history. 

V419 Number of entries in the height and weight table. 

Height and Weight 

and Hemoglobin 

HW70 Height for age standard deviation (according to WHO). 

HW71 Weight for age standard deviation (according to WHO). 

HW72 Weight for height standard deviations (according to WHO). 

HW73 BMI standard deviations (according to WHO). 

HW1 Age in months of the child. 

Maternity M1E Last tetanus injection before last pregnancy (CMC). 
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