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Abstract  The main objective in sample surveys is to make inference about the entire population parameters using the 
sample statistics. In this study, a nonparametric estimator of finite population total is proposed and the coverage probabilities 
using the Saddle point approximation explored. Three asymptotic properties; unbiasedness, efficiency and the confidence 
interval of the proposed estimator are studied. The study focusses more on length of confidence interval and coverage 
probabilities. The amount of bias and MSE are studied both analytically and empirically. Simulated data using three data 
variables; linear, quadratic and exponential are generated to study the asymptotic properties of the proposed estimator. Based 
on the empirical study with simulations in R, the proposed estimator resulted into a comparatively smaller amount of bias and 
MSE compared to the nonparametric Nadaraya – Watson (Dorfman’s) estimator, the design-based Horvitz-Thompson 
estimator and the model-based ratio estimator. Further, the proposed estimator is tighter compared to the other three 
considered in this study and has a higher converging coverage probability.  
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1. Introduction 
In estimating a population parameter such as a mean or   

a variance, a measure of precision of the estimate is quite 
paramount. The most commonly reported measure of 
precision is the function of the variance (or its square root; 
the standard error). The variance of the estimator is always 
estimated since the measure of precision of the estimator is 
the inverse of its variance [9]. In the estimation of the finite 
population total, misspecification of the model can lead to 
serious errors in an inference especially with regard to the 
non-sampled part of the population. In the recent past, efforts 
have been made to explore alternative ways to attenuate the 
errors. These include the use of nonparametric regression in 
evolving robust estimators in finite population sampling [5], 
[12]. 

Nonparametric estimators have been found to be robust 
and more precise than their parametric counterparts. It is 
known, for instance, that a linear regression estimate will 
produce a large error for every sample size if the true 
underlying regression function is not linear and cannot be 
well approximated by linear functions [10].  
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The non-parametric regression estimator of a finite 
population total is a potent rival to familiar design-based 
estimators [7]. It has the quality of automaticity associated 
with design-based estimators, but can better reflect the actual 
structure of the data, yielding greater efficiency. It can    
be costly in computer power, and will probably not do as 
well as a parametric-model based estimator, when the 
modelling process is done carefully. Further research on how 
satisfactory the consequent confidence intervals of the 
estimator could be [5]. 

1.1. Statement of the Problem 

As long as populations are large, detail is expensive [3].  
In most studies the sample information is to estimate the 
population characteristics. The choosing of models could 
lead to misspecification especially with regard to using of  
the auxiliary information of the non-sampled part of the 
population. A finite population total estimator that gives 
shorter confidence interval and higher coverage probabilities 
with possibilities of errors’ correction due to skewness and 
kurtosis remains unexplored. 

1.2. Objectives of the Study 

1.  To propose a nonparametric estimator for a finite 
population total based on Saddle point approximation. 

2.  To study the asymptotic properties of the proposed 
finite population total estimator. 

3.  To estimate the coverage probabilities for the 
proposed finite population total estimator. 
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2. Summary of Literature Review  
2.1. Review of Nonparametric Estimation  

Nonparametric regression has its origin in exploration   
of data. Let 𝑆𝑆 = {𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖}, 𝑖𝑖 = 1,2, … ,𝑛𝑛 be a data set, then  
a cloud of points is suggested. It may basically mean drawing 
a line in the 𝑥𝑥 − 𝑦𝑦  plane through the cloud of points 
showing the essential characteristics of the nature of 
relationship between the variables Y and X. In sample 
surveys, there are four estimation approaches that can be 
used in statistical investigations; the design-based approach, 
model-based approach, model-assisted approach and 
randomization-assisted approach [3]. 

The model-based approach has bridged the gap between 
finite population problems and the rest of statistics. Before 
the model-based approach, finite population sampling was 
an eccentric realm where many of the basic concepts and 
tools of statistics were curiously inapplicable. Statisticians 
skilled in designing experiments and in applying linear 
models to make inferences from experimental and 
observational data found that finite population problems 
were apparently beyond the scope of their techniques [6]. 

Although there were some familiar-looking formulas, 
such as the linear regression estimator; these statistics lacked 
the familiar rationale and properties. Not only was the linear 
regression estimator biased and therefore certainly not a Best 
Linear Unbiased Estimator (BLUE), it was not even linear, 
because the random choice of observation points turned the 
denominator of the estimated slope into a random variable.  

In the model-based approach, the distribution is a structure 
that is defined by the population itself and is unknown    
but can be modelled. In this prediction approach, the 
expectations are over all possible realizations of a linear 
regression stochastic model linking a variable of interest Y 
with a set of auxiliary variables, X [1]. The values of the 
variable Y are believed to be random variables; 𝑌𝑌1,𝑌𝑌2, … ,𝑌𝑌𝑁𝑁   
generated by some model. The actual observations for the 
finite population 𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦𝑁𝑁  are one realization of the 
random variables. The presence of the auxiliary information 
associates units in the sampled and the non-sampled. 

The information obtained from the sample is used to 
predict the information of the non-sampled observations. In 
this study, it is assumed that Y is function of X, hence a model 
of the form  

𝑌𝑌𝑖𝑖 = 𝑚𝑚(𝑋𝑋𝑖𝑖) + 𝑒𝑒𝑖𝑖              (1) 
is used. It is further assumed that 𝑒𝑒𝑖𝑖  are the error terms 
which are normally identically and independently distributed 
with 𝐸𝐸(𝑒𝑒𝑖𝑖) = 0 and 𝛿𝛿2(𝑒𝑒𝑖𝑖) = 𝛿𝛿2  

An appropriate model-based estimator of the finite 
population total is of the form 

𝑇𝑇� = �𝑌𝑌𝑖𝑖 +
𝑁𝑁

𝑖𝑖∈𝑆𝑆

�𝑚𝑚�
𝑁𝑁

𝑖𝑖∉𝑆𝑆

(𝑋𝑋𝑖𝑖)                      (2) 

Where 𝑚𝑚�(𝑋𝑋𝑖𝑖) = ∑ 𝑤𝑤𝑖𝑖(𝑥𝑥)𝑌𝑌𝑖𝑖𝑖𝑖  [14]. 

2.2. Other Estimation Methods 

A related nonparametric model-assisted regression 
estimator was considered by replacing local polynomial 
smoothing with penalized splines [2]. They extended the 
local polynomial nonparametric regression estimation to 
two-stage sampling. In their work, simulation results 
indicate that the nonparametric estimator dominates standard 
parametric estimators when the model regression function is 
incorrectly specified, while being nearly as efficient when 
the parametric specification is correct. 

In their work, they considered the application of 
nonparametric regression to the estimation of finite 
population error variance for a given sample drawn from the 
population [12]. The error variance obtained by [5] was a 
function of 𝜎𝜎2�𝑥𝑥𝑗𝑗 � that are unknown. By considering the 
squared residual  

𝑒𝑒𝑗𝑗2 = �𝑦𝑦𝑖𝑖 − 𝑚𝑚��𝑥𝑥𝑗𝑗 ��
2
 

and using some mild assumptions, the study showed 
𝐸𝐸�𝑒𝑒𝑗𝑗2/𝑋𝑋𝑗𝑗 = 𝑥𝑥𝑗𝑗 � = 𝜎𝜎2�𝑥𝑥𝑗𝑗 � + Ο(𝑛𝑛−1) implying that 𝑒𝑒𝑗𝑗2 is an 
asymptotic unbiased estimator of 𝜎𝜎2�𝑥𝑥𝑗𝑗 �. They obtained an 
improved estimator of 𝜎𝜎2�𝑥𝑥𝑗𝑗 �  by smoothing 𝑒𝑒𝑗𝑗2  for 𝑗𝑗𝑗𝑗𝑗𝑗 
being sample points �𝑥𝑥𝑗𝑗 ,𝑦𝑦𝑗𝑗 �′ close to (𝑥𝑥′𝑖𝑖 ,𝑦𝑦𝑖𝑖′). 

Local polynomial regression was also used in the 
estimation of finite population totals. In this research, the 
equation 𝑌𝑌𝑖𝑖 = 𝑚𝑚(𝑋𝑋𝑖𝑖) + 𝜎𝜎(𝑥𝑥𝑖𝑖)𝑒𝑒𝑖𝑖  was considered and the 
technique of using a strip of data around the co-variate 
applied in order to fit a line through the set of data �𝑥𝑥𝑗𝑗 ,𝑦𝑦𝑗𝑗 � 
[13]. The estimator yielded better results in estimating the 
finite population total. Further, the estimator was found to be 
asymptotically unbiased, consistent and normally distributed 
when certain conditions were satisfied. 

3. Methods 
3.1. Review of Saddle Point Approximation 

Saddle point approximation provides probability 
approximations whose accuracy is much greater than the 
current supporting theory would suggest. Saddle point 
methods are also useful in avoiding much of the simulation 
requisite when implementing another modern statistical  
tool, the bootstrap. The most fundamental Saddlepoint 
approximation was first introduced by Daniels and is 
essentially a formula for approximating a density mass 
function from its associated MGF or cgf [4]. Assume that the 
functions are as regular as needed. In other words, when a 
derivative or an integral is assumed to exist then, the saddle 
point approximation arises from a natural sequence of 
approximations that become progressively more local.  

Suppose a continuous random variable X has density 
𝑓𝑓 (𝑥𝑥) defined for all real values of X, then the MGF of 
density 𝑓𝑓 (𝑥𝑥) is defined as the expectation of 𝑒𝑒𝑆𝑆𝑋𝑋  that is, 
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𝑚𝑚(𝑗𝑗) = 𝐸𝐸(𝑒𝑒𝑆𝑆𝑋𝑋) = �(𝑒𝑒𝑆𝑆𝑋𝑋)𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥
∞

−∞

         (3) 

over the values of S for which the integral converges.  
With real values of S, the convergence is always assured at  
s = 0: In addition, it is presumed that the M(S) converges 
over an open neighborhood of S designated as say (a, b). 
Consequently, the CGF of the function is defined as 

𝐾𝐾(𝑗𝑗) = 𝑙𝑙𝑛𝑛{𝑀𝑀(𝑗𝑗)} 1             (4) 
For a continuous random variable X with CGF K and 

unknown density f, the saddle point density approximation 
to 𝑓𝑓 (𝑥𝑥) is given as 

𝑓𝑓(𝑥𝑥) = 1
�2𝜋𝜋𝐾𝐾"(�̂�𝑗)

 𝑒𝑒𝑥𝑥𝑒𝑒{𝐾𝐾(�̂�𝑗) − �̂�𝑗𝑥𝑥}        (5) 

Where 𝐾𝐾′(�̂�𝑗) is the saddle point equation and �̂�𝑗 is the 
saddle point associated with the value x [11]. 

To approximate the density of the total population total 
𝑁𝑁�̅�𝑥 using saddle point approximation, consider finding the 
density of 𝑋𝑋𝑖𝑖 ; 𝑖𝑖 = 1,2,3, … ,𝑛𝑛 which are iid with CGF K. In 
this approximation, the Saddle point density is the leading 
term of the asymptotic expansion as 𝑛𝑛 → ∞ of the function, 
f that is 

𝑓𝑓(𝑁𝑁𝑥𝑥�) = 𝑓𝑓� (𝑁𝑁𝑥𝑥�){1 + 𝑜𝑜(𝑛𝑛−1)}        (6) 
where 𝑜𝑜(𝑛𝑛−1) is the relative error of the asymptotic order 
indicated and (6) therefore reduces to  

𝑓𝑓(𝑁𝑁�̅�𝑥) = �
𝑛𝑛

2𝜋𝜋𝐾𝐾"(�̂�𝑗)
 𝑒𝑒𝑥𝑥𝑒𝑒{𝑛𝑛𝐾𝐾(�̂�𝑗) − 𝑛𝑛�̂�𝑗𝑥𝑥}      (7) 

[8]. 

3.2. The Proposed Estimator 
Let T be the population total, defined as the sum of the 

values of all the population measurements and let the random 
variable Y be the variable of interest and that X is an auxiliary 
variable associated with 𝑌𝑌 assumed to be known for all the 
observable population units such that 𝑇𝑇 = ∑ 𝑌𝑌𝑖𝑖𝑁𝑁

𝑖𝑖=1 . 
All the sampled units are observed and the task therefore  

is to estimate the non-sampled part of the population.    
The non-sampled part is estimated using the Saddle point 
approximation.  

Let S be the sample from the population of N units,    
then 𝑇𝑇 = ∑ 𝑌𝑌𝑖𝑖 +𝑁𝑁

𝑖𝑖𝑗𝑗𝑗𝑗 ∑ 𝑌𝑌𝑖𝑖𝑁𝑁
𝑖𝑖∉𝑗𝑗 . For the sum ∑ 𝑌𝑌𝑖𝑖𝑁𝑁

𝑖𝑖∉𝑗𝑗 , consider the 
model 𝑌𝑌𝑖𝑖 = 𝑚𝑚(𝑋𝑋𝑖𝑖) + 𝑒𝑒𝑖𝑖  where m is an unknown smooth 
function that depends on the sampled data and is estimated 
by 𝑚𝑚�(𝑥𝑥) for the non-sampled data points. 

The nonparametric estimator of the finite population total 
is proposed, 

𝑇𝑇�𝑛𝑛𝑒𝑒𝑗𝑗 = �𝑌𝑌𝑖𝑖 +
𝑖𝑖𝑗𝑗𝑗𝑗

�𝑚𝑚�𝑗𝑗(𝑋𝑋𝑖𝑖)
𝑖𝑖∉𝑗𝑗

                (8) 

To obtain 𝑚𝑚�𝑗𝑗(𝑋𝑋𝑖𝑖) and estimate of 𝑚𝑚𝑗𝑗(𝑋𝑋𝑖𝑖), let 𝑓𝑓(𝑥𝑥) =
𝑙𝑙𝑜𝑜𝑙𝑙{𝑚𝑚(𝑥𝑥)} such that  
𝑚𝑚(𝑥𝑥) = 𝑒𝑒𝑥𝑥𝑒𝑒{𝑓𝑓(𝑥𝑥)}. Therefore 𝑚𝑚(𝑥𝑥) can be rewritten as, 

𝑚𝑚𝑒𝑒(𝑋𝑋𝑖𝑖) = 𝑒𝑒𝑥𝑥𝑒𝑒 �𝑓𝑓(𝑥𝑥0) + (𝑥𝑥 − 𝑥𝑥0)𝑓𝑓′(𝑥𝑥0) + (𝑥𝑥−𝑥𝑥0)2

2
𝑓𝑓′′(𝑥𝑥0)�  

(9) 
Such that embracing the estimates yield, 

𝑚𝑚�𝑒𝑒(𝑋𝑋𝑖𝑖) ≈ 𝑒𝑒𝑥𝑥𝑒𝑒 �𝑓𝑓(𝑥𝑥0) + (𝑥𝑥 − 𝑥𝑥0)𝑓𝑓′(𝑥𝑥0) + (𝑥𝑥−𝑥𝑥0)2

2
𝑓𝑓′′(𝑥𝑥0)� 

(10) 

4. Empirical Study  
4.1. Simulation of Data 

Population of size 1,500 was simulated from three data 
variables; linear, quadratic and exponential.  

The linear function was based on the linear model which 
has the relation 

𝑌𝑌𝑖𝑖 = 1 + 2(𝑥𝑥𝑖𝑖 − 0.5) + 𝑒𝑒𝑖𝑖         (11) 
The second study variable or mean function was obtained 

using the quadratic function which has the relation 
𝑌𝑌𝑖𝑖 = 1 + 2(𝑥𝑥𝑖𝑖 − 0.5)2 + 𝑒𝑒𝑖𝑖        (12) 

The third study variable was obtained from an exponential 
function which is given by 

𝑌𝑌𝑖𝑖 = 𝑒𝑒𝑥𝑥𝑒𝑒(−8𝑥𝑥𝑖𝑖) + 𝑒𝑒𝑖𝑖             (13) 
The auxiliary variable 𝑋𝑋𝑖𝑖  was assumed to be uniformly 

distributed and in the interval [0,1]. The error term 𝑒𝑒𝑖𝑖  is a 
standard normal variable defined as 𝑒𝑒𝑖𝑖~𝑁𝑁(0,1).  

A simple random sample of size 300 was selected 
randomly from the simulated population index-wise, and 
replicated 1500 times giving rise to 1500 simple random 
samples. The proposed estimator was therefore compared to 
the nonparametric regression estimator due to [5], the 
design-based Horvitz-Thompson estimator and the Ratio 
estimator using the amount of bias, MSE and the coverage 
probabilities. 

4.2. Unconditional Properties 

4.2.1. Relative Bias of the Estimator 
The relative bias of the estimator was obtained using 

�
∑ 𝑇𝑇𝑖𝑖�1500
𝑖𝑖=1
1500  −𝑇𝑇�

𝑇𝑇  where T is the actual population total and 𝑇𝑇�𝑖𝑖  is 
the estimator of the population total from the 𝑖𝑖𝑡𝑡ℎ  sample, for 
𝑖𝑖 = 1,2, … ,1500.  

Table 1.  Relative Biases of the Estimators 

Model (Function) 𝑻𝑻�𝒏𝒏𝒏𝒏𝒏𝒏 𝑻𝑻�𝒏𝒏𝒏𝒏 𝑻𝑻�𝑹𝑹 𝑻𝑻�𝑯𝑯𝑻𝑻 

Linear -14.566 50.254 20.118 -25.085 
Quadratic 20.071 -79.562 52.101 25.451 

Exponential 19.315 52.017 61.219 -23.518 

From Table 1, some of the values of the average relative 
biases are either negative or positive which shows either 
underestimation or overestimation respectively. For the 
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linear function, the ratio estimator has the lowest bias, 
followed by the proposed estimator showing that the 
model-based ratio estimator is the best. This is because the 
ratio estimator is the Best Linear Unbiased Estimator 
(BLUE). For the quadratic function, the proposed estimator 
outperforms all the other three estimators and the same 
applies to the exponential function. It is also observed   
from the simulated data particularly from quadratic and 
exponential functions, that most of the estimates obtained 
using the estimator due to [5] and those of the ratio estimator 
had slightly larger biases in most of the data models.  

4.2.2. Mean Squared Error (MSE)  
The measures for the MSEs were computed for the   

three data sets, 𝑀𝑀𝑆𝑆𝐸𝐸 = ∑ (𝑇𝑇𝑖𝑖�−𝑇𝑇)21500
𝑖𝑖=1

1500   and then compared. The 
summary of the results are tabulated in Table 2. 

Table 2.  Relative MSE of the Estimators 

Model 
(Function) 

𝑻𝑻�𝒏𝒏𝒏𝒏𝒏𝒏 𝑻𝑻�𝒏𝒏𝒏𝒏 𝑻𝑻�𝑹𝑹 𝑻𝑻�𝑯𝑯𝑻𝑻 

Linear 0.0131826 0.018007 0.010467 0.096534 

Quadratic 0.0161826 0.021452 0.094651 0.030814 
Exponential 0.0408429 0.046764 0.0904378 0.084677 

From Table 2, for the linear function, the ratio estimator 
performed the best followed by the proposed estimator. This 
is because the ratio estimator is the Best Linear Unbiased 
Estimator (BLUE). For the quadratic function, the proposed 
estimator performed the best with the ratio estimator having 
the largest value, attributable to the fact that the ratio 
estimator though BLUE is unstable for other distribution 
functions. For the exponential function, the designed-based 
Horvitz-Thompson estimator and the model-based ratio 
estimators have larger values showing that the proposed 
nonparametric regression estimator of the finite population 
total is the best of the four followed by the nonparametric 
regression estimator by [5]. 

4.2.3. The 95% Confidence Interval Length 

The uncertainty in using point estimate is addressed by 
means of confidence intervals. Confidence intervals provide 
us with a range of values for the unknown population along 
with the precision of the method.  

The standard error necessitates the construction of the 
confidence interval. These give the probability to which the 
range of estimator covers the estimator of the parameter. A 
95% confidence interval was therefore constructed such that  

[𝑇𝑇� − 𝑧𝑧𝛼𝛼
2
𝑆𝑆.𝐸𝐸�𝑇𝑇��,𝑇𝑇� + 𝑧𝑧𝛼𝛼

2
𝑆𝑆.𝐸𝐸�𝑇𝑇��]       (14) 

The empirical results were tabulated in Table 3. 

Table 3.  95% Confidence interval length of the estimators 

Model (Function) 𝑻𝑻�𝒏𝒏𝒏𝒏𝒏𝒏 𝑻𝑻�𝒏𝒏𝒏𝒏 𝑻𝑻�𝑹𝑹 𝑻𝑻�𝑯𝑯𝑻𝑻 

Linear 12.0128 95.230 11.347 201.297 

Quadratic 12.9852 19.543 637.369 27.893 
Exponential 36.2789 150.119 85.2050 320.113 

From Table 3, for the linear function, the ratio estimator 
being BLUE has the shortest confidence interval followed by 
the proposed estimator. the proposed nonparametric 
regression estimator of the finite population total has the 
shortest confidence interval length for the quadratic and 
exponential functions, showing that the proposed estimator 
outperforms the design-based Horvitz-Thompson and the 
Dorfman’s nonparametric estimators. 

4.2.4. Coverage Probabilities of the Estimator 

The coverage probabilities of the proposed estimator were 
computed using the nominal probabilities; 0.01, 0.05 and 
0.10 for the 99%, 95% and 90% confidence levels 
respectively. 

From Table 4 attached as an appendix, apart from the 
linear function, the proposed estimator has the highest 
conditional coverage probabilities for all the functions used 
in the study.  

Table 4.  Coverage Probabilities of the estimators 

Estimator 
Linear Function Quadratic Function Exponential Function 

Nominal 
probability 

Coverage 
probability 

Nominal 
probability 

Coverage 
probability 

Nominal 
probability 

Coverage 
probability 

𝐓𝐓�𝐧𝐧𝐧𝐧𝐧𝐧 

0.01 0.9801 0.01 0.9891 0.01 0.9900 

0.05 0.9365 0.05 0.9458 0.05 0.9460 

0.10 0.8851 0.10 0.8912 0.10 0.8976 

𝐓𝐓�𝐧𝐧𝐧𝐧 

0.01 0.9800 0.01 0.9821 0.01 0.9807 

0.05 0.9352 0.05 0.9299 0.05 0.9398 

0.10 0.9023 0.10 0.8927 0.10 0.8945 

𝐓𝐓�𝐑𝐑 

0.01 0.9900 0.01 0.9899 0.01 0.9845 

0.05 0.9482 0.05 0.9429 0.05 0.9367 

0.10 0.8952 0.10 0.8923 0.10 0.8834 

𝐓𝐓�𝐇𝐇𝐓𝐓 

0.01 0.8590 0.01 0.9782 0.01 0.9289 

0.05 0.9349 0.05 0.9361 0.05 0.9287 

0.10 0.8745 0.10 0.8897 0.10 0.8839 
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4.3. Conditional Properties 

4.3.1. Conditional Biases 
Since the estimation is model-based, the 1,500 simple 

random samples were grouped into groups of 50 so that  
there were 30 groups. For each group �̿�𝑥 = 1

30
∑ �̅�𝑥𝑖𝑖50
𝑖𝑖=1  was 

computed and 𝑇𝑇�𝑛𝑛𝑒𝑒𝑗𝑗 = 1
30
∑ 𝑇𝑇�𝑛𝑛𝑒𝑒𝑗𝑗 .𝑖𝑖

50
𝑖𝑖=1   was also computed. 

The conditional bias for each group was computed as 
𝑇𝑇�𝑛𝑛𝑒𝑒𝑗𝑗 − 𝑌𝑌�  where 𝑌𝑌�  is the population mean for the survey 
measurements and �̅�𝑥𝑖𝑖   is the sample mean for the auxiliary 
variables.  

The figures 1, 2 and 3 below illustrate the behavior of the 
conditional bias for each estimator when the three mean 
functions were used. The figure 1 shows the conditional bias 
when linear mean functions was used, figure 2 shows the 
conditional bias when a quadratic mean function was used 
and figure 3 shows the conditional bias when an exponential 
mean function was used. 

 

Figure 1.  Conditional biases for the Linear Function 

From figure 1, the ratio estimator performed well when a 
linear mean function was used. This is attributed to the fact 
that the ratio estimator is the Best Linear Unbiased Estimator 
(BLUE). It can be observed that the biases to the left of the 
population mean of the auxiliary variable are large but 
gradually reduce towards the right. 

 

Figure 2.  Conditional biases for Quadratic Function 

From figure 2, the quadratic mean function was used, the 
proposed estimator gives better estimates of the population 
total compared to those realized using the estimator  
proposed by [5], the ratio estimator and the design-based 
Horvitz-Thompson estimator. It can be observed that biases 
to the left of the population mean of the auxiliary variable, 
are large but gradually reduce towards the right. 

 

Figure 3.  Conditional Biases for Exponential Function 

From figure 3, the exponential mean function was    
used, the proposed estimator gives better estimates of     
the population total compared to those realized using the 
estimator proposed by [5], the ratio estimator and the 
design-based Horvitz-Thompson estimator. Just like in the 
functions in Figures 1 and 2, it can be observed that biases to 
the left of the population mean of the auxiliary variable, are 
large but reduce gradually almost symmetrically towards the 
right. 

4.3.2. Conditional MSEs  

Just like the biases, conditional MSEs were determined  
in order to establish the robustness of the proposed estimator 
compared to the designed based, the ratio and the 
non-parametric Nadaraya-Watson (Dorfman’s) estimators. 

 

Figure 4.  Conditional MSEs for the Linear Function 

From Figure 4, the ratio estimator has the lowest MSE 
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compared to all the other estimators, this is attributed to the 
fact that the ratio estimator is BLUE. Apart from the fact that, 
the non-parametric estimator proposed by [5] has a minimum 
MSE at around 0.49 mean of the means, the proposed 
estimator is the second-best estimator based on the MSE. 

 

 

Figure 5.  Conditional MSE for Quadratic and Exponential Functions 

From Figure 5, the proposed estimator has outperformed 
the design-based Horvitz-Thompson, model-based ratio and 
the Dorman’s non-parametric Estimators for both functions; 
quadratic and exponential. 

4.3.3. Conditional Confidence Interval Lengths 

The confidence intervals and coverage probabilities  
were the main asymptotic properties of the proposed 
estimator. Given the proposed estimator is model-based, the 
conditional confidence interval lengths were also explored as 
in Figures 6 and 7. 

From Figure 6, the proposed estimator has the shortest 
confidence interval length except in the linear function 
where the ratio estimator has the shortest confidence interval 
length. Averagely therefore, the proposed estimator has the 
shortest confidence interval length. 

From Figure 7, the proposed estimator using Saddlepoint 
approximation has the shortest confidence interval length, 
followed by the ratio estimator with the design-based 
Horvitz Thompson parametric estimator having the longest 
confidence interval Length. From both the unconditional  
and conditional confidence interval lengths, the proposed 
estimator is robust. 

 

 

 
Figure 6.  Conditional Confidence Interval Lengths for Linear and 
Quadratic Functions 

 

Figure 7.  Confidence Interval Length for the Exponential Function 

4.3.4. Conditional Coverage Properties 

Based on the conditional confidence intervals, the 
coverage probabilities were computed for the 30 samples. 
The coverage probability was based on the number of 
observations falling within the confidence interval compared 
to the total number of observations. The coverage properties 
of the estimators are captured in Figures 8 – 10. 

From Figures, 8, 9 and 10, the estimator based on Saddle 
point approximation outperformed all the other estimators 
except in the linear function. The ratio estimator which is 
quite unstable for the quadratic function performed better 
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than all the other estimators in the linear function which is 
attributed to the fact that it is BLUE. 

 

Figure 8.  Conditional coverage probabilities for the Linear function 

 

Figure 9.  Conditional coverage probabilities for the Quadratic function 

 

Figure 10.  Conditional coverage probabilities for the Exponential 
function 

5. Conclusions  
The proposed an estimator gave a smaller bias and MSE 

and a confidence interval that was shorter and tighter 
compared to the other estimators (the design-based 
Horvitz-Thompson, model-based ratio and the 
nonparametric regression estimator due to Dorfman [5] 
considered in the study. 

The application of Saddlepoint approximation in 
computing coverage probabilities performed better than the 
traditional way of using the central limit theorem and is 
therefore be recommended for error correction as a result of 
skewness and kurtosis. 
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