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Abstract  This study discusses the condition(s) under which the mixed model best describes the pattern in an observed 

time series data, while comparing it with those of the additive and multiplicative models. Existing studies have focused on 

how to choose between additive and multiplicative models, with little or no emphasis on the mixed model. The ultimate 

objective of this study is therefore, to propose a statistical test for choosing between mixed and multiplicative models when 

the trending curve is linear. in descriptive time series analysis. The method adopted in this study is the Buys-Ballot procedure 

developed for choice of model by [1]. Results show that the column/seasonal variance of the Buys-Ballot table is, for the 

mixed model, a constant multiple of the square of seasonal effect and for the multiplicative model, a quadratic (in j) function 

of the square of the seasonal effects. Therefore, test for the choice between mixed and multiplicative models has been 

proposed based on the column/seasonal variances of the Buys-Ballot table. have been used to illustrate the applicability of the 

proposed test, Using empirical examples, the proposed test statistic identified the mixed model correctly in 98 out of the 100 

simulations.  
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1. Introduction 

One of the greatest challenges identified in the use of 

descriptive method of time series analysis is choice of 

appropriate model for decomposition of any study data. That 

is, when to use any of the three models for analysis is 

uncertain. And it is clear that; use of wrong model will 

certainly lead to erroneous estimates of the components. 

The three models most commonly used for time series 

decomposition are the 

Additive Model: 

t t t t tX T S C e                (1) 

Multiplicative Model: 

t t t t tX T S C e             (2) 

and Mixed Model 

t t t t tX T S C e             (3) 

where for time t,  tX , t 1, 2, ..., n , is the observed 

time  
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series, tT  is the trend, tS  is the seasonal effect, tC  is the 

cyclical and te  is the irregular component [2,3]. 

For short period time series data the cyclical component is 

superimposed into the trend and the observed time series 

 tX , t 1, 2, ..., n  can be decomposed into the 

trend-cycle component  tM , seasonal component  tS  

and the irregular/residual component  te , [3]. Therefore, 

the decomposition models are 

Additive Model:  

t t t tX M S e              (4) 

Multiplicative Model:  

t t t tX M S e              (5) 

and Mixed Model  

t t t tX M S e   .          (6) 

It is always assumed that the seasonal effect, when it exists, 

has period s, that is, it repeats after s time periods. 

t s tS S , for all t            (7) 

For Equation (4), it is convenient to make the further 

assumption that the sum of the seasonal components over a 
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complete period is zero, ie, 

s

t j
j 1

S 0


 .             (8) 

Similarly, for Equations (5) and (6), the convenient variant 

assumption is that the sum of the seasonal components over a 

complete period is s. 

s

t j
j 1

S s


 .             (9) 

It is also assumed that the irregular component te  is the 

Gaussian  2
1N 0,   white noise for Equations (4) and (6), 

while for Equation (5), te  is the Gaussian  2
2N 1,   

white noise and that  t t kCov e ,e 0, k 0    . 

On the most appropriate condition to use any of the three 

models, many scholars have proposed different approaches. 

[3] proposed the use of the run sequence plot (time plot) to 

choose between additive and multiplicative models. 

However, he did not provide any statistical test to justify the 

use. [4] proposed the use of the coefficients of variation of 

seasonal differences (CV (d)) and seasonal quotients (CV(c)) 

for choice of model. According to [4], the appropriate model 

is Additive if CV (c) CV(d)  and Multiplicative if 

CV (c) CV(d) . However, neither the theoretical basis nor 

the statistical test was provided for the decision rule to justify 

the use. According to [5], the differences between the 

multiplicative and the additive models are (i) in the additive 

model, the seasonal variation is independent of the absolute 

level of the time series and its amplitude is relatively close 

while in the multiplicative model, the amplitude of the 

seasonal factor varies with the level of the time series; (ii) in 

an additive model, the seasonal effect is the same (roughly 

constant) in the same period over different years. Sometimes 

the seasonal effect is a proportion of the underlying trend 

value. In such cases it is appropriate to use a multiplicative 

model. No statistical test was provided for the choice.  

[6] proposed the use of the relationship between the 

seasonal means  . jX , j 1, 2, ..., s  and the seasonal 

standard deviations  . jˆ , j 1, 2, ..., s  , when data is 

arranged in a Buys-Ballot table, to choose the appropriate 

model for decomposition. According to [6], the appropriate 

model is additive when the seasonal standard deviations 

show no appreciable increase or decrease relative to any 

increase or decrease in the seasonal means. On the other 

hand, the appropriate model is multiplicative when the 

seasonal standard deviations show appreciable 

increase/decrease relative to any increase /decrease in the 

seasonal means. Here again, no statistical test was provided 

for the choice.  

From the foregoing, it is clear that there is no accurate 

statistical test for choice of model in the literature and the 

emphasis has been on choice between additive and 

multiplicative models. In the framework for choice of model 

and detection of seasonal effect in time series, [1] showed 

that when the trend-cycle component is linear, the column 

variances of the Buys-Ballot table are constant for the 

additive model, but contain the seasonal component for the 

multiplicative model. Thus, choice between additive and 

multiplicative models reduces to test for constant variance to 

identify the additive model. Therefore, they suggested that 

any of the tests for constant variance can be used to identify a 

series that admits the additive model. This is an improvement 

over what is in existence. However, this approach can only 

identify the additive model (when the column variance is 

constant), but does not tell the analyst the alternative model 

when the variance is not constant. The implication of this is 

that when the test for constant variance says the appropriate 

model for a study series is not the additive model; an analyst 

still faces the challenge of distinguishing between mixed 

model and the multiplicative model. Furthermore, in 

deriving, the row, column and overall averages and variances, 

[1] ignored the error term. Since the row, columns and 

overall averages and variances of the Buys-Ballot table are 

the bases for the proposal by [1] for choice between additive 

and multiplicative models; can they also be used to 

distinguish between mixed and multiplicative models? This 

and other related questions are what this study intends to 

address.  

2. Methodology 

The method adopted in this study is the Buys-Ballot 

procedure proposed by [7,1]. This procedure has been 

developed for choice of model, among other uses, based on 

the row, column and overall means and variances of the 

Buys-Ballot table. For details of Buys-Ballot table/procedure, 

see [8,7] and [9,10] and [6]. 

For the additive and multiplicative models, the row 

column and overall averages and variances obtained by [1] 

when trend-cycle component is linear are given in Table 1. 

From Table 1, it is clear that the column variance of the 

Buys-Ballot table is constant for the additive model, but 

depends on the season/column ( j ) through the seasonal 

component (
2
j

S ) for the multiplicative model. Hence, they 

proposed test for constant variance to identify the additive 

model. If the null hypothesis of constant variance is accepted 

it indicates that a study series admits the additive model. 

Otherwise, the multiplicative model is considered.  
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Table 1.  Summary of Row, Column and Overall Averages and Variances of Buys-Ballot for Additive and Multiplicative Models 

Sample 

Variances 

Linear trend-cycle component: tM a b t  , t 1, 2, ..., n ms   

Additive model Multiplicative model 

i.X   
b

a (s 1) bs i
2

     
s

2
j

j 1

b
a s jS bs i

s


 
   
  

  

.jX  
j

b
a (n s) bj S

2
       j

b
a n s bj S

2

 
   

 
 

..X  
b(n 1)

a
2


   

s

j
j 1

b b
a n s jS

2 s


     

 

2
i.̂

 

s
2

j
j 1

s
2
j

j 1

s (s 1) 2b
b jS

12 s 1

1
S

s 1





   
   

  







 

    

    

s 22
j

j 1

2s s
2 1 1

j j j
j 1 j 1

a bs (i 1) S 1

1

s 1 C C
b jS 2b a b (i 1)s S 1 jS

s s



 

 
   

  
 

     
          

     



   

2
.j̂

 

2 n (n s)
b

12

 
 
   

 2 2
j

n n s
b S

12

 
 
   

2
x̂  

2

s s
2

j j
j 1 j 1

n(n 1)
b

12

1
2bm jS m S

n 1
 

 
 
 

  
  

   
 

 

 
 

 
 

 
 

2 2 s 2s
j

j 1

2s
2 1 1

j j j
j 1

b n(n s) n s b (n s) 2n s
m a ab n s S 1

12 6

nb m 1C C1
mb jS 2b ma S 1 jS

n 1 s 2 s





     
      
   
 
      
          

      
 
 
 
  



   

Where 

s

1 j
j 1

C jS



  Source: Iwueze and Nwogu (2014) 

2.1. Row, Column and Overall Means and Variances of 

the Buys-Ballot table for the Mixed Model when 

trend-cycle Component is Linear 

Following the way of [1], the row, column and overall 

means and variances were obtained for the multiplicative and 

the mixed models with the error terms. The summary of the 

row, column and overall means and variances for the mixed 

model, when trend cycle component is linear, is given in 

Table 2, while comparing them with those of the 

multiplicative model. As Table 2 shows, the row, column 

and overall means and variances are not the same for both 

mixed and multiplicative models. However, while the 

expected values of the row, column and overall means are 

the same for both multiplicative and mixed models, the 

expected values of the row, column and overall variances are 

not the same for the two models. Furthermore, the expected 

values of the row and overall variances involve sum of 

squares and cross-products of trend parameters and seasonal 

indices. The column variance, on the other hand, is for the 

mixed model, a constant multiple of the square of the 

seasonal effect and for the multiplicative model, the product 

of a quadratic function of j and the square of the seasonal 

effect. Therefore, to distinguish a series that admits the 

mixed model from one that admits the multiplicative model, 

an analyst only needs to look at the column variances (
2
j

̂ ) 

of the series in Buys-Ballot table. The appropriate test for 

choice between the mixed model and multiplicative model is, 

therefore, proposed based on the column variances. 

2.2. The Proposed Test for Choice between the Mixed 

and Multiplicative Models when Trend-cycle 

Component is Linear 

As noted earlier, the column variance is, for the mixed 

model, a constant multiple of square of the seasonal effect 

only and for the multiplicative model, a quadratic function of 

the season j and square of the seasonal effect 2
jS . Therefore, 

the proposed test for choice between the Mixed and the 

Multiplicative models is based on the column variances.  
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Table 2.  Summary of Row, Column and Overall Means and Variances of Buys-Ballot for Mixed and Multiplicative Models 

Measures 
Linear trend-cycle component: tM a b t  , t 1, 2, ..., n ms   

Multiplicative model Mixed model 

i.X  

s

j i.
j 1

b
a bs jS bsi *e

s


 
   
  

   
s

j i.
j 1

b
a bs bsi jS e

s


     

.jX  

m

.j ij , j .j j
i 1

bs
a e ie bs e bje * S

m


 
   

  
  j . j

n s
a b bj * S e

2

   
    

  
 

..X  1
n s

a b bC
2

 
  

 
 1 . .

n s
a b bC e

2

 
   

 
 

2
i.̂

 

 

 

2
1

2
2j

j

(a bs (i 1)) bC

a bs (i 1) S
var

bjS

   
 
 

   
   

    
 

 

 

2
1 2

1

j j

(a bs (i 1)) bC

var a bs (i 1) S bjS

    
  

         

2
.j.̂

 

22 2 2
2 2
j 2

b (n s ) n s
a b bj S

12 2

      
      

      

 2
2 2
j 1

b n n s
S

12


 

 

2
x̂  

22 2 2

1

2
2 2

j 2

2
j j j

b (n s ) n s
a b C

12 2

n s b (n s) (2n s)
a 2ab Var (S )

2 6

n s
b Var ( jS ) 2b a b Cov(S , jS )

2

     
     
   
 

     
      

    
 

             

 

2 2 2

2
2

j 2
1

2
j j j

b (n s )

12

n s b (n s) (2n s)
a 2ab Var (S )n

2 6
n 1

n s
2b a b Cov (S , jS ) b Var ( jS )

2

 
 
 
           

      
 
    
     
    

 

 

2
j  of the Buys-Ballot table. Hence, the null hypothesis to 

be tested is 

H0: 
2 2
j 0j 

 and the appropriate model is mixed, against the alternative

 H1: 
2 2
j 0 j  

 and the appropriate model is not mixed, where

  2
j j 1,2,...,s   is the actual variance of the jth column. 

2
2 2 2

10j j

b n (n s)
S

12


            (10) 

and 2
1  is the error variance, assumed equal to 1. 

Under the null hypothesis, [11] have shown that the 

statistic 

  2
j2

jc 2
0 j

m 1
,

 
 


 j 1, 2, . . . s         (11) 

follows the chi-square distribution with m 1  degrees of 

freedom and the sum; 

  2s
j2

c 2
j 1 0 j

m 1
,



 
 


           (12) 

follows the chi-square distribution with s(m 1)  degrees 

of freedom, where m is the number of observations in each 

column and s  is the seasonal lag (number of columns). In 

proposing the test, we have assumed that (i) the underlying 

distribution of the variable, i jX , i 1, 2, ..., m,

j 1, 2, ..., s , under study is normal, (ii) the observations in 

each column, ( i jX , i 1, 2, ..., m, ) are independent and 

(iii) that the s-columns are independent. 

[11] also showed that under the null hypothesis, the 

interval 

2 2

,s ( m 1) 1 ,s ( m 1)
2 2

,
 

  

 
  
 
 

 contains the statistic (12) 

with 100 (1-  )% degree of confidence. 

For the purpose of calculation of 2
0 j , both b and Sj are 

derivable from column  



 International Journal of Statistics and Applications 2019, 9(5): 153-159 157 

 

 

mean . j j
n s

X a b bj * S
2

   
    

  
, rewritten as  

  jj * S                 (13) 

where, 
n s

a b
2

 
    

 
, b   

Estimates of   and   are derivable from the regression 

of .jX  on j and estimates of . jS  is  

j
j

j

X
Ŝ

ˆˆ

  

               (14) 

where satisfies 
s

j
j 1

Ŝ s



  as in (9).  

Limitations of the Proposed Test 

One of the limitations of proposed test is the violation of 

some of the assumptions of Chi-square test. Neither the m 

observations within each group nor the s- groups are 

independent because the data under study is time series data. 

3. Empirical Examples  

In this section, we present some empirical examples to 

illustrate the applicability of the proposed test when the 

trending curve is linear. The empirical examples consist of 

simulated series from the mixed and multiplicative model. 

Results from simulations using mixed model are contained in 

Section 3.1. Section 3.2 presents results from simulations 

based on multiplicative model. 

Table 3.  Seasonal ( jS ) indices used in the simulation of series 

j  1 2 3 4 5 6 7 8 9 10 11 12 

jS  0.91 0.88 1 0.98 0.98 1.12 1.26 1.20 1.05 0.92 0.80 0.90 

Table 4.  Calculated Chi-Square for Mixed Model 

 

S/N 

Series 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

2
c  101.81 98.38 99.53 98.00 106.23 94.47 116.46 103.17 106.24 117.23 103.68 101.42 114.39 97.69 99.89 

Decision Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept 

S/N 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

2
c  93.86 87.65 112.75 101.39 117.94 125.09 106.42 118.91 101.26 118.64 101.41 96.42 105.93 102.39 111.85 

Decision Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept 

S/N 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 

2
c  105.44 102.30 109.94 108.68 110.78 99.98 95.47 110.48 100.77 107.72 101.96 102.01 102.50 87.44 102.92 

Decision Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept 

S/N 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 

2
c  103.38 97.20 119.90 117.82 104.37 110.03 102.73 101.65 103.18 98.00 103.95 137.63 110.12 109.17 108.47 

Decision Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Reject Accept Accept Accept 

S/N 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 

2
c  102.44 102.08 91.52 112.6 118.8 108.58 179.09 104.32 101.31 113.32 111.95 103.34 109.05 97.39 86.34 

Decision Accept Accept Accept Accept Accept Accept Reject Accept Accept Accept Accept Accept Accept Accept Accept 

S/N 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 

2
c  115.83 99.07 108.43 97.4 97.1 95.82 104.89 109.8 109.78 116.97 114.23 89.24 116.8 101.45 114.65 

Decision Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept 

S/N 91 92 93 94 95 96 97 98 99 100      

2
c  112.93 108.6 97.5 105.05 106.89 87.44 90.27 121.05 95.47 99.52      

Decision Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept      

The critical values for s(m 1) 108   degrees of freedom are 70.1 and 129.6. 
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3.1. Simulations Results from Mixed Model 

The first example is based on the 100 simulations of 120 

observations each from  

 t t tX a bt S e ,    with a 2, b 0.02 , 

 te ~ N 0, 1  and jS  given in Table 3. 

Each series has been arranged as monthly data (s = 12) for 

10 years (m = 10). The column variances of the 100 

simulations are contained in Appendix A. The proposed test 

statistic for choice between mixed and multiplicative models 

given in (11) requires the calculation of the Chi-square 

statistic and comparing it with the critical values, 
2

, (m 1)
2




 , 
2

1 , ( m 1)
2


 

 . Under the null hypothesis that 

the appropriate model is mixed, the calculated value of the 

statistic in (11) is expected to lie within the interval, 

otherwise, it will be concluded that the data does not admit 

mixed model. At 5% level of significance, the critical values 

are for m 1 9   degrees of freedom, equal to 2.7 and 19.0. 

For the proposed test statistic in (12), the decision rule is to 

reject the null hypothesis if the statistic in (12) lies outside 

the interval 
2 2

,s ( m 1) 1 ,s ( m 1)
2 2

,
 

  

 
  
 
 

 or do not 

rejected it otherwise. Again at 5% level of significance, the 

critical values are, for s(m 1) 108  degrees of freedom, 

equal to 70.1 and 129.6. 

The calculated values of the statistic from the simulated 

series are contained in Table 4 When compared with the 

interval 70.1and 129.6, the calculated values of the statistic 

lie within the interval in 98 out of the 100 simulations. This 

indicates that the test is capable of identifying the model 

correctly 98 percent of the times. This expresses the level of 

confidence in the proposed test. 

3.2. Results from Simulations Using Multiplicative 

Model 

The second example is based on the 100 simulations of 

120 observations each from 

Table 5.  Calculated Chi-Square for Multiplicative Model 

S/N 
Series 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

2
c  65.12 227.7 1.31 61.63 3.92 61.41 59.79 61.84 59.43 59.29 68.04 63.91 59.05 67.94 52.09 

Decision Reject Reject Reject Reject Reject Reject Reject Reject Reject Reject Reject Reject Reject Reject Reject 

S/N 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

2
c  63.75 67.84 66.91 59.01 65.54 67.19 65.79 65.04 61.52 68.77 66.28 64.82 68.06 63.3 64.09 

Decision Reject Reject Reject Reject Reject Reject Reject Reject Reject Reject Reject Reject Reject Reject Reject 

S/N 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 

2
c  64.52 65.15 66.20 59.88 65.77 67.24 64.89 64.74 59.05 68.72 59.31 64.91 67.75 58.08 66.3 

Decision Reject Reject Reject Reject Reject Reject Reject Reject Reject Reject Reject Reject Reject Reject Reject 

S/N 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 

2
c  58.01 59.08 65.91 61.65 60.34 54.06 62.49 61.76 63.49 74.1 65.21 62.35 120.2 62.77 65.98 

Decision Reject Reject Reject Reject Reject Reject Reject Reject Reject Accept Reject Reject Accept Reject Reject 

S/N 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 

2
c  67.23 62.32 68.24 69.49 67.79 11.76 69.12 69.68 67.36 66.31 67.25 64.66 60.26 54.10 67.64 

Decision Reject Reject Reject Reject Reject Reject Reject Reject Reject Reject Reject Reject Reject Reject Reject 

S/N 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 

2
c  65.71 66.24 63.91 66.31 69.68 66.99 56.54 42.62 64.78 55.14 59.15 66.45 61.90 160.91 65.73 

Decision Reject Reject Reject Reject Reject Reject Reject Reject Reject Reject Reject Reject Reject Reject Reject 

S/N 91 92 93 94 95 96 97 98 99 100      

2
c  62.78 56.80 68.53 72.09 67.46 63.43 62.88 30.24 66.62 63.63      

Decision Reject Reject Reject Accept Reject Reject Reject Reject Reject Reject      

The critical values for s(m 1) 108  degrees of freedom are 70.1 and 129.6. 
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 t t tX a bt S e ,    with a 2, b 0.02 ,

 te ~ N 1, 0.09   and jS  also given in Table 5 Each 

series of 120 observations has been arranged in a 

Buys-Ballot table with m = 10 rows and s = 12 columns. The 

column variances of the 100 simulations are contained in 

Appendix B while the calculated values of the test statistic 

are given in Table 5. As in section 4.2, the critical values at  

5% level of significance and m 1 9   degrees of freedom 

are 2.7 and 19.0. Under the null hypothesis that the 

appropriate model is mixed, the calculated value of the 

statistic in (11) is expected to lie within the interval, 

otherwise, it will be concluded that the data does not admit 

the mixed model. When compared with the critical values, 

97 out of 100 calculated values of the statistic from the 

simulated series given in Table 5 lie outside the interval, 

indicating that they do not admit the mixed model. In other 

words, the proposed test is capable of identifying the model 

correctly 98 percent of the time. 

4. Summary, Conclusions and 
Recommendations 

This paper has discussed the procedure for distinguishing 

a series that admits the mixed model from one that admits 

multiplicative model in time series decomposition when the 

trend-cycle component is linear. If an analyst encounters a 

time series data, the first thing is to arrange it in Buys-Ballot 

table, calculate the column variances and apply any of the 

known tests for a constant variance. If the null hypothesis of 

constant variance is accepted, it indicates that the study 

series admits the additive model. When the null hypothesis is 

rejected the test proposed in this study provides a basis for 

choosing between mixed and multiplicative models. The 

proposed test is based on Chi-Square distribution. Although 

time series data does not satisfy all the assumptions of   

most common statistical tests, the Chi-Square test appears to 

be the most efficient among them. The proposed test is   

able to distinguish between the mixed and multiplicative 

models with a high degree of confidence and is hereby 

recommended. 
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