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Abstract  In this paper, the zero and one inflated negative binomial distributions is considered. A combined method of 

relative frequencies and maximum likelihood estimators was introduced to estimate the parameters of the zero and one 

inflated negative binomial distribution. A simulation study was conducted to check the performance of this estimation 

method using the mean squares error of each of the parameter estimates for six simulated different zero and one inflated 

negative binomial distributions models. The proposed estimation procedures was used to estimate the parameters of six real 

life data sets models and it gave good results. 
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1. Introduction 

In recent researcher’s literature statistical modelling work, 

frequencies of zeros may be significantly higher than the 

predicated frequency by the standard statistical models. This 

might be lead to wrong conclusions about the actual 

statistical model. Such models are called zero inflated 

models. Furthermore, frequencies of zeros and ones may be 

also jointly significantly higher than the predicated 

frequency by the standard statistical models also, leading to 

zeros and ones inflated models. Hence the problem of 

estimating the model’s parameters may be need further work 

more than the classical statistical methods.  

Gan (2000) studied the properties of the maximum 

likelihood estimates (MLE) of zero inflated model 

parameters, including their existence, uniqueness, strong 

consistency and asymptotic normality under regularity 

conditions. Preisser et al. (2012) considered reviews of the 

zero inflated Poisson and the zero inflated negative binomial 

(ZINB) regression models applied to dental caries, with 

emphasis on the description of the models and the 

interpretation of fitted model results given the study goals. 

Staub and Winkelmann (2012) noted that zero-inflated 

Poisson and the ZINB maximum likelihood estimators are  
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not robust to misspecification, and proposed Poisson 

quasi-likelihood estimators, as an alternative, as consistent 

estimators in the presence of excess zeros without having to 

specify the full distribution. Phang et al. (2013) reviewed 

some literature on the zero inflated models and provide a 

variety of examples from different disciplines in the 

applications of zero inflated models, as well as, discussed 

different model selection methods used in model comparison. 

Astuti and Mulyanto (2016) used the MLE method to 

estimate the parameter on ZINB regression model through 

maximizing the likelihood function using expectation 

maximization algorithm. Lukusa et al. (2017) considered the 

zero-inflated models as the most appropriate approach for 

dealing properly with this issue of excess zeros, reviewed 

studies the missing data problem and the zero-inflated 

feature in modeling zero-inflated data, and discussed their 

methodologies and results and some potential directions of 

the future research. Yang et al. (2017) evaluated the 

performance of several models under different conditions of 

zero -inflation and dispersion, and used results from 

simulated and real data and showed, when data have 

excessive zeros and over-dispersion, that the zero-altered or 

ZINB model were preferred over others, such as, ordinary 

least-squares regression with log-transformed outcome, and 

Poisson model. Yusuf et al. (2017) used the values of 

Vuong z-statistic, -2logLL, AIC and BIC selection criteria 

to select the best fitted zero inflated Poisson and ZINB 

regression models, and suggested that the ZINB regression 

as the best model for predicting number of falls in the 

presence of excess zeros and over-dispersion. Zamri and 

Zamzuri (2017) reviewed the zero inflated models literature, 
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provided a recent development and summary on models for 

count data with extra zeros, and they found in the literature 

that the most popular zero inflated models used are zero 

inflated Poisson and ZINB. 

The zeros and ones inflated models are not given such 

attention in the literature as the zero inflated models. In 

particular, Alshkaki (2017) gave an exact form of the ME of 

the parameters zero-one inflated negative binomial 

distribution (ZOINBD), and found numerically that this 

method is generally not an accurate method to estimate the 

parameters of the ZOINB models and may lead to 

misleading predication.  

In this paper, the definition of the ZOINBD was 

introduced in Section 2, followed in Section 3 by introduced 

a combined method of relative frequencies and MLE. In 

Section 4, we conducted a simulation study to check the 

performance of the proposed estimation procedure using the 

mean squires error computed from different sample sizes for 

the estimated parameters on six simulated different ZOINBD 

models. Finally, in Section 5, we used the proposed 

estimation procedure to estimate the parameters and the 

frequencies of six different real life data sets. 

2. The Negative Binomial Distributions 
and Its Zero-One Inflated Form 

Let k > 0 𝑎𝑛𝑑 𝜃 ∈  0,1  , then the discrete random 

variable (rv) Y having a probability mass function (PMF) 

given by; 

P Y = y =   

  

 k+y−1
y

 θy  (1 − θ)k ,     y = 0, 1, 2, 3, …

,                                       otherwise,         

    (1) 

is said to have a negative binomial distribution (NBD) with 

parameters k and θ . We will denote that by writing 

Y ∼ NBD(k, θ). See Johnson et al. (2005), for other forms 

and parameterizations of the NBD. 

Let α ∈  0,1  be a proportion of zero added to the rv Y, 

and let β ∈  0,1  be an extra proportion added to the 

proportion of ones of the rv Y, such that 0 < 𝛼 + 𝛽 < 1, 

then, the rv X defined by, Alshkaki (2017); 

P X = x = 

 

 
 
 
 

 
 
 
α +  1 − α − β  (1 − θ)k  ,               x = 0                  

          
β + k 1 − α − β  θ (1 − θ)k  ,         x = 1                 

  
 1 − α − β  k+x−1

x
 θx  (1 − θ)k  ,    x = 2, 3, 4, …    

          
0 ,                                                            otherwise,        

       

  (2) 

is said to have a ZOINBD with parameters k, θ, α, and β, and 

we will denote that by writing X ∼ ZOINBD(k, θ; α, β).  

Alshkaki (2017) noted that, if β → 0, then (2) reduces to 

the form of the ZINBD. Similarly, the case with α → 0 and 

β → 0, reduces to the standard case of the NBD. 

Although, it does not fit the nature of the supposed model, 

Alshkaki (2017) noted that, the inflation parameters α and 

β may also take negative values providing that 

α ∈  max  −1,−(1 − β)
(1 − θ)k

1 − (1 − θ)k
 , 0  

and 

β ∈  max  −1,−(1 − α)
kθ (1 − θ)k

1 − kθ (1 − θ)k
 , 0  

without violating that (2) is a PMF. This situation represents 

the excluding proportion of zero’s and one’s, respectively, 

from the standard model given by (1). 

3. Maximum Likelihood and Relative 
Frequencies Estimators 

Let x1, x2, … , xn  be a random sample from ZOINBD  as 

given by (2), and let for i=1, 2, … n,  

αi =   
1            if xi = 0,
0        otherwise,

  

βi =   
1          if xi = 1,
0        otherwise,

  

and 

c k, x =  
k + x − 1

x
  

then, for i=1, 2, … , n, (2) can be written, for xi =
0, 1, 2, …, in the following form; 

 

P Xi = xi =  α +  1 − α − β (1 − θ)k 
α i  β +  1 − α − β kθ(1 − θ)k 

βi     1 − α − β c(k, xi)θ
xi (1 − θ)k 

1−α i−βi
 

Hence, the likelihood function L = L(θ, α, β; x1, x2, … , xn ) can be written as; 

L =   α +  1 − α − β (1 − θ)k 
α i

n

i=1

 β +  1 − α − β kθ(1 − θ)k 

βi

   1 − α − β c(k, xi)θ
xi (1 − θ)k 

1−α i−βi
 

  =  α +  1 − α − β  1 − θ k 
n0
 β +  1 − α − β kθ 1 − θ k 

n1
   1 − α − β c(k, xi)θ

xi (1 − θ)k 
ci

n

i=1

 

where ci = 1 − αi − βi, n0 =  αi ,
n
i=1  and n1 =  βi

n
i=1 . Note that n0 and n1 represent, respectively, the number of zeros 

and the number of ones in the sample. Therefore, 
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log L = n0log α +  1 − α − β  1 − θ k + n1log β +  1 − α − β kθ(1 − θ)k 

+  ci

n

i=1

log   1 − α − β c(k, xi)θ
xi (1 − θ)k  

log L = n0log α +  1 − α − β (1 − θ)k + n1log β +  1 − α − β kθ(1 − θ)k +  ci

n

i=1

log 1 − α − β 

+  ci

n

i=1

log c(k, xi) +  cixi

n

i=1

log θ + k ci

n

i=1

log(1 − θ) 

It follows that, 

∂

∂α
logL =

n0 1 − (1 − θ)k 

α + (1 − α − β)(1 − θ)k
−

n1kθ 1 − θ k

β +  1 − α − β kθ 1 − θ k
−

nc

 1 − α − β 
                                  3  

where nc =  ci
n
i=1 ≡ n − n0 − n1, and hence,  

∂2

∂α2
logL = −

n0 1 − (1 − θ)k 
2

 α + (1 − α − β)(1 − θ)k 2
−

n1 kθ(1 − θ)k 
2

 β +  1 − α − β kθ(1 − θ)k 2
−

nc

 1 − α − β 2
 

therefore,  
∂2

∂α2 logL < 0, which indicates that L has a local maximum at α. Similarly,  

∂

∂β
logL = −

n0 1 − θ k

α +  1 − α − β  1 − θ k
+

n1 1 − kθ(1 − θ)k 

β +  1 − α − β kθ(1 − θ)k
−

nc

1 − α − β
 

and hence,  

∂2

∂β2
logL = −

n0 1 − θ 2k

 α + (1 − α − β)(1 − θ)k 2
−

n1 1 − kθ(1 − θ)k 
2

 β +  1 − α − β kθ(1 − θ)k 2
−

nc

 1 − α − β 2
 

therefore, 
∂2

∂β2 logL < 0, which indicates that L has a local maximum at β. Next,  

∂

∂θ
logL = −

n0k 1 − α − β  1 − θ k−1

α +  1 − α − β  1 − θ k
+    

                
n1k 1 − α − β  1 − θ − kθ  1 − θ k−1

β +  1 − α − β kθ 1 − θ k
 – 

nc k

1−θ
+

 ci
n
i=1 xi

θ
                                                     (4) 

Since, 
∂2

∂θ2 logL can be shown to be not in a simple form, therefore a local maximum of L at θ has to be explicitly 

examined. Finally,  

∂

∂k
logL = −

n0 1 − α − β  1 − θ k log 1 − θ  

α +  1 − α − β  1 − θ k
 

        +
n1 1 − α − β θ 1 − θ k 1 + k log 1 − θ  

β +  1 − α − β kθ 1 − θ k
 

       +nc log 1 − θ − Ψ k  +  ci

n

i=1

Ψ(k + xi) 

where Ψ is the digamma function. Since 
∂2

∂k2 logL can be shown to be not in a simple form, therefore, a local maximum of L 

at k has to be explicitly examined. Hence, k  can be obtained by solving; 

A k  = 0 

using any numerical procedure, say, Newton Rapson method, with initial, as given by Alshkaki (2017), where; 
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A k = −
n0 1 − α − β  1 − θ k log 1 − θ  

α +  1 − α − β  1 − θ k
 

            +
n1 1 − α − β θ 1 − θ k 1 + k log 1 − θ  

β +  1 − α − β kθ 1 − θ k
 

          +nc log 1 − θ − Ψ k  +  ci

n

i=1

Ψ k + xi  

 

Now, letting 
∂

∂α
logL = 0 ,  we have from (3) that; 

1 − α − β =  
nc

n0

p0
 1 − (1 − θ)k −

n1

p1
 kθ(1 − θ)k 

 

where,  

p0 =  α +  1 − α − β (1 − θ)k             (5) 

and  

p1 = β + k 1 − α − β  θ (1 − θ)k          (6) 

Setting 
∂

∂θ
logL = 0, then (4) reduces to; 

k 1 − α − β  1 − θ k−1  
n0

p0
−

n1

p1

 1 − θ − kθ  = 

 ci
n
i=1 xi

θ
 −  k

nc

1−θ
                 (7) 

Now, if we replace, p0 and p1  by their sample relative 

frequencies, i.e. by their sample estimates, the proportion of 

zeros and the proportion of ones in the sample, that is; 

p0 = n0/n and p1 = n1/n, respectively, then (7) reduce to; 

nk(k + 1) 1 − α − β θ 1 − θ k−1  =
 ci

n
i=1 xi

θ
−  k

nc

1−θ
    (8) 

Since the left side of (8), with the use of (2), can be written 

as; 

nk(k + 1) 1 − α − β θ 1 − θ k−1  =
2n

θ 1−θ 
p2      (9) 

Therefore, (8) reduces to; 

2n

θ 1−θ 
p2  =

 ci
n
i=1 xi

θ
−  k

nc

1−θ
            (10) 

Now, using the sample relative frequency to estimate p2, 

hence, from (10) we have that; 

2n2

θ 1 − θ 
=

 ci
n
i=1 xi

θ
−  k

nc

1 − θ
 

or equivalently, in the form after multiply both sides by 

θ 1 − θ ; 

2n2  = (1 − θ) ci

n

i=1

xi − θknc 

from which we have that; 

θ =
 ci

n
i=1 xi − 2n2

 ci
n
i=1 xi + knc

 

Thus, the estimates of α and β, using the sample relative 

frequencies estimates, are given by solving (5) and (6) to be; 

 α =
 1 − p1   1 − θ  

k 
− p0  1 − k θ  1 − θ  

k 
 

 1 + k θ   1 − θ  
k 
− 1

 

and 

β =
p1  –k θ  1 − α   1 − θ  

k 

1 − k θ  1 − θ  
k 

 

4. A Simulation Study 

In order to check the accuracy of the proposed combined 

estimation method, we simulated data from different 

ZOINBD models data sets, then the performance of the 

estimators are computed through their mean squares errors 

(MSE) using different sample sizes. 

We have used Absoft Pro Fortran compiler for computing, 

Mathematica and STATISTICA for the needed graphics and 

other statistical computing. The procedure steps are given 

below; 

(1)  Six different ZOINBD models are considered. 

(2)  Five sample sizes; 15, 30, 50, 100, and 300 are used. 

(3)  For each sample size, 5,000 random variates were 

generate from each of the given ZOINBD model.  

(4)  For each sample size and for each ZOINBD model, 

the parameters were estimated using the proposed 

combined estimation method. 

(5)  The means, standard deviation (SD), bias, and MSE 

for each of the parameters were computed for each 

random sample for each sample size of the given 

ZOINBD models. 

Table 1 presents the 6 different simulated ZOINBD Data 

Sets that were considered, and Tables 2, 3 and 4, represent 

the findings of the computations.  

Table 1.  Simulated ZOINBD Data Sets 

Data set 
Parameters 

θ k   

1 0.55 2 0.3 0.1 

2 0.4 3 0.5 0.2 

3 0.5 4 0.2 0.3 

4 0.35 5 0.2 0.1 

5 0.2 9 0.5 0.3 

6 0.3 15 0.25 0.15 
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Table 2.  Computation Results of Data Sets 1 and 2 

n Parameter 

Data Set 1 

(0.55, 2. 0.3, 0.1) 

Data Set 2 

(0.4, 3, 0.5, 0.2) 

Mean S.D. Bias MSE Mean S.D. Bias MSE 

15 

θ 0.672806 0.931367 -0.122806 0.882526 0.466674 0.637911 -0.066674 0.411376 

k 0.93098 1.525467 1.069020 3.469853 2.10333 3.754639 0.896670 14.901331 

 0.134868 0.354564 0.165132 0.152984 0.475856 0.512556 0.024144 0.263297 

 0.054113 0.434129 0.045887 0.190574 0.190455 0.621534 0.009545 0.386396 

30 

θ 0.58132 0.810213 -0.031320 0.657426 0.442126 0.544256 -0.042126 0.297989 

k 1.68711 1.332417 0.312890 1.873235 2.4048 3.198456 0.595200 10.584384 

 0.275601 0.343345 0.024399 0.118481 0.486322 0.493133 0.013678 0.243367 

 0.090557 0.413423 0.009443 0.171008 0.194321 0.6107998 0.005679 0.373109 

50 

θ 0.560331 0.515333 -0.010331 0.265675 0.408846 0.498322 -0.008846 0.248403 

k 1.89541 1.132434 0.104590 1.293346 2.87132 2.365454 0.128680 5.611931 

 0.293063 0.324911 0.006937 0.105615 0.497806 0.421134 0.002194 0.177359 

 0.097243 0.382125 0.002757 0.146027 0.199114 0.5777899 0.000886 0.333842 

100 

θ 0.55748 0.431522 -0.007480 0.186267 0.404926 0.367911 -0.004926 0.135383 

k 1.92491 1.036767 0.075090 1.080524 2.93132 2.167667 0.068680 4.703497 

 0.295194 0.303578 0.004806 0.092183 0.498991 0.3745667 0.001009 0.140301 

 0.098116 0.351796 0.001884 0.123764 0.199647 0.521534 0.000353 0.271998 

300 

θ 0.551554 0.375793 -0.001554 0.141223 0.400608 0.355799 -0.000608 0.126593 

k 1.98721 0.983241 0.012790 0.966926 2.99877 1.537867 0.001230 2.365036 

 0.299462 0.297122 0.000538 0.088282 0.500261 0.3433456 -0.000261 0.117886 

 0.099889 0.343945 0.000111 0.118298 0.200228 0.441722 -0.000228 0.195118 

Table 3.  Computation Results of Data Sets 3 and 4 

n Parameter 

Data Set 3 

(0.5, 4, 0.2, 0.3) 

Data Set 4 

(0.35, 5, 0.2, 0.1) 

Mean S.D. Bias MSE Mean S.D. Bias MSE 

15 

θ 0.413318 0.983256 0.086682 0.974306 0.313642 0.632145 0.036358 0.400929 

k 5.83731 3.643545 -1.837310 16.651128 6.01145 4.066667 -1.011450 17.560812 

 0.20995 0.632133 -0.009950 0.399691 0.210303 0.672778 -0.010303 0.452736 

 0.311111 0.625589 -0.011111 0.391485 0.108426 0.524344 -0.008426 0.275008 

30 

θ 0.450354 0.771323 0.049646 0.597404 0.322709 0.533279 0.027291 0.285131 

k 4.96511 3.356456 -0.965110 12.197234 5.73971 3.655323 -0.739710 13.908557 

 0.206305 0.503145 -0.006305 0.253195 0.207983 0.544223 -0.007983 0.296242 

 0.306721 0.541733 -0.006721 0.293520 0.106483 0.422412 -0.006483 0.178474 

50 

θ 0.474479 0.509127 0.025521 0.259862 0.34145 0.499799 0.008550 0.249872 

k 4.47021 3.156578 -0.470210 10.185082 5.23171 3.373434 -0.231710 11.433746 

 0.203466 0.473717 -0.003466 0.224420 0.202922 0.481442 -0.002922 0.231795 

 0.303557 0.489127 -0.003557 0.239258 0.102392 0.399774 -0.002392 0.159825 

100 

θ 0.494148 0.424317 0.005852 0.180079 0.345708 0.407133 0.004292 0.165776 

k 4.10249 2.965767 -0.102490 8.806278 5.11434 3.137656 -0.114340 9.857959 

 0.200819 0.393411 -0.000819 0.154773 0.01592 0.403321 0.184080 0.196553 

 0.30081 0.401434 -0.000810 0.161150 0.101349 0.332945 -0.001349 0.110854 

300 

θ 0.497811 0.357678 0.002189 0.127938 0.345831 0.366213 0.004169 0.134129 

k 4.03721 2.454578 -0.037210 6.026338 5.11122 2.554546 -0.111220 6.538075 

 0.200289 0.377189 -0.000289 0.142272 0.201556 0.387991 -0.001556 0.150539 

 0.300275 0.354565 -0.000275 0.125716 0.101321 0.312667 -0.001321 0.097762 
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Table 4.  Computation Results of Data Sets 5 and 6 

n Parameter 

Data Set 5 

(0.2, 9, 0.4, 0.3) 

Data Set 6 

(0.3, 15, 0.25, 0.15) 

Mean S.D. Bias MSE Mean S.D. Bias MSE 

15 

θ 0.142279 0.705341 0.057721 0.500838 0.268572 0.757723 0.031428 0.575132 

k 13.9758 6.065795 -4.975800 61.552455 17.52147 7.145345 -2.521470 57.413766 

 0.406544 0.646678 -0.006544 0.418235 0.250353 0.686543 -0.000353 0.471341 

 0.305425 0.652341 -0.005425 0.425578 0.151073 0.593225 -0.001073 0.351917 

30 

θ 0.166064 0.635467 0.033936 0.404970 0.27577 0.717736 0.024230 0.515732 

k 11.51251 5.198789 -2.512510 33.340114 16.89241 6.653379 -1.892410 47.848668 

 0.404104 0.579978 -0.004104 0.336391 0.250277 0.555211 -0.000277 0.308259 

 0.303345 0.417223 -0.003345 0.174086 0.150835 0.542745 -0.000835 0.294573 

50 

θ 0.172202 0.507778 0.027798 0.258611 0.284958 0.621178 0.015042 0.386088 

k 10.98733 4.665343 -1.987330 25.714906 16.13565 6.376545 -1.135650 41.950027 

 0.403433 0.499789 -0.003433 0.249801 0.250175 0.498999 -0.000175 0.249000 

 0.30279 0.398889 -0.002790 0.159120 0.150522 0.447667 -0.000522 0.200406 

100 

θ 0.188987 0.445322 0.011013 0.198433 0.29408 0.515444 0.005920 0.265718 

k 9.72531 4.094533 -0.725310 17.291275 15.43113 5.338779 -0.431130 28.688434 

 0.401503 0.431567 -0.001503 0.186252 0.250069 0.534543 -0.000069 0.196759 

 0.301235 0.375333 -0.001235 0.140876 0.150201 0.400337 -0.000201 0.160270 

300 

θ 0.195361 0.388178 0.004639 0.150704 0.298267 0.443572 0.001733 0.196759 

k 9.30291 3.938767 -0.302910 15.605640 15.12222 4.976889 -0.122220 24.784362 

 0.400732 0.397778 -0.000732 0.158228 0.250018 0.397845 -0.000018 0.158281 

 0.300629 0.372355 -0.000629 0.138649 0.150051 0.3875667 -0.000051 0.150208 

 

Figure 1.  Influence of the sample sizes on the estimated parameter’s MSE for the 6 simulated data Sets 
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Figure 1 presents the plots of the MSE of each of the 

parameter estimates for the 6 simulated data set, which 

shows that the MSE of each of the estimated parameter for 

each of the different ZOINBD models is decreasing as the 

sample size increases. 

5. Fitting Zero-One Inflated Negative 
Binomial Distributions to Real Life 
Data 

We have taken six real life data set from different filed in 

order to show the usefulness of the proposed combined 

estimation procedure to estimate and fit ZOINBD to these 

real life data sets. The data sets are; 

Data Set 1: Represents the number of units of consumers 

good purchased by households over 26 weeks, see Lindsey 

(1995). This data was studied by Aryuyuen et al. (2014) 

using the zero inflated negative binomial-generalized 

exponential distribution. 

Data Set 2: Represents the number of major derogatory 

reports in the credit history of individual credit card 

applicants, Greene (1994). This data was studied by 

Saengthong et al. (2015) using the zero inflated negative 

binomial – crack distribution. 

Data Set 3: Represents the number of Stillbirths in 402 

litters of New Zealand white rabbits, Morgan et al. (2007). 

This data was studied by Morgan et al. (2007) using the 

zero-inflated Poisson distribution. 

Data Set 4: Represents the number of hospital stays by 

United States residents aged 66 and over, Flynn (2009). This 

data was studied by Aryuyuen et al. (2014) using the zero 

inflated negative binomial-generalized exponential 

distribution. 

Data Set 5: Represents the number of households 

according to the total number of migrants in household 

cohort excluding international migrants of the rural areas of 

Comilla district of Bangladesh, Pandey and Tiwari (2011). 

This data was studied by Pandey and Tiwari (2011) using a 

mixture of a geometric and log-series distributions. 

Data Set 6: Represents the number of migrants from a 

household in growth-center villages, Pandey and Tiwari 

(2011). This data was studied by Pandey and Tiwari (2011) 

using a mixture of a geometric and log-series distributions. 

We have chosen these data sets due to the fact that their 

observed relative frequencies at zeros and ones are 

noticeably large as can be seen from Table 5, for example, 

the relative frequency of zeros for Data Set 1 is 0.806, and 

the for the ones is 0.082, hence both sum to 0.888, which is a 

noticeable large, and similarly, the same note for the other 

Data Sets 2 to 6, inducting that the ZOINBD models may be 

an appropriate model to be considered for these data sets. 

Table 5.  Observed Relative Frequencies for the Data Sets 

X 
Data Set 

1 2 3 4 5 6 

0 0.806 0.8036 0.787 0.8037 0.8173 0.8087 

1 0.082 0.1039 0.1203 0.136 0.1229 0.1032 

Total 0.888 0.9075 0.9073 0.9397 0.9402 0.9119 

Table 6.  The Proposed Estimation Results for Data Sets 1, 2 and 3 

X 

Data Set 1 

Frequencies 

Data Set 2 

Frequencies 

Data Set 3 

Frequencies 

Observed Estimated Observed Estimated Observed Estimated 

0 1612 1612 1060 1060 314 314 

1 164 164 137 137 48 48 

2 71 71 50 50 20 20 

3 47 46 24 27 7 9 

4 28 31 17 16 5 4 

5 17 21 11 9 2 2 

6 12 15 5 6 2 1 

7 12 11 6 4 1 1 

8 5 8 9 10   

9 7 6     

10+ 25 15     

Total 2000 2000 1319 1319 399 399 

Model 

Parameters 

θ 0.76518  0.7052  0.53744 

k 0.52649  0.3418  0.5472 

 0.65496  0.4699  0.3851 

 0.02115  0.0234  0.00211 

𝛘𝟐 3.0566  2.1069  1.6944 

df 6  4  3 

p-value 0.8017  0.7161  0.6382 



 International Journal of Statistics and Applications 2019, 9(5): 134-142 141 

 

 

Table 7.  The Proposed Estimation Results for Data Sets 4, 5 and 6 

X 

Data Set 4 

Frequencies 

Data Set 5 

Frequencies 

Data Set 6 

Frequencies 

Observed Estimated Observed Estimated Observed Estimated 

0 3541 3541 1941 1941 972 972 

1 599 599 292 292 124 124 

2 176 171 67 67 32 32 

3 48 59 37 35 25 23 

4 20 22 17 19 12 16 

5 12 8 6 10 10 11 

6 5 3 7 5 5 7 

7 1 1 3 3 5 5 

8+ 4 2 5 3 17 12 

Total 4406 4406 2375 2375 1202 1202 

Model 

Parameters 

θ 0.43487  0.55372  0.62853 

k 0.4013  0.8272  1.4815 

 0.07502  0.69552  0.77199 

 0.00879  0.06718  0.06903 

𝛘𝟐 7.7122  4.0582  3.9196 

df 4  4  4 

p-value 0.1027  0.3982  0.417 

 

 

Figure 2.  Observed and Estimated Frequencies of All Data Sets 
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Our proposed estimation procedures was used to estimate 

the parameters of the ZOINBD model using each of the six 

data sets. Tables 6 and 7 show the observed and estimated 

frequencies, the estimated parameters, and the chi-squares 

goodness of fit test for each of the data sets. From these 

results, our proposed estimation procedures gives good 

estimates statistically. These results can be seen visually also 

from Figure 2, illustrating the graphs of the distributions of 

the observed and estimated frequencies for each of the data 

sets. 

6. Conclusions 

We considered estimation of the parameters of the 

zero-one inflated negative binomial distribution by a 

combined method of relative frequencies and maximum 

likelihood estimators. We simulated six different zero-one 

inflated negative binomial distribution models data sets, in 

order to check the performance of the proposed estimation 

method, and the mean squares errors of each of the estimated 

parameter was computed using different sample sizes. The 

mean squares error of each of the estimated parameter for 

each of the six simulated data shows that the it is decreasing 

as the sample size increases. We used the proposed 

estimation procedures to estimate the parameters of the 

zero-one inflated negative binomial distribution model of six 

different real life data sets, and it gave a good results visually, 

supported by the results of the chi-squares goodness of fit 

test for each of the data sets. 
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