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Abstract  A new technique for testing whether or not a set of data is drawn from an exponential distribution is proposed in 

this paper. It is based on the equivalence property between kth order statistic and the pth quantile of a distribution. The critical 

values of the test were evaluated for different sample sizes through extensive simulations. The empirical type-I-error rates 

and powers of the proposed test were compared with those of some other well known tests for exponentiality and the result 

showed that the proposed technique can be recommended as a good test for exponentiality. 
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1. Introduction 

One of the most important distributions that are mostly 

used in statistical analysis is the exponential distribution. Its 

importance is often seen in lifetime modelling, reliability 

theory, failure mechanism of systems, queuing theory and 

renewal processes. As a result of this wide application, 

several characterizations of the exponential distribution have 

been discovered in the literature. Some of them include the 

memory-less property, constant hazard rate property and 

closed form distribution function. 

In statistical data analysis, the problem of testing the 

goodness of fit of the data set to a known statistical 

distribution has always been an important challenge. The 

importance of goodness of fit cannot be overemphasized. 

Most parametric statistical methods are not robust to 

distributional assumptions, hence the goodness of fit test in 

order to ensure appropriateness of methods and acceptability 

of results. Suppose that X is a non-negative random variable 

with cumulative distribution function (cdf) given by 

0 ( ) 1 ; 0; 0
x

F x e x





     and probability density 

function (pdf) 0 ( , ) ;
x

f x e


 


  0; 0x   . Let a random 

sample 1 2x , x , ..., xn  be drawn from an unknown 

distribution with cdf ( )F x  and pdf ( )f x . The problem of 

goodness of fit test for exponentiality is that of testing the 

hypotheses: 

0 0 1 0: ( ) ( ) : ( ) ( )H F x F x vs H F x F x        (1) 
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This problem has drawn the attention of many researchers 

and applying various characterizations of the exponential 

distribution, several of such tests have been proposed in the 

literature. Some of them include Gnedenko, Belyayev and 

Solovyev [1], Harris [2], Gail and Gastwirth [3], Lin and 

Mudholker [4], Deshpande [5], Cox and Oakes [6], Kochar 

[7], Epps and Pulley [8], Baringhaus and Henze [9,10], 

Henze [11], Henze and Klar [12], Henze and Meintanis 

[13,14], Baratpour and Habibirad [15], Volkova and Nikitin 

[16], Sadeghpour, Baratpour and Habibirad [17], Ahrari, 

Habibirad and Baratpour [18] and many other tests. 

The literature has been dominated especially in the recent 

times by tests presented as functional representing distance 

measures between two functions. For instance, different 

authors have obtained test statistics as distance measures 

between empirical and theoretical distribution functions of 

the exponential distribution. Such tests include the 

Kolmogorov – Smirnov and the Anderson – Darling tests for 

exponentiality. 

The tests in this class are quite appropriate and have 

appreciable power performances. This is because of the 

uniqueness property of the distribution function of the 

exponential distribution which has a closed form expression. 

Another closed form characterization of the exponential 

distribution which also has the uniqueness property is the 

quantile function of the distribution. In this paper, the 

empirical quantile function is obtained and a functional 

which measures the squared distance between empirical and 

the theoretical quantile functions of the exponential 

distribution is proposed as an appropriate test statistic for 

assessing the exponentiality of data sets. 

2. The Proposed Statistic 

Suppose X is a non-negative random variable which is 
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exponentially distributed with pdf ( , ) ;
x

f x e


 


  

0; 0x   and cdf ( ) 1 ; 0; 0
x

F x e x





    . The 

quantile function ( )Q p  is given by: 

1 log(1 )
( ) ( ) ; (0, 1)

p
Q p F p p



  
        (2) 

If X is standardized (rescaled) by /Y X   such that the 

parameter   in the resulting variable Y is equal to 1, then 

the pdf and the cdf will respectively be ( ) ; 0
y

yf y e y


   

and ( ) 1
y

yF y e


  , and the quantile function associated 

with ( )yF y  is given by: 

1
( ) ( ) log(1 ); (0,1)y yQ p F p p p


         (3) 

Now, for a random sample 1 2x , x , . . ., xn  obtained from 

an unknown non-negative continuous distribution, the  

order statistics obtained from the random sample are 

1: 2: :, , . . .,n n n nX X X  where :j nX  is the jth smallest 

observation in the sample of n observations. That is, 

1: 2: :. . .n n n nX X X   . Xu and Miao [19] have stated that the 

pth quantile of a distribution can be estimated by either the 

sample pth quantile of the distribution or the appropriate kth 

order statistic of a sample drawn from the distribution. The 

sample pth quantile of a distribution, denoted by ˆ
p  is 

obtained as the inverse of the sample distribution function, 

also known as the empirical distribution function, which is 

denoted by ( )nF x . For (0, 1)p ,
 

 1ˆ ( ) inf : ( )p n nF p x F x p


          (4) 

where 
1

1
( ) ( )

n

n j
F x n I X x


   which is the number of 

observations in the random sample that are less than or equal 

to x  divided by n. Let the number of observations in the 

sample that are less than or equal to x  be j. Then 

( ) /nF x j n . Hence, (0, 1)p  can be approximated by 

/j n . Madukaife [20] has shown that the approximation 

holds, provided 
..

:
ˆ/ , 0

a s
j n pj n p X    , see also Xu 

and Miao [19] and Serfling [21]. 

From the foregoing, the sample pth quantile of a 

distribution can be given as : ; (0, 1)j nX p  where 

/p j n . The problem now is to obtain a distance function 

 : , ( ) ;j n xD X Q p / ,p j n 1, 2, . . .,j n  which for each j 

measures the distance apart between the sample and 

population quantiles. This function is adapted from 

Madukaife [22] and Madukaife and Okafor [23,24] as the 

sum of squared deviations of the sample quantiles from the 

population quantiles. For the exponentiality test, this is given 

by: 

 
1

2

: :, ( ) log(1 )

j

n

j n x j nD X Q p X p



         (5) 

In order to obtain a measure that does not depend on  , 

the parameter of the exponential distribution, the sample 

observations are first rescaled (standardized) by 

/j j Xy x  where 
1

1

n
jj

X n x


  . Then the order 

statistics of the rescaled observations are obtained as 

1: 2: :, , . . .,n n n nY Y Y  such that :j nY  is the jth order statistic of 

the rescaled observations. Also, estimating p by /j n  will 

obviously give inappropriate results especially at the extreme 

order statistics. van der Vaart [25] has shown that 

1
:( )n j nF p Y


  for 

1
,

j j
p

n n



 
 
 

. Taking the average of the 

limits in the interval of p for which the sample quantile of a 

distribution equals the jth order statistic gives 
0.5j

p
n


 . 

Therefore, an appropriate statistic for testing the goodness of 

fit for exponentiality of a data set is given by: 

:

1

2
( 0.5)

log

n

j n

j

n

n j
M Y

n

 
 



  
    

      (6) 

The statistic in (6) is both affine invariant and consistent 

against all fixed alternatives. Its affine invariance stems from 

the fact that it is based on rescaled null distribution and hence 

does not depend on the parameter  . Also, its consistency 

against any fixed alternative is guaranteed since the quantile 

function of the null distribution is unique. The test rejects 

null hypothesis of exponentiality for large values of the 

statistic Mn . 

3. Empirical Critical Values of the Test 

In classical test of hypothesis, a critical value that is 

appropriate for a test is always needed in order for correct 

judgment on the rejection or otherwise of the null hypothesis 

to be passed. It is usually obtained from the exact or 

asymptotic distribution of the test statistic. When this is done, 

the test is regarded as exact or asymptotic test respectively. 

The exact or asymptotic distribution of the statistic that is 

proposed in this paper is however not known. The critical 

values of this test therefore shall be obtained empirically 

through extensive simulation studies. It is important to note 

here that the applicability of the statistic in real life situations 

will be hampered by lack of critical values for all possible 

sample sizes at all levels of significance. This is because in 

empirical evaluation of critical values especially as 

embodied in a paper like this, only a few sample size 

situations and levels of significance are considered. 

Although beyond the scope of this paper, this set back can be 

well taken care of by obtaining a function for the empirical p 
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– values of the test through extensive bootstrapping. This 

means that for any sample size situation, the empirical p – 

value is obtained which will be compared with the 

appropriate level of significance for the test in order for 

judgment to be passed on the rejection or otherwise of the 

null hypothesis of exponentiality. With this, applicability of 

this statistic is always guaranteed. 

In this paper, the empirical critical values of the proposed 

statistic are evaluated at five different levels of significance 

and 11 different sample sizes. The levels of significance are 

  = 0.005, 0.01, 0.025, 0.05 and 0.1 while the sample sizes 

are n = 5 (5) 50 (50) 100. In each of the sample size situations, 

100,000 samples are generated from the standard 

exponential distribution. In each of the generated samples, 

the value of the statistic is evaluated, resulting in 100,000 

values of the statistic. The   - level critical value of the test 

is obtained as the 100(1 )  percentile of the values. The 

percentiles are presented in Table 1. 

Table 1.  Empirical critical values of the Mn statistic 

n\  0.005 0.01 0.025 0.05 0.1 

5 

10 

15 

20 

25 

30 

35 

40 

45 

50 

100 

4.0608 

8.5222 

11.1794 

13.0516 

14.3664 

15.2471 

17.1985 

17.9056 

18.3010 

19.1063 

22.3322 

3.3521 

6.5153 

8.6922 

10.1153 

11.3674 

11.7179 

13.0578 

13.4685 

13.7384 

14.3806 

17.0592 

2.3367 

4.2922 

5.6115 

6.5844 

7.3182 

7.8203 

8.4084 

8.9631 

9.0777 

9.6394 

11.5452 

1.7336 

3.0175 

3.9010 

4.5808 

5.1300 

5.4890 

5.8952 

6.2727 

6.5047 

6.8194 

8.3467 

1.2946 

2.1828 

2.7762 

3.2624 

3.6272 

3.9435 

4.2098 

4.4438 

4.6275 

4.8497 

6.0563 

4. Empirical Power Studies 

Assessing the relative power of the statistic proposed in 

this paper involves comparing its power performance with 

the powers of some other good tests for exponentiality in the 

literature. These good tests in the literature (also regarded as 

competing tests) which are considered in this work are 

presented in what follows. 

The Kolmogorov – Smirnov nKS  Test 

Let 
jX  be the jth observation of a random sample of size 

n and let ˆ/j j nY X  , where 
1

1
ˆ n
n jj

X n X


   , be 

the scaled form of the observation 
jX . Also, let 

 1 expj jZ Y    be the transformed form of 

; 1, 2, . . .,jY j n  and :j nZ  be the jth order statistic of the 

transformed data. The Kolmogorov – Smirnov (K-S) test 

rejects the null hypothesis of exponentiality for large values 

of the statistic given by:  

 

: :
1 1

max max ; max ( 1)n j n j n
j n j n

KS j n Z Z j n
   

   
 

       
 

 

 max ,n nKS KS
 

 ,  

where 
:

1

maxn j n
j n

KS j n Z


 

     and  

:
1

max ( 1)n j n
j n

KS Z j n


 

     . 

 
The Anderson – Darling nAD  Test 

Like the Kolmogorov – Smirnov nKS  test, this goodness 

of fit procedure rejects the null hypothesis of exponentiality 

for large values of the statistic which is given by: 

 
1

2 1 2 1
2 1 1

2 2

n

n j j

j

j j
AD n InZ In Z

n n

 
     



   
     

  

where 
jZ  has its usual meaning. 

The nCO  Test of Cox and Oakes [6] 

Cox and Oakes [6] developed a two-sided test of 

exponentiality whose statistic:  

 
1

1 ; 1, 2,...,

j

n

n j jCO n Y InY j n



     

where 
jY  remains the scaled form of 

jX . The statistic 

rejects the null hypothesis of exponentiality for both small 

and large values of nCO . 

The ,n aBH  Test of Baringhaus and Henze [9] 

With an appropriate choice of a smoothing parameter “a”, 

Baringhaus and Henze [9] proposed a test of exponentiality 

which rejects the null hypothesis for a large value of the 

statistic: 

    2

0

, 1 '( ) ( ) expn a n nBH n t t t at dt 



      

2 2 3
1, ( ) ( ) ( )

(1 )(1 ) 2 21

j k j k j k

n
j k j k j k j k

j kj k Y Y a Y Y a Y Y a

Y Y Y Y Y Y Y Y

n Y Y a      

  
  

 



 
 
  


 

The test is said to be consistent against any distribution 

with positive finite mean  . 

The nT  Test of Baratpour and Habibirad [15] 

Baratpour and Habibirad [15] obtained an estimator of the 

cumulative residual entropy ( )CRE  of a distribution F  

and by using the cumulative Kullback – Leibler (CKL) 

divergence between two distributions, proposed the statistic 

nT  for testing exponentiality of data sets.  
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  1

1

1

1

2

1: :

1

2

2

;1

2

j

j

j

n

j
n

j n j n n
j

j

n n

j

j

n

j

X

n j n j
In X X

n n
X

T j n

X

X



 
 

  











  
    










 

The null hypothesis of exponentiality is rejected for large 

values of nT  and the statistic is said to be consistent against 

any fixed alternative. 

The ,r nT  Test of Sadeghpour, Baratpour and Habibirad 

[17] 

Sadeghpour, Baratpour and Habibirad [17] improved on 

the work of Baratpour and Habibirad [15] by introducing a 

statistic that is based on the equilibrium distance using the 

Renyi divergence. The statistic is given as: 

1
1: :

,

0

( 1) ( 1)
exp exp

rn
j n j n

r n

n nj

r X r Xn j
T

n X X


 

 



     
      

      
  

The test is affine invariant and rejects the null hypothesis 

for large values of the statistic. 

A total of 10,000 samples in each case of sample size,    

n = 10, 25, 50 and 100 are generated from six different 

distributions with different parameter values. The 

distributions include: 

  The standard exponential distribution with pdf 

( ) ; 0
x

f x e x


  , (1)E . 

  Weibull distribution with probability function, ( )f x   

1
exp( );x x

 



 1; 0x   , ( ,1)W  . 

  Gamma distribution with probability function, ( )f x 

1 1
( ) exp( ); 1; 0x x x


 

 
    , ( ,1)G  .  

  Uniform distribution in the interval (0, 1), (0,1)U . 

  Beta distribution with probability function, ( )f x 

0 11 11
0 1( , ) (1 ) ; 0; 0,B x x x

 
  

 
   0 1( , )B   .  

  The standard lognormal distribution with pdf, 

 1 2 2
( ) ( 2 ) exp (log ) / 2 ;f x x x  


  1,   

(0,1)LN .  

Table 2.  Empirical power comparison of tests for exponentiality at   = 0.05 

Distribution n KSn ADn COn BHn,a Tn Tr,n Mn 

E(1) 

E(1) 

E(1) 

E(1) 

W(2,1) 

W(2,1) 

W(2,1) 

W(2,1) 

W(0.5,1) 

W(0.5,1) 

W(0.5,1) 

W(0.5,1) 

G(2,1) 

G(2,1) 

G(2,1) 

G(2,1) 

G(0.5,1) 

G(0.5,1) 

G(0.5,1) 

G(0.5,1) 

U(0,1) 

U(0,1) 

U(0,1) 

U(0,1) 

B(1,2) 

B(1,2) 

B(1,2) 

B(1,2) 

LN(0,1) 

LN(0,1) 

LN(0,1) 

LN(0,1) 

10 

25 

50 

100 

10 

25 

50 

100 

10 

25 

50 

100 

10 

25 

50 

100 

10 

25 

50 

100 

10 

25 

50 

100 

10 

25 

50 

100 

10 

25 

50 

100 

5.2 

4.8 

5.4 

5.2 

50.4 

92.1 

99.9 

100.0 

56.0 

92.7 

99.8 

100.0 

20.8 

48.5 

81.9 

98.9 

25.2 

55.3 

84.9 

98.9 

27.4 

62.8 

91.8 

99.9 

11.8 

24.6 

46.2 

78.8 

9.8 

15.7 

24.3 

44.8 

5.1 

5.3 

5.2 

5.1 

51.7 

96.5 

100.0 

100.0 

76.2 

98.1 

100.0 

100.0 

18.0 

55.7 

91.0 

99.9 

46.4 

78.2 

96.3 

100.0 

29.7 

74.6 

98.4 

100.0 

9.9 

26.9 

56.1 

90.7 

8.1 

16.7 

33.9 

69.3 

2.8 

3.9 

4.8 

5.0 

31.8 

97.6 

100.0 

100.0 

75.9 

98.7 

100.0 

100.0 

8.4 

58.8 

94.1 

100.0 

28.8 

57.0 

82.9 

98.3 

12.5 

55.6 

88.6 

99.6 

3.8 

21.3 

48.5 

82.2 

3.8 

9.3 

12.6 

15.8 

4.7 

4.9 

4.7 

4.8 

61.4 

98.4 

100.0 

100.0 

88.8 

99.4 

100.0 

100.0 

23.2 

58.4 

99.9 

100.0 

32.4 

63.8 

99.0 

100.0 

33.2 

62.2 

100.0 

100.0 

12.3 

32.8 

97.6 

100.0 

10.9 

15.3 

19.8 

27.6 

6.1 

36.3 

0.0 

0.0 

6.5 

36.8 

0.0 

0.0 

35.9 

74.2 

0.0 

0.0 

91.7 

100.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.2 

1.1 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

43.3 

95.3 

0.0 

0.0 

4.7 

4.8 

5.2 

4.9 

0.0 

0.1 

4.3 

86.7 

58.2 

85.4 

97.3 

99.9 

0.2 

0.1 

0.0 

0.8 

28.1 

42.5 

57.4 

78.4 

0.0 

0.1 

7.5 

94.9 

0.1 

0.0 

0.0 

1.5 

13.1 

24.5 

36.7 

54.0 

4.7 

5.2 

4.9 

4.9 

18.5 

67.0 

98.5 

100.0 

58.1 

87.4 

98.7 

100.0 

3.9 

10.8 

29.1 

67.9 

27.9 

45.0 

63.7 

86.6 

18.6 

77.6 

99.9 

100.0 

2.9 

13.5 

53.8 

98.3 

13.2 

24.0 

37.5 

55.5 
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The values of the seven statistics being compared are 

evaluated in each of the 10,000 simulated samples and the 

power of each test obtained as the percentage of the 10,000 

samples that is rejected by the statistic at 5 percent level of 

significance. The power performance of each of the tests is 

presented in Table 2. 

From Table 2, it will be observed that the proposed test has 

a good control over type-1-error along with the other 

competing tests except the nT . This is because none of   

the tests except the nT  gave the power under the null 

distribution of exponentiality greater than 5.4% and since the 

power in this case supports the null hypothesis, it is also 

known as the empirical type-1-error rate. Lack of control 

over the type-1-error is a serious deficiency of a goodness of 

fit statistic. In addition, the proposed test equally does not 

conserve the type-1-error as all its values range from 4.5% to 

5.4% as against the nT  and the nCO . 

Distributions alternative but contiguous to the exponential 

distribution may be classified according to their hazard 

functions as those with increasing hazard rate, those with 

decreasing hazard rate and those with non-monotone hazard 

rate. This study considers all these classes of distributions 

and the proposed statistic maintained an appreciable power 

in all the classes. In each of the alternative distributions, the 

power performance of the statistic continued to increase as 

the sample size increased. These show that the proposed 

statistic is both omnibus and consistent. 

Compared to the power performances of the other 

statistics in this paper, the proposed statistic is no doubt not 

the best as no test can be adjudged to be the best. However, 

the power performances show that it is very competitive 

especially at large samples. 

5. Conclusions 

It has been observed from the foregoing that there is no 

shortage of tests for exponentiality in the literature. Some of 

these tests however have been observed to be more effective 

in some classes of distributions alternative to the exponential 

than some other classes. Also, some are found to be deficient 

with respect to some properties of a good goodness of fit 

procedure. The basic properties of a good statistic for a 

goodness of fit test are affine invariance, consistency, good 

control over type-1-error and generally good power 

performance. The test statistic proposed in this paper 

satisfies all these qualities. Hence, the statistic Mn can be 

recommended as a good test for assessing exponentiality of a 

data set. 
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