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Abstract  Survival analysis is employed in estimating the survival proportions of infants born in the Nandom district, 

Ghana and the infant mortality count data fitted to four standard loss distributions. The four loss distributions were Poisson, 

Binomial, Negative Binomial and Geometric distributions. The results showed that, the first twenty-four (24) hours and 

month after delivery are the most critical periods in the life of an infant child in the Nandom District. Also, about 98 percent 

survived up to the neonatal stage and only 97 percent made it to the post neonatal stage. The conditional proportion of infants 

dying within the early neonatal stage recorded the highest proportion of about 2.17 percent. The Negative Binomial 

Distribution was the best model to fit the infant mortality data with log-likelihood and A.I.C values as -31.7365 and 65.4730 

respectively with an expectation of about 51 deaths per year. This implies that, the district is still facing a bigger challenge in 

terms of infant mortality and should therefore work towards achieving the goal as stipulated in the SDGs. 
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1. Introduction 

In recent time past, Infant Mortality ratios were crucial 

indicators for the attainment of the Millennium Development 

Goals MDG 4 and 5 for all countries in fulfillment of the    

2 out of 3 health goals from the 8 targeted on development 

and poverty eradication. The fourth MDG goal targeted at 

reducing the mortality rate of children under-five years by 

two thirds between 1990 and 2015 and as well make 

reproductive health accessible to all. 

However, from the trends of events unfolding, achieving 

these health Millennium Development Goals was a great 

challenge as many countries seems not to be on track to 

meeting their target by 2015[12], thus the business still 

remains unfinished. With the business being unfinished, a 

global leadership on poverty eradication, inequality and 

climate change became eminent and hence the formulation 

of the sustainable development goals. 

In an attempt to put a permanent end to poverty 

everywhere, world leaders convened a meeting at the United 

Nations in New York in 25th September 2015 in order to 

adopt another 15 years’ program that will put the world on a 

sustainable path. This post-2015 agenda comprises 17 new  
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Sustainable Development Goals (SDGs) formulated to finish 

the job of the MDGs. That is to guide both policy and 

funding for the next 15 years. The MDGs 4 is now 

incorporated into MDG5 as SDG 3 which seeks to ”ensure 

healthy lives and promote well-being for all at all ages”. 

Target 1 of the SDG3 is to ensure a reduction of global MMR 

to less than 70 deaths per every 100000 live births by twenty 

countries focusing at reducing neonatal mortality to at least 

as low as 12 per 1000 live births and under 5 mortality to at 

least as low as 25 per 1000 live births. 

Infant Mortality is however, defined as the death count of 

children under age one. It is usually estimated using the 

Infant Mortality Rate (IMR). It describes the number of 

deaths of children below one year of age out of every 1000 

live births. With an estimated nine-million children still 

dying each year before they reach their 5th birthday [14], 

majority of infant deaths occur in the first 28 days of life, 

with an estimated 3.027 million deaths representing 40.3 

percent [9]. ”Progress towards the reduction of neonatal 

deaths has been slow, with little evidence of progress” [11]. 

In the year 2015, 4.5 million (75 percent) of all under-five 

deaths happened within the first year of life. The risk of a 

child dying before completing its first birthday was highest 

in African countries (55 per 1000 live births), over five times 

higher than that in European countries which recorded 10 out 

of 1000 live births [15]. In Ghana, the IMR is 38.52 deaths 

per 1000 live births (CIA fact book), this still represents a 

great challenge as the SDG goals place more emphasis on 

survival (that is zero child deaths). 
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Survival being the compliment of death, calculating the 

proportion of infants who lived past a certain time and the 

rate they fade out are taken into account in this paper. As 

Ghana meets the rest of the world to embrace the set of 

sustainable development goals, and to zero down mortality, 

the effect of population ageing coupled with high fertility 

(4.2 children per woman)? May seem to pose a hindrance 

towards reducing infant deaths to the barest minimum, hence 

the need for survival analysis to see what proportions of 

infant that will survive pasta certain age? And what 

proportion will die before reaching the same age? A loss 

distribution will be fitted to the infant mortality count data. 

This will help inform intervention strategies in the Nandom 

District of the Upper West Region of Ghana. Not only does 

the rapid ageing of population make the subject Mortality 

and its converse of Survival analysis worth studying, but also, 

infant and maternal health is important in its own right; as 

every person, mother or child alike deserves the right to live; 

counting on the fact that most of these deaths that brazen 

most countries out from hitting their MDG targets are 

preventable. 

Analysis of infant mortalities becomes a central problem, 

especially when coordinated efforts of districts and regions 

to meet the set of sustainable development targets of 

reducing infant deaths in the country was defeated. [6] Using 

the Logistic Regression, modeled the Risk Factors of 

Neonatal Mortality in Ghana using data from the 2008 

Ghana Demographic Health Survey by the Ghana Statistical 

Service. In this study, three models were developed one each 

for mother level factors, child level factors and 

environmental factors. The results showed that, for the 

mother level factors, age and wealth index were the risk 

factors identified and associated with neonatal mortality in 

Ghana. Child size, sex and the number of children born of a 

single mother at birth at the child level factors did not show 

significant result of causing neonatal deaths while for at the 

environmental factor level, the location by region was found 

to be a factor contributing to neonatal mortality. From the 

findings drawn from the environmental factor level, it was 

established that poverty contributed towards neonatal deaths. 

[10] applied time series models to data on under-five 

mortality rates in Ghana from 1961 to 2012 year period to 

model the decrease in under-five mortality. The Box-Jarkins 

ARIMA model, Bayesian Dynamic Linear model and the 

Random Walk with Drift model were constructed for data 

value from 1961 to the year 2000 and an in- sampling 

forecasting is made for the subsequent years up to 2012. The 

random walk with drift was found to have fit the data well 

and was used for an out-of-sampling forecasting for the year 

2013 through to 2016. The result showed a forecasted 

under-five mortality rate of 64 deaths per 1000 live births for 

the year 2015 which meant that Ghana would not be able to 

achieve the millennium development target of 42.7 death per 

1000 live births by the end of the 2015. 

Guided by the singular objective to obtain a model for 

forecasting the death counts of children in families of 

Bangladesh, [2] employed four discrete loss distributions 

(Negative Binomial Regression (NBR), Zero Inflated 

Negative Binomial Regression (ZINBR), Hurdle Regression 

(HR), and Poisson regression) to count the response, death 

counts of children and to identify the risk factors. It was 

established that the death count of children in a family were 

positive count dependent variable. The average death count 

of children was found to be 28 per 100 women with a 

variance of 44 per 100 women. Thus Poisson regression 

model was not a good choice to predict the mean response 

from the Bangladesh DHS data due to the presence of 

over-dispersion. In order to address over dispersion, the 

Zero-Inflated Negative Binomial Regression (ZINBR) was 

the best model that fitted the data well. The Negative 

Binomial Regression (NBR), and Hurdle Regression (HR) 

model were also good fits. It was established that 

respondent’s socio-economic factors as well as demographic 

factors and environmental factors were identified as 

significant predictors for the number of children’s death   

in a family based on Zero-Inflated Negative Binomial 

Regression (ZINBR). It was recommended that ‘knowing 

the risk factors of the number of children’s deaths are of 

importance to public health issues and should be carried out 

meticulously for the much needed intervention”. 

In attempt to forecast the Rate at which Infant Mortality is 

declining in South Asia, [4] asked the following research 

question about South Asian countries; (1). What is the 

progress in reducing the IMR to meet the MDG target? 

Despite the time series data showed declining trends, in 

essence do such trends account for average annual progress? 

(2). can stochastic or deterministic trend explain the IMR 

decline. If so, what alternative time series model can be used 

to forecast the declining rate of Infant Mortality? and if a 

serviceable representative model for the entire region be 

concluded on? (3) if there were models that could adequately 

represent the entire region, how will the problem of forecast 

accuracy using the model and the propagation of forecast 

error be accounted for? In this approach, a Random Walk 

Approximation was used. The Logarithm of decline rate of 

infant mortality as a time series and fit alternative parametric 

time series models were considered. Partial Autocorrelation 

Function (PACF) and Auto Correlation Function (ACF) 

were used to assess stationary status of all the series which 

showed persistent patterns of sample ACF for all the 

countries. It was purported that for a liner relation, the 

autocorrelations did not approach zero. Hence ARIMA 

modeling of the first differences of these series was explored; 

ARIMA (p,1,q) models were considered. Based on residual 

checks, ARIMA(1,1,1), ARIMA(2,1,0), ARIMA(1,1,2) etc., 

were not acceptable. A random walk model and/or a ARIMA 

(1,1,0) was seen to have fitted well. In Comparison, ARIMA 

(1,1,0) chosen as adding more parameters favor the process. 

It was observed that linear extrapolation of IMR using the 

past rate may under or over estimate the shortfall in 

achieving the MDG child mortality target (see goal 4). It was 

cited that linear extrapolation of IMR for Bhutan has average 

annual reduction rate of 36 deaths per 1000 live births 

between 1990 and 2010, hence suggested that it would over 
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exceed the MDG 2015 target. However, the ARIMA model 

indicated that there can be a shortfall to the extent of 11 

percent with approximately 1 percent of error, so was the 

case, for the entire region of South Asia. The shortfall was 

under estimated by about 28 percent. It was believed that 

possibility of finding a time series model which was 

representative of the entire region of South Asia for the 

purpose of forecasting IMR decline which country level 

comparisons and stagnation monitoring of progress are made 

possible was demonstrated. 

Similarly, [5] modeled the contribution of birth intervals 

to infant and child mortality within the context of community 

framework. The study revealed that short birth interval (less 

than 72 weeks) affects infant and child mortality greatly 

when compared with long birth interval ( greater than 96 

weeks), it means that contribution of short birth interval was 

severe on infant mortality as against child mortality. It was 

agreed that the maturity level of mothers had greater impact 

on infant and child mortality in general. Education was also 

unfolded to contribute significantly to infant and child 

mortality. 

The purpose of this paper is to model the survival of infant 

and as well fit a standard loss distribution to infant 

mortalities data of the study area. The loss distribution is 

commonly used to examine risk and the frequency or 

severity of the risk. This loss distribution approach is to help 

our health institutions develop mathematical models to 

enable them solve their mortality problems in Nandom 

Distict and Ghana at large. 

2. Materials and Method of Analysis 

2.1. Source of Data 

Secondary data was collected from Ghana Health Service, 

Nandom District Health Directorate precisely for the period 

of 2008 to 2015. The information was collected in two folds, 

information on newborns was gathered for the period and it 

is assumed that the children were monitored from day one to 

the end of the first year of live and secondly, infant count 

mortality data was also sorted. 

2.2. Methods of Data Analysis 

2.2.1. Survival Times 

Survival times measure the time to a given event such as 

time to failure of a machine, divorce, student drop out, arrest 

time, development of a disease, relapse, or response. In this 

paper, the survival times measure the mortalities of Infants of 

Nandom District, in the Upper West Region of Ghana. The 

distribution of survival times is usually characterized by 

three functions: Survivorship function, S(t), the probability 

function, f(t) and the hazard function, h(t) [7]. 

2.2.2. The Survival Function, S(t) 

Let the continuous random variable T measure the 

survival time of an infant child, where T is a non - negative 

real integer. It is considered that subjects are a random 

sample from a larger population of infant and that the actual 

survival times of individuals in a group is the value of the 

variable T. The Survival Function conventionally denoted 

S(t), is defined as the complement of the lifetime distribution 

function, F(t). It is the probability that an infant who is born 

survive longer than t. That is; 

𝑆 𝑡 = 

P (a newborn surviving longer than t from first day of life) 

(1) 

 𝑆(𝑡)  =  𝑃(𝑇 >  𝑡) 

𝑆 𝑡 =1 – P (a newborn dying before t from first life)  (2) 

𝑆 𝑡 =  1 −  𝐹 𝑡                (3) 

𝑆(𝑡) is a non increasing function of time with properties 

𝑆 𝑡 =  
1 𝑓𝑜𝑟 𝑡 =  0
0 𝑓𝑜𝑟 𝑡 =  ∞

             (4) 

2.2.3. Probability Density Function (PDF) 

This is defined as the limit of probability that an infant 

dies within the short interval 𝑡 to 𝑡 + ∆𝑡 per unit time. It is 

represented mathematically as; 

𝑓(𝑡) =lim∆𝑡→0[
Pr  of  a new  born  dying  within (t,t+∆t)

∆𝑡
]   (5) 

𝑓(𝑡) = 𝐹 𝑡 =  
𝑑

𝑑𝑡
 1 −  𝑆 𝑡  =  −𝑆′(𝑡)       (6) 

In terms of survival functions, 

𝑓 (𝑡𝑚𝑖 ) =
𝑆 (𝑡)− 𝑆 (𝑡𝑖−1)

𝑏𝑖
=

𝑆 (𝑡𝑖)𝑞 𝑖

𝑏𝑖
, 𝑖 = 1,2, …𝑘 − 1   (7) 

𝑆 (𝑡𝑖) is the cumulative proportion by time, 𝑡 within the 

𝑖𝑡ℎ  interval. It is referredto as the cumulative survival rate.  

It implies that those infants surviving to the 𝑖𝑡ℎ  interval 

survived to the start of and through the (𝑖 −  1)𝑡ℎ  interval.  

Thus, 𝑆 (𝑡𝑖) = 𝑝 𝑖−1𝑆 (𝑡𝑖−1)𝑆 (𝑡𝑖−1) is the proportion 

surviving by time, 𝑡 with the (𝑖 −  1)𝑡ℎ  interval. 

𝑞 𝑖  Typically defines the conditional probability of an 

infant dying in the 𝑖𝑡ℎ  interval given the number exposed to 

the risk at time,  𝑡.  

It is estimated using; 

𝑞 𝑖 =
𝑑𝑖

𝑛𝑖
, 𝑖 = 1,2,3, … 𝑘 − 1           (8) 

The conditional survival proportion 𝑝 𝑖  is given as 1 − 𝑞 𝑖  
𝑏𝑖  is the width of the 𝑖𝑡ℎ  interval 

𝑡𝑚𝑖 = the midpoint of each interval 

𝑑𝑖  = number dying in the 𝑖𝑡ℎ  interval 

𝑛𝑖  = number exposed to risk in the 𝑖𝑡ℎ  interval 

2.2.4. Hazard Function 

The hazard function  ℎ(𝑡), is defined as the event rate at 

time 𝑡 conditional on survival until time 𝑡 or later. Suppose 

that a subject has survived for a time 𝑡  and we desire     

the probability of survival for an additional time, ∆𝑡 . 

Mathematically, it can be expressed as 
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ℎ 𝑡 =
Pr (𝑡≤𝑇≥𝑡+∆𝑡|𝑇≥𝑇)

𝑑𝑡
= lim𝑑𝑡→0  

Pr (𝑡≤𝑇<𝑡+𝑑𝑡

∆𝑡.𝑆(𝑡)
     (9) 

ℎ 𝑡 =
𝑓 𝑡 

𝑆(𝑡)
= −

𝑆 ′ (𝑡)

𝑆(𝑡)
= −

𝑑

𝑑𝑡
log 𝑆 𝑡             (10) 

The hazard functions or hazard ratio synonymously called 

failure rate or force of mortality in actuarial literature, is the 

probability density function of the distribution. It is defined 

as; 

ℎ 𝑡 =
𝑛𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑖𝑛𝑓𝑎𝑛𝑡𝑠  𝑑𝑦𝑖𝑛𝑔  𝑎𝑡  𝑡ℎ𝑒 𝑏𝑒𝑔𝑖𝑛𝑛𝑖𝑛𝑔  𝑎𝑡  𝑡𝑖𝑚𝑒 ,𝑡

𝑛𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑖𝑛𝑓𝑎𝑛𝑡𝑠  𝑠𝑢𝑟𝑣𝑖𝑣𝑖𝑛𝑔  𝑎𝑡  𝑡𝑖𝑚𝑒 ,𝑡
  (11) 

The hazard rate is the rate of death for lives aged  𝑡. For a 

life aged  𝑡, the force of mortality 𝑡 years later is the force 

of mortality for a (𝑡 + ∆ 𝑡) years old. Actuaries often use the 

average hazard rate of the interval, which is the number of 

patients dying in the interval per unit time divided by the 

average number of survivors at the midpoint of the interval. 

ℎ 𝑡 = 
𝑛𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑖𝑛𝑓𝑎𝑛𝑡𝑠  𝑑𝑦𝑖𝑛𝑔  𝑖𝑛  𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙

 𝑛𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑖𝑛𝑓𝑎𝑛𝑡𝑠  𝑠𝑢𝑟𝑣𝑖𝑣𝑖𝑛𝑔  𝑎𝑡  𝑡𝑖𝑚𝑒 ,𝑡 −
1

2
(𝑛𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑑𝑒𝑎𝑡 ℎ𝑠 𝑖𝑛  𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 )

 

(12) 

Since the hazard is estimated at the midpoint, 

conventionally, the estimate is defined as; 

ℎ  𝑡𝑚𝑖  =
𝑑𝑖

𝑏𝑖(𝑛𝑖−
1

2
𝑑𝑖)

=
2𝑞 𝑖

𝑏𝑖(1−𝑝 𝑖)
 𝑖 = 1, 2, 3, … 𝑘 − 1  (13) 

Equation 12 gives a higher estimate of hazard rate than the 

equation 13 and thus a more conservative estimate [10]. 

Assuming that the hazard rate is constant within an interval 

but varies among interval, [13] is of the view that the hazard 

function can be estimated using 

ℎ  𝑡𝑚𝑖  =
−log 𝑝 𝑖   

𝑝 𝑖
             (14) 

Which satisfies; ℎ 𝑡 ≥  0, 𝑓𝑜𝑟 𝑡 ≥  0  and 

 ℎ 𝑡 𝑑𝑡 =
∞

0
∞. 

2.2.5. Survivorship Function Estimation 

There are a number of ways of estimating survival 

functions, some of which includes the Kaplan-Meier and the 

Life Table Method. 

𝑆  𝑡𝑖 =  
𝑛𝑖−𝑑𝑖

𝑛𝑖
𝑡𝑖≤1 , 𝑖 = 1,2,3, … . 𝑘      (15) 

This is called the Kaplan-Meier Product Limit Estimator 

of survivorship. 

2.3. Discrete Distributions under Consideration for 

Infant Count Mortality Data 

2.3.1. The Binomial Distribution 

A random variable X has the binomial distribution with 

parameters n and p if 

𝑓 𝑋 =  𝑥 =
 𝑛!

𝑥! 𝑛−𝑥 !
𝑝𝑥 1 − 𝑝 𝑛−𝑥       (16) 

[10] are of the view that the probability distribution is 

called the binomial distribution because for 𝑥 =
0,1,2,3. . . , 𝑛,  the values of the probabilities are the 

successive terms of the binomial expansion (𝑝 +  𝑞)𝑛 . 

The CDF of the distribution is given as: 

𝐹 𝑋 ≤  𝑥 =  
𝑛!

𝑘! 𝑛−𝑘 !

𝑥
𝑘=0 𝑝𝑘 1 − 𝑝 𝑛−𝑘          (17) 

The likelihood function 𝐿(𝑃) is given by: 

𝐿 𝑝 =  𝑓 𝑥𝑖 =  
𝑛!

𝑥! 𝑛−𝑥 !

𝑁
𝑖=1

𝑛
𝑖=1 𝑝𝑥𝑖 1 − 𝑝 𝑛−𝑥𝑖    (18) 

ln 𝐿 𝑝 = ln   
𝑛!

𝑥! 𝑛−𝑥 !

𝑁
𝑖=1 𝑝𝑥𝑖 1 − 𝑝 𝑛−𝑥𝑖          (19) 

Setting the derivative of equation (19) to zero, the 

maximum likelihood estimate becomes: 

𝑝 =
1

𝑁
 
 𝑡𝑖

𝑁
𝑖=1

𝑛
                (20) 

If 𝑋 has the binomial distribution with parameters 𝑛 and 

𝑝, then 𝐸(𝑋)  =  𝑛𝑝 𝑎𝑛𝑑 𝑉 (𝑋)  =  𝑛𝑝𝑞. 

2.3.2. The Poisson Distribution 

A random variable X has the Poisson distribution with 

parameter 𝜆 (𝜆 >  0)  ifits probability mass function is 

given by: 

                      𝑓 𝑋 =  𝑥 =  
λ𝑥𝑒−λ

𝑥!
, 𝑥 = 0, 1, 2, …      (21) 

The Poisson distribution is used as a model for describing 

the number of times some random event occurs in an interval 

of time or space. 

λ is the average number of times the event occurs in the 

given time interval. 

The CDF of the Poisson distribution is given as; 

𝐹(𝑋 ≤  𝑘)  =  
λ𝑥𝑒−λ

𝑥!
, 𝑥 = 0, 1, 2, … , 𝑘𝑘

𝑥=0    (22) 

The likelihood function becomes: 

𝐿 λ =  
λ𝑥𝑖𝑒−λ

𝑥!
= 𝑒−λn λ

 𝑥𝑖
𝑛
𝑖=1

 𝑥𝑖
𝑛
𝑖=1

n
i=1        (23) 

Setting the derivative of the log-likelihood of equation (23) 

with respect to 𝜆 to zero, we obtain the maximum likelihood 

estimate as: 

𝜆 =
 𝑥𝑖

𝑛
𝑖=1

𝑛
= 𝑋               (24) 

If 𝑋 has the Poisson distribution with parameter 𝜆, then 

𝐸 𝑋 =  𝑉  𝑋 =  𝜆           (25) 

2.3.3. Geometric Distribution 

In a series of independent Bernoulli trials, with constant 

probability p of success, let the random variable X denote the 

number of trials until the first success. Then X has the 

geometric distribution with parameter 𝑝, and 

𝑓 𝑋 =  𝑥 = 𝑝 1 − 𝑝 𝑥−1, 𝑥 = 1,2,3, …𝑎𝑛𝑑 0 ≤ 𝑝 ≤ 1 (26) 

The CDF of the geometric distribution is given as: 

𝐹(𝑋 ≤  𝑡)  =  𝑝 1 − 𝑝 𝑥−1𝑘
𝑥=1         (27) 

The likelihood function is given by: 

𝐿 𝑝 =   1 − 𝑝𝑥𝑖−1 𝑝 = 𝑝𝑛 1 − 𝑝  𝑥𝑖−𝑛 𝑛
𝑖=1𝑛

𝑖=1  (28) 

Setting the derivative of the log-likelihood of equation (28) 

with respect to 𝑝 tozero, the maximum likelihood estimate 
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becomes: 

𝑃 =
𝑛

 𝑥𝑖
𝑛
𝑖=1

=
1

𝑋
               (29) 

If X has the geometric distribution with parameter p, then 

𝐸 𝑋 =
1

𝑃
 𝑎𝑛𝑑 𝑉 𝑋 =

𝑞

𝑝2          (30) 

2.3.4. The Negative Binomial Distribution 

In a series of independent Bernoulli trials, with a constant 

probability p of success, let the random variable X denotes 

the number of trials until k success occurs. Then, X has the 

negative binomial distribution with parameters 𝑝 and k = 

1,2,3,...Thus, the pdf becomes: 

𝑓 𝑋 = 𝑥 =
 𝑥−1 !

 𝑘−1 ! 𝑥−𝑘 !
𝑝𝑘𝑞𝑥−𝑘 , 𝑥 = 𝑘, 𝑘 + 1, …  (31) 

When 𝑘 =  1 in equation (23), the distribution becomes 

geometric with parameter p. The negative binomial 

distribution is therefore a generalization of the geometric 

distribution, [10]. 

The CDF of the negative binomialis given as: 

𝐹 𝑋 ≤ 𝑥 =  
 𝑗−1 !

 𝑘−1 ! 𝑗−𝑘 !

𝑥
𝑗=0 𝑝𝑘𝑞𝑗−𝑘      (32) 

The likelihood function becomes: 

𝐿 𝑝 =  
 𝑥−1 !

 𝑘−1 ! 𝑥−𝑘 !

𝑛
𝑘=1 𝑝𝑘𝑞𝑥−𝑘        (33) 

Setting the derivative of the log-likelihood of equation (33) 

with respect to p to zero, the maximum likelihood estimate 

becomes: 

𝑃 =
𝑘

𝑥
 

If X has the negative binomial distribution with parameters 

p and k, then  

𝐸 𝑋 =
𝑘

𝑝
 𝑎𝑛𝑑 𝑉 𝑋 =

𝑘𝑞

𝑝2
 

2.4. Determination of the Appropriate Model 

In identifying a distribution to describe infant mortality 

data, it is of prime importance that the data set can be best 

described by the properties of the theoretical distribution.  

In this paper, the method of maximum likelihood 

estimates was used to find a mathematical model(s) that 

describes infants’ mortality data. Goodness-of-fit test is done 

by the use of the A.I.C to further affirm the decision by MLE. 

2.4.1. The Maximum Likelihood Estimator 

[1] indicates that the method of maximum likelihood 

estimates is widely used because of its enormous properties 

and some of which includes: consistency, efficiency, 

asymptotic normality and invariance. 

Let 𝑋𝑖  be the 𝑖 𝑡ℎ  infantdeath, 1 ≤  𝑖 ≤  𝑛 

𝑛 = the number of infant deaths 

𝐿= the likelihood function 

𝜃 is the parameter 

𝑓(𝑥) = the probability distribution function of a specific 

distribution. 

The likelihood function is given by: 

𝐿 =  𝑓 𝑥                (34) 

Differentiating equation (26) above is the result of the 

MLE; 

𝑀𝐿𝐸 =
𝑑𝐿

𝑑𝜃
                (35) 

Equate equation (35) to zero to solve for the value of the 

parameter: 

𝑑𝐿

𝑑𝜃
= 0 

To drive the maximum likelihood estimators is to 

formulate the statistical models in the form of a likelihood 

function as a probability of getting the data at hand [1]. 

The likelihood estimates were derived for each of the 

seven statistical distributions according to the data set with 

the help of the R statistical package. The log-likelihood 

values obtained from the method of maximum likelihood 

estimates are compared to choose one model amongst the 

seven probability distributions considered in this research. 

The greater the likelihood the better the model. 

2.4.2. Accessing the Adequacy of the Model 

It is not appropriate to base on only the values of the 

log-likelihoods obtained to determine the best distribution 

hence a further check is required. An assessment ought to be 

done to check on how good the model will fit the infant 

mortality data. This research will therefore consider the 

goodness of fit test by the use of Akaike’s Information 

Criterion (A.I.C). 

The Akaike’s Information Criteria (A.I.C) 

The A.I.C criterion is defined by [3] as: 

𝐴𝐼𝐶 = −2 log  𝐿 𝜃 |𝑑𝑎𝑡𝑎  + 2𝑘     (36) 

Thus, it is used to test for the goodness of fit after having 

obtained the values of the log-likelihood in this research. 

3. Results and Discussions 

Survival analysis basically monitors a cohort from the 

beginning of a study to the end of the paper and thus note 

when each member of the group will fail. In this paper, the 

cohort constitutes newborns for a period of one year and they 

are followed on daily bases to the end. From the data 

obtained within the period under consideration, 11277 

children were born and out of this 341 deaths occurred. In 

estimating the infant survivorship and failure proportions in 

the Nandom district, a script is built for the columns of the 

life table. The data is collected on daily bases and it is a right 

censored data. The infant count data is used to fit the 

distributions whiles the data on the births and deaths is used 

for the survivorship. Table 1 below shows an eleven column 

life table across different survival time intervals from birth 

through to 11 months (330 days) for infants in the Nandom 

district of the Upper West Region of Ghana. The fourth 

column of the life table estimates the conditional probability 
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of an infant child surviving within the time interval. These 

estimates reveals that, while approximately 99.97 percent, 

99.36 percent, 99.79 percent of infants born in the Nandom 

district survive within the post-neonatal period (30 to 330 

days), neonatal period (7 to 30 days) and early neonatal 

period (1 to 7 days) respectively, about 98 percent survive 

within the first day of life. The conditional proportion of 

infants dying within the early neonatal period, neonatal 

period and post-neonatal period were approximately     

2.17 percent, 0.21 percent, 0.64 percent and 0.03 percent 

respectively as shown in the 5th column. 

Column six (6) defines the cumulative survival proportion 

of infants in the district. Those infants that survived within 

the interval 0 to 1 survived at conception through to delivery 

with a probability of 1 and those that survived within the 

interval 1 to 7 days survived through delivery to the start of 

the first day of life with survival probability of 0.9783. 

Similarly, those that survive in the interval 7 to 30 and 30 to 

330 days survived to the beginning of the interval with 

survival probabilities 0.9762 and 0.9700 respectively. The 

probability density function in the 7th column provides 

estimates of the unconditional probability of dying in the 

time interval per unit width. It is estimated at the mid-point 

of the time interval, hence the probability of an infant dying 

at mid-interval in the time interval 0 to 1, 1 to7, 7 to 30, 30 to 

330 are respectively 0.0217, 0.0003, 0.0003 and 0.0000. 

The results further showed that approximately 99.78 

percent of infant born in the Nandom district survive within 

their first day of life. Of the proportion of infant that survive 

their first day of life, only 99.36 percent make it to the end of 

the neonatal period while a 99.97 percent make it through to 

the end of post neonatal stage. Infants born on the first day 

have about 2.17 percent chance of dying between delivery 

and the first day of life. Given that a child survive the first 

day of life, it has approximately 0.21 percent chance of dying 

between the first day of life to the end of the first week and 

0.64 percent chance from the first week to end of the first 

month and then 0.03 percent chance of dying within the first 

and eleventh month after delivery. This makes the first; 

twenty-four (24) hours, week and month after delivery the 

most critical period in the life of an infant child. It is assumed 

that all 341 infants were followed till the end of infancy and 

that the failure times recorded in the time interval are 

accurate. 

Table 2 shows the life table of infant mortality in the 

Nandom district. It could be seen that, the hazard occurred in 

the first; day, week and month with the first 24 hours being 

the most critical period in the infant’s life. 

3.1. Fitting Infant Mortality Count Data 

3.1.1. Maximum Likelihood Estimates of Infant Mortality 

Count Data 

Table 3 shows the parameter estimates of infant mortality 

count data. The results show that among the four 

distributions, the Negative Binomial distribution had the 

highest log-likelihood value of -31.7365 and with the least 

AIC value of 65.4730 and therefore was selected as the best 

distribution to fit the infant mortality count data.  

 

Table 1.  Life Table for the Survival Proportions of Infants in the Nandom District 

Days Births 𝑑𝑖  𝑝 𝑖(𝑡) 𝑞 𝑖(𝑡) 𝑆 (𝑡𝑖) 𝑓 (𝑡) ℎ (𝑡) 𝑆𝑒. 𝑆(𝑡) 𝑆𝑒. 𝑓(𝑡) 𝑆𝑒. ℎ(𝑡) 

0-1 11277 245 0.9783 0.0217 1 0.0217 0.0219 0.0094 0.0014 0.0639 

1-7 11032 23 0.9979 0.0021 0.9783 0.0003 0.0004 0.0780 0.0004 0.2085 

7-30 11009 70 0.9936 0.0064 0.9762 0.0003 0.0003 0.0245 0.0007 0.1195 

30-330 10939 3 0.9997 0.0003 0.9700 0.0000 0.0000 0.0333 0.0002 0.5774 

Table 2.  Life Table for 341 Infant Failures in the Nandom District 

Days 𝑙𝑖  𝑛𝑖  n. Event 𝑆(𝑡) 𝑓(𝑡) ℎ(𝑡) 𝑆𝑒. 𝑆(𝑡) 𝑆𝑒. 𝑓(𝑡) 𝑆𝑒. ℎ(𝑡) 

0-1 0 341 245 1.0000 0.7185 1.1213 0.0000 0.0244 0.0593 

1-7 0 96 23 0.2815 0.0112 0.0453 0.0244 0.0023 0.0094 

7-30 0 73 70 0.2141 0.0089 0.0801 0.0222 0.0010 0.0037 

30-330 0 3 3 0.0088 - - 0.0051 - - 

Table 3.  Results of Parameter estimates of Infant Mortality Count Data 

Distributions 𝑝  𝜆  Log-likelihood A.I.C 

Poisson  42.625 -34.6225 71.2450 

Geometric 0.02292  -38.1126 78.2253 

Binomial 0.5211  -33.4520 77.3245 

Negative Binomial 0.1580  -31.7365 65.4730 
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4. Conclusions 

The life table method; a non-parametric method which 

provides estimates of the Kaplan-Mier product limit 

estimation was used to estimate the survival proportions of 

infants. The method of maximum likelihood estimate and 

Akaike’s Information Criterion were used to affirm the best 

model to fit the mortality count data. From the survival 

analysis performed on infant time till death data, the results 

showed that, while about 98 percent survived up to the 

neonatal stage only 97 percent made it to the post neonatal 

stage. The conditional proportion of infants dying within the 

early neonatal stage recorded the highest proportion of about 

2.17 percent. Thus, the first 24hours of a new born is 

therefore very critical in the Nandom District, Ghana. Upon 

fitting the infant mortality count data to the four distributions 

under consideration, the Negative Binomial Distribution 

appeared to be the best model to fit the mortality data with 

log-likelihood and A.I.C values as -31.7365 and 65.4730 

respectively with an expectation of about 51 deaths per year. 
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