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Abstract  In this paper we examined the performance of the mean square error of the Ordinary Least Square (OLS) 

estimator, Minimum Mean Square Error (MMSE) estimator, N/N shrinkage Estimator (N/NSE) and a proposed Adjusted 

Minimum Mean Square Error (PAMMSE) estimator in a multiple imputation analysis when data points are missing in 

different data sets. The program for the proposed adjusted minimum mean square error was written and implemented in R. 

It is shown by numerical computations that the PAMMSE Estimator seem to be the best choice among OLS, MMSE, 

N/NSE and PAMMSE estimators in terms of their mean square errors when applied in multiple imputation analysis. 
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1. Introduction 

Missing data is always a major concern in most data 

analysis. Awareness has grown of the need to go beyond 

complete case analysis of datasets with missing data points, 

following the work of Rubin [5] and [4]. Complete case 

analysis basically means deleting every missing points. This 

method leads to reduction of sample sizes which invariably 

reduces the degree of freedom. In other to avoid the short 

falls of complete case analysis and other missing data 

methods, the multiple imputation method was introduced  

by [5]. The basic idea of data analysis with multiple 

imputations is to create ‘m’ different copies of a data each 

of which has its missing value suitably imputed. These 

complete data sets are each analysed independently. The 

estimates of interest are averaged across the ‘m’ copies to 

give a single estimate. In most analysis the number of 

multiple imputations is not usually considered during 

parameter estimation. [2] Observed the need to incorporate 

the number of imputations in parameter estimation and 

investigated Ohtani’s shrinkage estimator. Ohtani [3] 

proposed a shrinkage estimator for regression estimates, 

hinging on [7] stein’s shrinkage estimator. This [7] Stein’s 

shrinkage estimator was found to dominate Ordinary Least  
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square estimator in terms of mean square error. [2] 

Proposed anextension of Ohtani’s shrinkage estimator to 

multiple imputation analysis, their Shrinkage estimator also 

showed to have a lower mean square error than the 

Ordinary Least Square method. As one of the shrinkage 

estimators for regression coefficients, [8] Proposed the 

minimum mean square error (MMSE). [3] Derived the 

exact formula of the mean square error of the minimum 

mean square error (MMSE) estimator and showed that 

minimum mean square error (MMSE) dominates the 

Ordinary Least Square estimator in terms of mean square 

error. Further [3] proposed an adjusted minimum mean 

square error (AMMSE) estimator and showed that it has a 

lower mean square error than minimum mean square error 

(MMSE) estimators. In this work our focus is on the 

adjusted minimum mean square error estimator and how it 

can be extended to incorporate the number of multiple 

imputations. 

Mean square error is arguably the most important 

criterion used to evaluate the performance of an estimator. 

It is calculated as t sum of the variance of the estimator and 

the squared bias of the estimator; this relationship is given 

by 
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The smaller the mean square error the lesser the 

variability and the better the estimator; [1].The quality of an 

estimator can be assessed by computing and assessing its 
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mean square error. Though recently the Pitman’s nearness 

criterion is gaining more ground in assessing the quality of 

an estimator.  

In this work we tried to extend the adjusted minimum 

mean square error estimator to multiple imputation analysis, 

by incorporating the number of imputations into the formula 

and then comparing its results to that of the Ordinary least 

Square estimator and the other two shrinkage estimators 

namely the minimum mean square error estimator and the 

Nwakuya/Nwabueze Shrinkage estimator by [2]. The aim of 

this work is to compare the proposed estimator to the other 

different estimators based on their mean square errors. The 

objectives are to simulate normally distributed regression 

data sets with missing values, suitably input the missing 

values and compute the variances of the estimates based on 

the number of imputations. The program for this work was 

written and implemented in R. The paired comparison was 

done in SPSS at 0.05 level of significance. 

2. Estimators 

Given a regression model; 

y = Xβ + ϵ               (2) 

1nx
y Vector of observations 

nxkX Matrix of observations 
1kx Vector of Coefficients 
 1nx

Vector of Error terms 
The Ordinary Least Square estimator is given by: 

1 ' , 'S X y where S X X           (3) 

Nwakuya/Nwabueze shrinkage estimator is given by; 
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Where τ is defined as 
'

n m

 
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n is the sample size and m is the number of imputations. 

This estimator can be seen in [2] as an extension of 

Ohtani’s shrinkage estimator, which he proposed based on 

Stein’s estimator [7]. 
The minimum mean square error (MMSE) estimator is 

given by;  
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where kn  , k is defined as the number of 

parameters, while n is the sample size. This estimator is a 

biased estimator but was proved to be the best in terms of 

mean square error among the class of linear homogenous 

estimators [9]. 

The Adjusted Minimum Mean Square Error estimator is 

given by; 
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Where all parameters are as earlier defined in equations  

3 and 4. This estimator was proposed by Ohtani as an 

improvement to minimum mean square error estimator, and 

it showed to have a smaller mean square error.  

In this paper, we introduced number of imputation (m) 

into the existing adjusted minimum mean square error 

estimator. We replaced the number of parameters (k) by the 

number of multiple imputations (m).  

Our proposed estimator is given by; 
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Where m is the number of imputations and the other 

parameter as defined in equations 3 and 4. 

3. Analysis 

Three different normally distributed regression data sets 

of sample sizes 20000, 8000 and 30each with 10% missing 

values were simulated in R. The missing points on the data 

sets were suitably imputed using 6 different imputation 

numbers; m= 5, 15, 20, 30, 40 and 50. Each data set was 

imputed using each of the imputation numbers and analyzed 

independently using each of the four methods. The mean 

square errors were calculated for each of the methods. A 

comparison test among the methods was also done at 0.05 

level of significance.  

Below are the tabulated results (table 1.1). 

  OLS   Ordinary Least Square     
  MMSE   Minimum Mean Square Error Estimator   
  N/NSE   Nwakuya/Nwabueze Shrinkage 

Estimator 
  PAMMSE   Proposed Adjusted Minimum Mean 

Square Error Estimator  

4. Observations 

From table 1.1, visually we can see that the value of   

the mean square error was highest with the OLS followed 

by the MMSE then the N/N Shrinkage Estimator and   

then the proposed adjusted minimum mean square error. 

Going further a paired comparison test was carried out to 

determine if the mean square errors from the four methods 

were significantly different from each other. Results shown 

in table 1.2 for the comparison test, shows that the mean 

square errors are significantly different from each other this 

shows that the visual differences seen among the estimators 

are statistically significant. 
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Table 1.1.  Mean Square Error from Four Different Estimators with Different Sample Sizes and Different Imputation Numbers 

Sample sizes Number of imputations OLS MMSE N/NSE PAMMSE 

n=20,000 

m=5 48,194.37 48,194.27 48,194.18 48,193.98 

m=15 146,500.70 146,500.30 146,499.90 146,499.10 

m=20 196,411.80 196,411.20 196,410.60 196,409.50 

m=30 289,905.20 289,904.50 289,903.80 289,902.40 

m=40 385,379.10 385,378.00 385,377.10 385,375.40 

m=50 482,565.70 482,564.30 482,563.20 482,561.00 

n=8,000 

m=5 132,487.00 132,485.10 132,483.30 132,479.70 

m=15 391,895.70 391,890.50 391,885.40 391,875.20 

m=20 525,075.10 525,067.90 525,060.90 525,047.00 

m=30 763,493.30 763,484.70 763,476.40 763,459.90 

m=40 999,603.10 999,593.30 999,584.00 999,565.50 

m=50 1,237,682.00 1,237,660.00 1,237,660.00 1,237,639.00 

n=30 

m=5 50,808,245.00 50,766,908.00 50,726,301.0 50,646,284.0 

m=15 142,449,068.00 142,358,361.0 142,268,665.0 142,095,667.0 

m=20 190,790,183.00 190,692,661.0 190,597,371.0 190,406,647.0 

m=30 285,304,866.00 285,113,218.0 284,923,769.0 284,557,326.0 

m=40 384,361,812.00 384,143,649.0 383,929,013.0 383,507,811.0 

 m=50 476,389,209.00 476,151,358.0 475,917,370.0 475,457,707.0 

Table 1.2.  Paired Comparison Test for the Four Estimators 

 

Paired Differences 

t df Sig. (2-tailed) 
Mean Std. Deviation Std. Error Mean 

95% Confidence Interval of  

the Difference 

Lower Upper 

Pair 1 OLS – MMSE 48738.167 83167.73883 19602.824 7379.82315 90096.51018 2.486 17 .024 

Pair 2 OLS – N/NSE 96721.572 165071.70393 38907.774 14633.34453 178809.79881 2.486 17 .024 

Pair 3 OLS – PAMMSE 190673.69 325362.8779 76688.766 28874.53567 352472.84100 2.486 17 .024 

Pair 4 MMSE – N/NSE 47983.405 81904.20396 19305.006 7253.40259 88713.40741 2.486 17 .024 

Pair 5 MMSE –PAMMSE 141935.522 242195.5243 57086.033 21494.52095 262376.52239 2.486 17 .024 

Pair 6 N/NSE– PAMMSE 93952.12 160294.2773 37781.724 14239.64792 173664.58541 2.487 17 .024 

 

 

5. Conclusions 

The results have shown that indeed the proposed adjusted 

minimum mean square error has the least mean square error 

and at such dominates the other estimators. We can 

conclude that amongst the four estimators presented in this 

work the proposed minimum mean square error estimator 

seemed to do better than the other estimators considered in 

this research work. 
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