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Abstract  This study proposes a framework to compare performances of various ridge, robust and ridge-type robust 
estimators when a data set is contaminated by collinearity, collinearity-influential observations, as well as outliers. This is 
achieved by first generating fifteen different synthetic data sets with known level of contamination. These data sets are then 
used to evaluate performances of twelve different estimators based on the Monte-Carlo estimates of total mean square, total 
variance and total bias. It has shown that these results can be used as lookup tables to select the best estimator for various 
cases of contamination. The results reveal that the interactions between leverage points and collinearity can be misleading for 
estimation selection problem. It is also shown that the notion of directionality of outliers and the strength of collinearity can 
also drastically impact estimator performance. Finally, an example application is presented to validate the results. 
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1. Introduction 
There is a growing interest in the literature for 

understanding the performance of ridge, robust, and 
ridge-type robust estimators that are less prone to the 
contaminations caused by outliers and collinearity in data 
[1-7]. However, the degree to which these contaminations 
effect estimator performance is not yet well understood. 
Hence, for practical applications this lack of insight makes 
it challenging to decide the best and the most efficient 
estimator. Another challenge is to construct proper 
platforms for comparing and validating estimator 
performances when data is subject to various levels of 
contaminations due to collinearity, outliers, leverage points 
and their interactions. In the rest of the study, the term 
contamination will be used to describe the negative effects 
of various levels of collinearity, type of outliers, leverage 
points and their interactions on the estimation performance. 
This study proposes a framework to address some of these 
challenges. 

To begin our discussion, we consider the linear regression 
model [8], 

Y = Xβ+ ε                     (1) 
 

* Corresponding author: 
ufukekiz@gazi.edu.tr (O. Ufuk Ekiz) 
Published online at http://journal.sapub.org/statistics 
Copyright © 2018 The Author(s). Published by Scientific & Academic Publishing 
This work is licensed under the Creative Commons Attribution International 
License (CC BY). http://creativecommons.org/licenses/by/4.0/ 

where Y (dependent variable) is a vector of size n 1× , X is 
an n p×  full rank design matrix, n is the sample size, and p 
is the number of explanatory variables. In Equation (1), ε  
is an n 1×  error vector that satisfies the expected value 

( )E ε = 0  and covariance  ( ) 2Cov ε = Iσ  where I is the 
n n×  identity matrix. Moreover, β  is the p 1×  

unknown parameter vector, and 2σ  is the variance. In this 
setup, it is well known that ordinary least squares (OLS) 

( ) 1ˆOLS X X X Yβ −′ ′=               (2) 

is the best linear unbiased estimator [8] where X ′  is the 
transpose of matrix X. However, it is also known that 
collinearity in data introduces sign switches for the OLS 
estimator and inflates its variance [1,3,4]. There is a vast 
amount of work in literature [4,9,10,11] that have proposed 
and studied ridge regression which is one of the most 
commonly used methods to overcome the challenges 
introduced by collinearity [3]. Furthermore, these studies 
have revealed that presence of high-leverage points 
(observations) in data is also critical since they can 
drastically change the effect of collinearity in estimation. 

Not only collinearity but outliers may also effect the 
performance of OLS and ridge estimators. In their studies 
[7,12,13], authors have proposed various robust estimators 
that target to eliminate the impact of outliers in estimation. 
Properties of these estimators vary depending upon the type 
of outliers present in the data; i.e. if the observations are 
classified as outliers based on their X (Type 1) or Y (Type 2) 
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distances then estimator performance may vary when data 
contains only Type 1, only Type 2 or both Type 1 and Type 2 
outliers. Finally, ridge-type and Liu-type robust estimators 
have been proposed in studies [1,2,5,6,14] in order to 
overcome the effects caused by both collinearity and outliers. 
However, the interactions between collinearity, outliers and 
leverage points are not yet well understood and it is not 
trivial to conclude which estimator performs better when 
data is subject to various levels of contamination. 

In [15] and [16], the impact of outliers on the performance 
of various robust estimators when the sample size is small is 
studied. In this study, the details of a simulation study in 
which the synthetic data sets are generated so as to involve 
predefined levels of contamination caused by outliers, 
collinearity and leverage points are presented. Then, 
performances of a subset of well-known ridge, robust and 
ridge-type robust estimators are investigated. This is 
achieved by first classifying collinearity-influential 
observations (high-leverage points) in data into three 
subgroups based on their type of influence-leverage-masking 
collinearity, leverage-inducing collinearity, and 
leverage-intensifying collinearity (similar classifications 
were presented in studies [17] and [18]). 

We simulate and present example data sets in Figure 1 to 
illustrate masking, inducing and intensifying effects of 
high-leverage observations on the estimate of variance 
inflation factor ˆ ˆ( )2VIF = 1 / 1 - R , where ˆ 2R  is the 

estimate of maximum determination coefficient computed 
for all explanatory variables such that ˆVIF  is the maximum 
value of the diagonal elements of inverse sample correlation 
matrix of the explanatory variables [19,20]. Moreover, ˆVIF
and ˆ 2R are the estimates of VIF  and 2R . Thus, when 2R  
is the maximum determination coefficient among the 
explanatory variables ( )2VIF = 1 / 1 - R . In the figure io  
is an observation, where 1i = ,...,n . Let us consider the 
observation 1o  (shown in blue) in Figure 1a. It is obvious 
that even if we exclude 1o  there exists collinearity between 
the rest of the observations. However, it is also clear that 
including 1o  in the computations will intensify the strength 
of collinearity. Hence, observation 1o  is classified as 
leverage-intensifying collinearity. Similarly in Figure 1b, it 
is shown that including high-leverage observations 1o  and 

2o  in computations will induce collinearity 
(leverage-inducing collinearity) that would not be as 
prominent without 1o  and 2o . Finally, Figure 1c illustrates 
an example in which 1o  and 2o  mask the effect of 
collinearity (leverage-masking collinearity), that is, 
including 1o  and 2o  in estimation drastically decreases 
level of collinearity already present for the rest of the data. 

  

Figure 1.  Example data sets involving three types of collinearity-influential observations 

Then the goal becomes introducing a framework to 
compare estimators when data involves various levels of 
structured contamination as listed in Table 1. In the table, 
first column represents enumerated cases of distinct 
contaminations, second column is the collinearity level 
computed by using the data set that excludes leverage 
observations, third column is the type(s) of outlier(s) in data, 
and fourth column represents the influence of leverage 
observations on the collinearity (as shown in Figure 1). 

To measure the performance of an estimator for each case 
presented in Table 1, Monte-Carlo estimates of total mean 
square error (MSE), total variance (VAR) and total bias 
(BIAS), [21-23], given by  

( ) ( ) ( ) 22 2
ˆ

ˆ ˆ ˆMSE E Tr Bias
β

β β β σ β = − = + 
 

   (3) 

( )22ˆ ˆ
p

j j
j=1

E Eβ β β β
  − = −       
∑                  (4) 

( )2 2
ˆ ˆ j

p

j=1
VAR = Tr

β β
σ σ=∑                             (5) 

( ) ( )2 2ˆ ˆ( )
p

j j
j=1

BIAS Bias Eβ β β= = −∑             (6) 

where β̂  is the estimate of β  and 2
β̂

σ  is the variance of 

β̂  is used. Tr is the trace operator and E is the expectation. 
Finding the most efficient estimator (by means of MSE, VAR 
and BIAS) for each case in Table 1 requires the knowledge of 
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the following properties of the data: (1) ratio of outliers in 
data, (2) ratio of high-leverage points in data, (3) type of 
leverage points (masking, inducing or intensifying), (4) level 
of collinearity in data with and without the leverage points, 
(5) type of outlier(s) in data (Type 1, Type 2 or both). Thus, 
in Section 3.1, we will summarize our methodology by first 
describing the steps for generating synthetic data with known 
properties. Furthermore, the synthetic data will then be used 
to construct a lookup table that shows the estimator 
performance for each case in Table 1. 

Table 1.  15 different cases of data contamination investigated in this study 

Case no: Collinearity level Outlier type Leverage points 

1 high - leverage-masking 

2 high Type 1 leverage-masking 

3 high Type 2 leverage-masking 

4 high Type 1 and 2 leverage-masking 

5 low - leverage-masking 

6 low Type 1 leverage-masking 

7 low Type 2 leverage-masking 

8 low Type 1 and 2 leverage-masking 

9 moderate - leverage-intensifying 

10 moderate Type 1 leverage-intensifying 

11 moderate Type 2 leverage-intensifying 

12 moderate Type 1 and 2 leverage-intensifying 

13 high Type 2 - 

14 low Type 2 - 

15 moderate Type 2 - 

In order to conduct a formal study, we first introduce a 
subset of ridge, robust and ridge-type robust estimators in 
Section 2. In Section 3, we present the details for generating 
synthetic data and a simulation study for comparing the 
estimator performances. Moreover, we discuss an 
application of the proposed framework to real data. Finally, 
Section 4 concludes the study and discusses possible future 
work directions. 

2. Estimators 
In this section we present the details of commonly used 

estimators compared in our simulation studies. First, we will 
describe the details of ridge estimators and summarize three 
of them using different ridge parameters. Second we will 
discuss five frequently used robust estimators - Least Median 
Square, Re-weighted Least Square, Least Trimmed Squares, 
M-estimator and S-estimator. Finally, we will present three 
ridge-type robust estimators.  

2.1. Ridge Estimators 

The ridge regression estimator is introduced in [3] as, 

( ) 1ˆRR X X kI X Yβ −′ ′= +                 (7) 

where I is the identity matrix and k is the ridge parameter that 
controls the bias of the regression. Many different methods 
are given in the literature to determine the value of the 
parameter k. In [4], [10], and [9] the ridge parameter is given 
by 

2

1
ˆˆ
ˆOLS OLS

pk σ
β β

=
′

,                    (8) 

2

2
2

1

ˆˆ
ˆ

j

p

j OLS
j

pk σ

λ β
=

=

∑ ,                   (9) 

and  

ˆˆ
ˆmin ˆ

j

2

3
2

2
jOLS

σk =
σ 1+

λβ

 
 
 
 

           (10) 

respectively. Here, jλ  is the jth eigenvalue of the matrix 

X X′  where 1,...,j p=  and 2σ̂  is given as follows 

( ) ( ) ( )2 ˆ ˆˆ /OLS OLSY X Y X n pσ β β′= − − −      (11) 

In Section 1, we have introduced ˆOLSβ  in Equation (2). 

Henceforth, 1ˆRRβ , 2ˆRRβ  and 3ˆRRβ  denote the ridge 

estimators computed by the ridge parameters 1̂k , 2k̂  and 

3̂k , respectively. 

2.2. Robust Estimators 
In what follows, we describe frequently used robust 

estimators in literature to estimate parameter β  in 
Equation (1), [7,13,24]. 
• Least median square (LMS) 
One of the most commonly used robust estimator is the 

LMS estimator, [13]. For our purposes, we summarize the 
steps of LMS algorithm as follows. 

Step 1: Generate all possible subsamples of observations 
with size p from n, and randomly select m subsamples out of 
all generated subsamples. 

Step 2: Perform regression analysis for m distinct 
subsamples (with size p). 

Step 3: For each regression compute the residual ir of ith 
observation where 1,...,i n= . 

Step 4: Solve the objective function 

( ){ }2
ˆ t
OLS

i imin median rβ  where 1,...,t m=  and ˆ t
OLSβ is 

the ordinary least square estimate ˆOLSβ for the tth 

subsample. 
Step 5: Finally, ˆ t

OLSβ that minimizes the objective 

function is referred to as ˆ t
LMSβ . 
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Furthermore, LMS estimate of the variance is calculated 
by 

2

2 1

1

ˆ

n

i i

LMS n

i

i

i

w r

w p
σ =

=

=
−

∑

∑
               (12) 

[7,24] where the weights are given as 

ˆ1,     / 2.5
.

0,    otherwise
i LMS

i
r

w
σ ≤= 


         (13) 

Note that only for the first iteration we compute 0S , 

2
0

51.4826(1 ) ( ),iS median r
n p

= +
−

       (14) 

and replace it by ˆLMSσ  in Equation (12). 
• Re-weighted least square (RLS) 
In order to compute RLS estimator [13], the goal becomes 

solving another objective function 

2
ˆ

1
min ,    1

n

i i
i

w r i = ,...,nβ
=
∑



.            (15) 

In Equation (15), β̂


 is the well-known weighted least 

square estimator calculated from the th
  iteration where 

iw  and ir  are the weight and residual for each observation, 

respectively. The β̂


 that minimizes Equation (15) is 

defined as RLS estimator ˆRLSβ . The RLS estimator of 
variance is computed by 

2

2 1

1

ˆ

n

i i

RLS n

i

i

i

w r

w p
σ =

=

=
−

∑

∑
                 (16) 

[7,24], and the weights are given as 

ˆ1,     / 2.5
.

0,    otherwise
i RLS

i
r

w
σ ≤= 


            (17) 

Only for the initial iteration 1= , ˆLMSβ  and associated 

residuals are used as initial conditions and 2ˆRLSσ is replaced 

by 2ˆLMSσ in Equation (17). 
• Least trimmed squares (LTS) 
For the LTS estimator, [13], we generate subsamples of 

data with size / 2 ( 1) / 2h n p= + +        from n 
observations, where total number of subsamples is m and 
each subsample is enumerated as 1,...,t m= . For a 
subsample, we perform OLS regression analysis and 
compute residuals for n observations. Moreover, square of 

the residuals are ordered such that 2 2 2
1: 2: :...n n n nr r r≤ ≤ ≤  and 

ˆtβ  that minimizes 

ˆmin
k

h
2

i:n
i=1

rβ ∑               (18) 

is the LTS estimator ˆLTSβ . Note that when m is too large, a 
fixed number of randomly selected subsamples are used as 
an approximation to the optimal solution of ˆtβ  for 
computational reasons. In [13], the details for finding the 
number of randomly selected subsamples are discussed for a 
desired probability of distance to the optimal value. 
• M-estimator 
This type of robust estimator is obtained from the solution 

of 

( )ˆmin ,
l

n

β
i=1
ρ ri∑              (19) 

such that β̂


 computed at the th
  iteration is defined as 

M-estimator, ˆMβ  [24]. The details of the stopping rule that 
determines   could be found in [24]. In the first iteration 
ˆLMSβ  is used as the initial point and for the rest of the 

iterations weighted least squares is estimated by using 

( ) 11 1ˆ X W X X W Yβ
−− −′ ′=  



           (20) 

where 1W −  is the current diagonal weight matrix with 
diagonal elements ( )iw r , [13]. In this study Tukey's 
bi-weight function 

( ) ( )21 ,        

        0,                
i i i

i
i

r r c r c
r

r c
ψ

 − ≤= 
>

         (21) 

where the derivative ( ) ( )iρ ri rψ′ =  and the weights 

( ) ( )i i iw r r rψ=  is used, [13]. Finally, in simulations the 
constant c is selected as 1.547 (the reason for this selection 
will be discussed in the following section) 
• S-estimator 
S-estimator is proposed in [25] and it is computed by 

solving 

ˆmin ( ), ( ),..., ( ))
l 1 2 nβ s(r r rβ β β          (22) 

where ( ), ( ),..., ( ))1 2 ns(r r rβ β β  is the estimate of the 
variance of the residuals. Here, in the iterative solution 
ˆLMSβ is also used as an initial point and β̂



 obtained from 

the th
  iteration is defined as S-estimator, ˆSβ . 

To compute s, in each iteration, the equation 

1

1
( )ˆ ˆ ˆ( ), ( ),..., ( ))

n
i

n
1 2 ni

rK
s(r r r

ρ
β β β=

= ∑        (23) 
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is solved. Then the new weighted least squares is estimated 
by Equation (20). Here K is set to φ(x)ρ(x)d∫  such that ˆSβ  

and ( ), ( ),..., ( ))1 S 2 S n Ss(r r rβ β β are asymptotically 

consistent estimates of β  and 2σ  for the Gaussian 

regression model and is usually taken as ( )Eφ ρ . ( )xφ  is 
the standard normal distribution. In this study, Tukey's 
biweight function (Equation (21)) is used with 1.547c = . 
This value is selected such that ( )K cρ  becomes 0:5 
(breakdown point of S estimator), [24,25]. Same value of c is 
used in both S and M-estimator in order to be able to compare 
their performances. 
• Ridge-type robust estimators 
Ridge-type robust estimator is proposed in [26] and it is 

computed by 

( ) 1ˆˆ ˆRTR R RX WX k X WXβ β
−

′ ′= +          (24) 

Where ˆRk  is obtained by 
2

2
ˆˆ

ˆ
R

R

R

pk σ

β
=                    (25) 

Here, ˆRβ  and 2ˆRσ  can be selected as any type of robust 
estimator. In this study we use ridge-type RLS (RTRLS), 
ridge-type S (RTS), and ridge-type M (RTM) to compare their 
performances with the rest of the estimators presented above. 

3. Simulations and an Example 
Here, we generate fifteen different synthetic data sets with 

varying levels of contamination. These data sets are then 
used to evaluate performances of twelve different estimators 
based on the Monte-Carlo estimates of total mean square, 
total variance and total bias. We show that these results can 
be used as lookup tables to select the best estimator for 
various cases of contamination. Moreover, we present an 
example to demonstrate an application of using these tables. 

3.1. Simulations 
In this study, we generate contaminated normal distributed 

data with three explanatory variables 3p =  that has the 

joint probability density function F for 1 2 3( , , , )Y X X X (in 
Equation (1)), where (1 )F G Hη η= − + . Here, G  ~ 

( )1 ,pN µ+ Σ , H  ~ ( )1 ,pN θ+ Σ  and [ ]0,1η∈  is the 
mixture parameter that satisfies 1η << , [24]. Here, the 
location parameters µ  and θ  are used as design 
specifications. We parse them into elements such that 

( , )Y Xµ µ µ ′=  and ( , )Y Xθ θ θ ′=  where 

1 2 3( , , )X X X Xµ µ µ µ=  and 1 2 3( , , )X X X Xθ θ θ θ= , 

respectively. Yµ  (or Yθ ) is the mean of Y  for 

distribution G  (or H ). Thus this parsing will allow us to 
use the set of design parameters 

1 2 3 1 2 3, ,, , , , ,Y X X X Y X X Xµ µ µ µ θ θ θ θ  to manipulate the level 
and the type of contamination corresponding to the cases 
presented in Table 1.  

In the simulations (10,5,2,7)µ = . To generate data with 
leverage-masking, leverage-inducing, and 
leverage-intensifying collinearity θ  and Σ  are selected as 

• 1 2 3( , , , ) (10,5,7,7)Y X X Xθ θ θ θ θ= =  

 
• 1 2 3( , , , ) (10,35,32,37)Y X X Xθ θ θ θ θ= =  

 
• 1 2 3( , , , ) (10,10,7,7)Y X X Xθ θ θ θ θ= =  

 
respectively. In order to generate data including 
leverage-masking collinearity, we use a covariance matrix 
( )Σ  with diagonal elements 1. Non-diagonal elements are 
close to 1 which guarantees strong collinearity between 
explanatory variables. Moreover, high-leverage observations 
drawn from the distribution H ~ ( )1 ,pN θ+ Σ  with 

(10,5,7,7)θ =  are added to data with ratio η . ˆ GVIF  and 
ˆ FVIF  are estimates of VIF computed from the observations 

generated from G and F, respectively. For instance, one may 
observe from Table 3 (Appendices) that even when η  is 

small ˆ FVIF  is much smaller than ˆ GVIF . Hence, a small 
number of high-leverage observations can mask the 
underlined strong collinearity associated with the majority of 
the data. In leverage inducing collinearity case, the 
covariance matrix has smaller non-diagonal elements and the 
corresponding VIF  (value computed from Σ ) is smaller 
which implies no collinearity between explanatory variables. 
Similarly, high-leverage observations drawn from 
distribution H and with a different (10,35,32,37)θ =  
added to data with ratio η . In this case, we observe that 

ˆ FVIF  value is much higher than ˆ GVIF  computed without 
leverage points. This reveals that a small set of high-leverage 
observations can induce collinearity. A similar approach is 
taken for the third case of manipulation in which the 
high-leverage points intensify the strength of the collinearity. 

In what follows, we will describe the steps for generating 
data involving all combinations of contamination consisting 
of outliers and high-leverage points. Below, we list five 
manipulation methods used in our simulations. 
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(1) The data (with size n) is generated by having only 
high-leverage points (masking, inducing or intensifying) 
with ratio η . To achieve this, leverage points are drawn 

from the distribution ( ),p X XXN θ Σ  and non-leverage 

points from ( ),p X XXN µ Σ . Then the observations of 
dependent variable for the leverage points are drawn from 

( )2
\ \,Y X Y XN µ σ  where 1

\ ( )Y X Y YX XX XXµ µ θ−= − Σ Σ −  

and 2 2 1
\Y X Y YX XX XYσ σ −= − Σ Σ Σ . Non-leverage points are 

also drawn from the same distribution ( )2
\ \,Y X Y XN µ σ  

by just replacing Xθ  with Xµ . 
(2) The data is generated by having only Type 1 outliers, 

which are also high-leverage points, with ratio η . The 
observations of dependent variable associated with these 
leverage points are drawn from ( )2

\ \10 ,Y X Y XN µ σ . Here, 

1
\ ( )Y X YX XX XXµ µ θ−= − Σ −  and 2 2 1

\Y X Y YX XX XYσ σ −= − Σ Σ Σ . 

Rest of the observations are drawn from ( )2
\ \,Y X Y XN µ σ  

where 1
\ ( )Y X Y YX XX XXµ µ µ−= − Σ − Σ −  and same 

variance 2
\Y Xσ . 

(3) The data is generated by having only Type 2 outliers 
with ratio η  that are drawn from ( )2

\ \10 ,Y X Y XN µ σ  where 

1
\ ( )Y X Y YX XX XXµ µ µ−= − Σ − Σ −  and 

2 2 1
\Y X Y YX XX XYσ σ −= − Σ Σ Σ . Rest of the observations are 

generated from ( )2
\ \,Y X Y XN µ σ  where 

1
\ ( )Y X Y YX XX XXµ µ µ−= − Σ − Σ −  and same variance 

2
\Y Xσ . 

(4) The data is generated by having both high-leverage 
points and Type 2 outliers with ratio / 2η . To achieve this, 
a combination of manipulations (1) for high-leverage points 
and (3) for Type 2 outliers is used. That is, leverage points 
are drawn from the distribution ( ),p X XXN θ Σ . Type 2 

outliers with ratio / 2η are drawn from ( )2
\ \10 ,Y X Y XN µ σ  

where 1
\ ( )Y X Y YX XX XXµ µ µ−= − Σ − Σ −  and 

2 2 1
\Y X Y YX XX XYσ σ −= − Σ Σ Σ . Rest of the observations with 

ratio 1 η−  are generated from ( )2
\ \,Y X Y XN µ σ  where 

1
\ ( )Y X Y YX XX XXµ µ µ−= − Σ − Σ −  and same variance 

2
\Y Xσ . 

(5) The data is generated by having both Type 1 and Type 
2 outliers each with ratio high-leverage points and Type 2 
outliers with ratio / 2η . To achieve this a combination of 
manipulations (2) and (3) is used. For Type 1 outliers, we 
generate high-leverage points from ( ),p X XXN θ Σ  with 

also ratio / 2η . The observations of dependent variable 
associated with these leverage points are drawn from 

( )2
\ \10 ,Y X Y XN µ σ . Here, 1

\ ( )Y X Y YX XX XXµ µ θ−= − Σ − Σ −  

and 2 2 1
\Y X Y YX XX XYσ σ −= − Σ Σ Σ . Moreover, Type 2 outliers 

are generated from ( )2
\ \10 ,Y X Y XN µ σ with ratio / 2η  

where 1
\ ( )Y X Y YX XX XXµ µ µ−= − Σ − Σ −  and 

2 2 1
\Y X Y YX XX XYσ σ −= − Σ Σ Σ . Rest of the observations with 

ratio 1 η−  are generated from ( )2
\ \,Y X Y XN µ σ  where 

1
\ ( )Y X Y YX XX XXµ µ µ−= − Σ − Σ −  and same variance 

2
\Y Xσ . 

Each manipulation is performed for leverage-masking, 
inducing and intensifying observations. Hence, in total there 
are 15 cases to be investigated as presented in Table 1 for 
which number of iterations is fixed to 10000 in order to 
compute the Monte-Carlo estimations of MSE, VAR, and 
BIAS given in Equation (4)-(6). Moreover, each case is 
investigated for various values of mixture parameter η  that 
contributes to the level of the manipulation. We present 
simulation results for the case when n = 50 and p = 3 since 
we observe that the results were similar for various ( , )n p  
combinations. 

Structurally, we first generate data with only 
leverage-masking collinearity associated with the cases 1 to 
4 in Table 1 and present our results in Tables 3-6. 
(Appendices). Similarly, same steps are followed for 
leverage-inducing and leverage intensifying collinearity 
associated with the cases 5 to 8 and 9 to 12 in Table 1, and 
the results are shown in Tables 7-10 (Appendices) and 11-14 
(Appendices), respectively. Finally, for the cases 13-15 in 
which estimator performances are compared when data has 
only Type 2 outliers with no leverage observations but 
relatively high, low and moderate level of collinearity the 
results are presented in Tables 15-17 (Appendices). In all of 
the Tables 2-17, OLS, RR1-RR2-RR3-RLS-LMS-LTS-M-S, 
and RTRLS-RTM-RTS denote the ordinary least squares, 
ridge, robust, and ridge-type robust estimators, respectively, 
presented in Section 2. Furthermore, in the top row of each 
table simulation parameters 2( , , )Rη β  as well as the 
known VIF  value calculated from the covariance matrix 
( )Σ  are shown. In the second column of Tables 3-17, ˆ GVIF  

and ˆ FVIF are computed from the first iteration of 
Monte-Carlo simulation in which the data is generated from 
G and F distributions, respectively. Each table presents the 
results based on MSE, VAR and BIAS computed by Equation 
(4)-(6). 

Let us first consider the cases when data only involves 
leverage observations. Figure 2a illustrates that the estimator 
RR3 (shown with red) performs the best based on variance. 
However, in a practical application, since ˆ FVIF  value 
(computed from all of the observations, Table 3) is relatively 
small due the masking effect of leverage masking 
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observations and there are no outliers, OLS (shown in blue) 
is expected to outperform the rest of the estimators, [6,8]. In 
contrast, in Figure 2c we observe that OLS performs the best 
even though ridge estimators (shown in red) are expected to 
perform the best for high ˆ FVIF  value (Table 7) and no 
outliers [3]. Hence, we conclude that a small ratio of 
leverage-inducing observations in data causes a drastic 
increase in ˆ FVIF  that is used to select estimators in practical 
applications. In Figure 2e there are only 
leverage-intensifying observations that strengthens an 
existing high level of collinearity (as one may observe from 

ˆ FVIF  in Table 11) and we conclude that ridge estimator 
performs the best. 

If we observe Figure 2b and 2d a similar argument can be 
made for data that involves both high-leverage observations 
as well as outliers in X and Y directions. For instance, based 
on low ˆ FVIF value (Table 6) due to the masking effect of 
leverage masking collinearity, one may expect robust 

estimators to be the best performing estimator, [13]. 
However, Figure 2b illustrates that for varying range of 
mixture parameter ridge-type S estimator (RTS) outperforms 
the rest. Similarly, when the leverage observations induce 
collinearity (high ˆ FVIF value in Table 10), Figure 2d shows 
that robust estimator (RLS) performs better for η < 0:30. 
This validates that observations classified as 
leverage-inducing collinearity are misleading since one 
expects ridge-type robust estimators to be more efficient for 
data sets with high collinearity and outliers [5,6]. 

Hence, we conclude that for practical applications in order 
to select the best estimator with respect to variance, ˆVIF  
value should be computed by extracting the leverage points 
from the data for the best results. This suggests the use of 
robust ˆVIF calculations as we will discuss in Subsection 3.2. 
However, the precise contribution of robust ˆVIF
computations to solve estimator selection problem is yet to 
be understood and this will be the subject of our future work.  

 

Figure 2.  6 plots illustrating the logarithm of the Monte-Carlo estimates of variance as a function of mixture parameter η . Color coding in the figures is 
arranged such that OLS, ridge, robust, and ridge-type robust estimators are represented by blue, red, black, and green, respectively. The set of parameters 
used in each subplot (a)-(f) are presented in Tables 3, 6, 7, 10, 11, and 14, respectively 
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Figure 3.  3 plots illustrating the logarithm of the Monte-Carlo estimates of variance as a function of mixture parameter η . Color coding in the figures is 
arranged such that ridge, robust, ridge-type robust estimators are represented by red, black and blue, green, respectively. The set of parameters used in each 
subplot (a), (b), (c) are presented in Tables 15, 17, 16, respectively 

In Figure 3a-3c, we present results gathered from Tables 
15-17, respectively. In Figure 3a, it is observed that 
ridge-type S estimator performs the best based on variance 
(RTS shown in green). Moreover, Figure 3b illustrates that 
for small values of 0.07<η  robust estimators (RLS and S 
shown in black solid and dashed lines) but for higher values 
of 0.07η >  ridge-type S estimator (RTS) has the lowest 
variance. Finally, Figure 3c, shows a similar trend around 

0.16η = . 
These results validate that when there are outliers only in Y 

direction, as the level of collinearity increases ridge-type S 
estimator (RTS) performs better with lower variance than 
robust estimators (S and RLS). Hence, the strength of 
collinearity is also critical for selecting estimators. 

Remark: In this section, we have compared estimator 
performances only with respect to their variances. However, 
in some practical applications bias-variance trade-off should 
be taken into account for selecting the appropriate estimator. 
Hence, we presented BIAS and MSE values computed from 
Monte-Carlo estimates as well as VAR in the Tables 3-17. 

3.2. Example 

In this section, we compare estimator performances 
(presented in Section 2) when they are applied to the data set 
introduced in [27]. This synthetic regression data is 
constructed such that there are three explanatory variables 
and in total 75n =  observations that are enumerated from 
1-75 such that the observations 1-10 are outliers in Type 1 

direction ( 0.13η = ). Moreover, data is constructed such 
that the following 4 observations between 11 and 14 are 
leverage observations ˆVIF  computed from 75 observations 
is 23.6842. This reveals that collinearity exists in data. ˆVIF
obtained by excluding both outliers and leverage 
observations is found as 1.0163. Hence, we classify these (in 
total 15) observations as leverage-inducing collinearity. If 
we exclude only leverage observations and outliers, ˆVIF  
values are 34.1178 and 13.0166, respectively. These results 
indicate that Type 1 outliers induce collinearity more 
prominently than the leverage observations. 

Using this knowledge, one may use Table 8 (for data 
involving Type 1 outliers as well as leverage-inducing 
collinearity) which concludes that RLS estimator performs 
the best based on variance when mixture parameter is in the 
range 0.01 0.25<η< . Moreover, for the same range of η  
we observe from Table 8 that RLS and RTRLS have 
approximately the same value of VAR but RLS has lower 
BIAS and lower MSE values. 

In Table 2 (Appendices), we present results gathered from 
distinct methods to estimate the regression parameters for 

0 1 2 3 3Y = β + β X + β X + ε  as well as ˆ EVIF values. ˆ EVIF
is the estimate of VIF . Moreover, it is computed by the set 
of observations used for calculating β̂  for each estimation 

method. In Table 2, ˆ EVIF  value computed from RLS is 
equal to 13.0166. This is the same value computed by 
excluding only Type 1 outliers from data. Hence, this 
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suggests that RLS estimator uses the subsample excluding all 
Type 1 observations which maximize its efficiency and this 
is in line with our results presented in Table 8. 

However, it is non-trivial to make the same conclusion for 
the rest of the robust estimators. Note that, since ridge 
estimators (RR1, RR2, RR3) use all the data their ˆ EVIF
values (in Table 2) are found as 23.6842 which is estimated 
from the total data set with 75 observations. Ridge-type 
robust estimators RTRLS, RTM and RTS have the same 

ˆ EVIF values as RLS, M and S in that they use the same 
subsample. 

4. Conclusions 
This study aims to construct a framework in order to 

compare estimator performances for various levels of 
contamination caused by collinearity, collinearity-influential 
observations and outliers in data. Furthermore, it targets to 
investigate the influence of their interactions by examining 
fifteen different data sets. These synthetically generated data 
sets involve distinct combinations of outliers classified as 
Type 1 or 2 based on their distance, and three distinct 
collinearity-influential observations, namely, leverage 
masking, leverage-inducing and leverage-intensifying 

collinearity. For the analysis, we use ridge, robust and 
ridge-type robust estimators from the literature and compute 
the Monte-Carlo estimates of total mean square, total 
variance and total bias for evaluating their estimation 
performances. 

We compare estimators based on variance and observe 
that when data involves high collinearity and only 
leverage-masking observations (no outliers), RR3 (ridge 
estimator) has the smallest variance. However, in a practical 
application due to the masking effect of the leverage 
observations, ˆVIF  would be small and OLS estimator would 
be expected to perform the best for no collinearity and no 
outliers case, [6, 8]. Similar effects are observed when data 
involves leverage-inducing observations. Hence, we 
conclude that the interactions between collinearity and 
collinearity-influential observations can be misleading when 
selecting an estimator. These results reveal that ˆVIF , which 
is used for estimator selection, should be computed robustly 
by excluding the leverage points from the data set. 

We also observe that directionality in outliers and the 
strength of collinearity in data are also relevant for estimator 
selection. We show that the results presented in this study 
can be used as lookup tables to decide on the best estimator 
based on total variance, total mean square error and total bias 
values. 

 

Appendices  
Table 2.  Parameter estimations and ˆ

EVIF  values for the data 

 
 

Table 3.  Case 1: MSE, VAR, BIAS and ˆ
FVIF  values when data involves only leverage-masking collinearity (no outliers) 
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Table 4.  Case 2: MSE, VAR, BIAS and ˆ
FVIF  values when data involves leverage-masking collinearity and Type 1 outliers 

 
 

Table 5.  Case 3: MSE, VAR, BIAS and ˆ
FVIF  values when data involves leverage-masking collinearity and Type 2 outliers 

 
 

Table 6. Case 4: MSE, VAR, BIAS and ˆ
FVIF  values when data involves leverage-masking collinearity and Type 1 and 2 outliers 
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Table 7.  Case 5: MSE, VAR, BIAS and ˆ
FVIF  values when data involves only leverage-inducing collinearity in data (no outliers) 

 
 

Table 8.  Case 6: MSE, VAR, BIAS and ˆ
FVIF  values when data involves leverage-inducing collinearity and Type 1 outliers 

 
 

Table 9.  Case 7: MSE, VAR, BIAS and ˆVIF  values when data involves leverage-inducing collinearity and Type 2 outliers 
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Table 10.  Case 8: MSE, VAR, BIAS and ˆVIF  values when data involves leverage-inducing collinearity and Type 1 and 2 outliers 

 
 

Table 11.  Case 9: MSE, VAR, BIAS and ˆVIF  values when data involves only leverage-intensifying collinearity (no outliers) 

 
 

Table 12.  Case 10: MSE, VAR, BIAS and ˆVIF values when data involves leverage-intensifying collinearity and Type 1 outliers 
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Table 13.  Case 11: MSE, VAR, BIAS and ˆVIF values when data involves leverage-intensifying collinearity and Type 2 outliers 

 
 

Table 14.  Case 12: MSE, VAR, BIAS and ˆVIF  values when data involves leverage-intensifying collinearity and Type 1 and 2 outliers 

 
 

Table 15.  Case 13: MSE, VAR, BIAS and ˆVIF  values when data has high collinearity and Type 2 outliers (no leverage observations) 
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Table 16.  Case 14: MSE, VAR, BIAS and ˆVIF  values when data has low/no collinearity and Type 2 outliers (no leverage observations) 

 
 

Table 17.  Case 15: MSE, VAR, BIAS and ˆVIF  values when data has moderate collinearity and Type 2 outliers (no leverage points) 
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