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Abstract  The study focused on the likelihood of a pair of random variables having either an Archimedean copula or an 
Elliptical copula. The study involved simulating several pairs of random variables and the bicopselect () function in R was 
used to select an appropriate bivariate copula family for simulated pairs of random variables. The corresponding parameter 
estimates were obtained by maximum likelihood estimation. The method compared AICs of the various bivariate copulas 
under consideration. In all, about forty (40) bivariate copulas were considered ranging from one parameter models to two 
parameter models, three parameter models and in some cases rotations of some of these models. Fifty (50) different pairs of 
random variables were simulated for sample sizes 30, 300, 1000, 10000, 100000 and 1000000. For sample size thirty (30), 47 
pairs had their copulas being Archimedean, for sample size 300, 47 had their copulas being Archimedean, for sample sizes 
1000, 10000, 100000 and 1000000, 49, 44, 47 and 46 pairs respectively had their copulas being Archimedean. The results 
showed that between the Archimedean and Elliptical copulas, the Archimedean copulas were the most likely to fit the 
simulated pairs of random variables. 
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1. Introduction 
A copula is a function which joins or couples a 

multivariate distribution function to its one-dimensional 
marginal distribution functions. Over the years, copulas have 
played an important role in several areas of statistics. 
According to Fisher (1997), specifically his notes in the 
Encyclopedia of Statistical Sciences, “Copulas are of interest 
to statisticians for two main reasons; First, as a way of 
studying scale-free measures of dependence; and secondly, 
as a starting point for constructing families of bivariate 
distributions. 

One attractive property of copulas is their invariance 
under strictly increasing transformations of the margins. 
Copulas have been thoroughly reviewed in Nelsen (2006). 
Copula was first used in financial applications by Embrechts 
et. al. (2002). Since then the application on copula theory in 
finance and economics has grown tremendously. Moreover, 
practical applications of this modeling approach are found in 
fields such as finance (Nikoloulopoulos et. al. (2012); Fang 
and Madsen (2013)), hydrology (Genest et. al. (2007)), 
public health and medical (Winkelmann (2012)) and 
actuarial science (Frees and Valdez (1998); Otani and Imai 
(2013)). 

An  important  class of  copulas are  the Archimedean  
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copulas, they are discussed in [Genest and Mackay (1986), 
Joe (1997), McNeil and Neslehova (2009)]. Archimedean 
copulas are popular since they are easy to handle, have 
simple, closed-form expressions, and can be used to derive 
portfolio distributions (Crook and Moreira (2011)). 

Trede and Savu (2013) suggested a new straightforward 
method to check whether a copula is an Archimedean copula 
without specifying its parametric family. Their approach was 
applied to (bivariate) joint distributions of stock asset returns 
and they discovered that in general, stock returns may have 
Archimedean copulas. 

Archimedean copulas over the years have been 
successfully applied in various sectors (Louie (2014), 
Corbella and Stretch (2013) and Yee et. al (2014)). 

This study is to serve as a support to the works that seek to 
tie two random variables with the Archimedean copulas. 

2. Copulas 
A copula is a multivariate cumulative distribution function 

(CDF) whose univariate marginal distributions are all 
Uniform (0, 1). Suppose that 𝑌𝑌 = (𝑌𝑌1, … ,𝑌𝑌𝑑𝑑)  has a 
multivariate CDF 𝐹𝐹𝑌𝑌  with continuous marginal univariate 
CDFs 𝐹𝐹𝑌𝑌1 , … ,𝐹𝐹𝑌𝑌𝑑𝑑  . If Y has a continuous CDF F, then 𝐹𝐹(𝑌𝑌) 
has a uniform (0, 1) distribution. 𝐹𝐹(𝑌𝑌) is often called the 
probability transformation of Y. This fact is easy to see if F is 
strictly increasing, since then 𝐹𝐹−1 exists, so that  
𝑃𝑃{𝐹𝐹(𝑌𝑌) ≤ 𝑦𝑦} = 𝑃𝑃{𝑌𝑌 ≤ 𝐹𝐹 − 1(𝑦𝑦)} = 𝐹𝐹{𝐹𝐹 − 1(𝑦𝑦)} = 𝑦𝑦 (1) 
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Then, by the equation above each of 𝐹𝐹𝑌𝑌1
(𝑌𝑌1), … ,𝐹𝐹𝑌𝑌𝑑𝑑 (𝑌𝑌𝑑𝑑) 

is distributed uniform (0, 1). Thus, the CDF of 
{𝐹𝐹𝑌𝑌1

(𝑌𝑌1), … ,𝐹𝐹𝑌𝑌𝑑𝑑 (𝑌𝑌𝑑𝑑)} is a copula. This CDF is called the 
copula of Y and denoted by 𝐶𝐶𝑌𝑌 .  𝐶𝐶𝑌𝑌  contains all information 
about dependencies among the components of Y but has no 
information about the marginal CDFs of Y. 

2.1. Archimedean Copulas 

An Archimedean copula with a strict generator has the 
form; 

𝐶𝐶(𝑢𝑢1, … ,𝑢𝑢𝑑𝑑) = 𝜑𝜑−1{𝜑𝜑(𝑢𝑢1) + ⋯+ 𝜑𝜑(𝑢𝑢𝑑𝑑)}    (2) 
where the generator function 𝜑𝜑 satisfies the following 
conditions: 

1.  𝜑𝜑 is a continuous, strictly decreasing, and convex 
function mapping [0,1] onto [0,∞]. 

2.  𝜑𝜑(0) = ∞ and  
3.  𝜑𝜑(1) = 0 

2.2. Elliptical Copulas 

Elliptical copulas are the copulas of elliptically contoured 
distributions. The multivariate and the Student-t are the most 
commonly used elliptical distributions. The Normal copula 
is an elliptical copula given by: 
𝐶𝐶𝜌𝜌(𝑢𝑢, 𝑣𝑣) = 

∫ ∫ 1

2𝜋𝜋(1−𝜌𝜌2)
1
2

exp �− 𝑥𝑥2−2𝜌𝜌𝑥𝑥𝑦𝑦 +𝑦𝑦2

2(1−𝜌𝜌2)
� 𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦𝜙𝜙−1(𝑣𝑣)

−∞
𝜙𝜙−1(𝑢𝑢)
−∞    (3) 

The Student-t copula is an elliptical copula defined by: 
𝐶𝐶𝜌𝜌 ,𝑣𝑣(𝑢𝑢, 𝑣𝑣) = 

∫ ∫ 1

2𝜋𝜋(1−𝜌𝜌2)
1
2
�1 + 𝑥𝑥2−2𝜌𝜌𝑥𝑥𝑦𝑦 +𝑦𝑦2

𝑣𝑣(1−𝜌𝜌2)
�
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2 𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦𝑡𝑡𝑣𝑣−1(𝑣𝑣)
−∞

𝑡𝑡𝑣𝑣−1(𝑢𝑢)
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3. Simulations and Results 
To assess the argument that the Copula of two random 

variables is more often than not Archimedean, several 
simulations are performed. Considering pairs of random 
variables of size, n each, the Vuong and Clarke tests for 
selecting a bivariate copula is used to assign copulas to each 
of the 50 pairs of random variables. 

The choice of a bivariate copula is between the elliptical 

(Gaussian and Student-t) and the Archimedean (Clayton, 
Gumbel, Frank, Joe, BB1, BB6, BB7 and BB8) copulas to 
cover a large range of dependence patterns. For 
Archimedean copula families, rotated versions were 
included to cover negative dependence as well. The Tawn 
copula being an asymmetric extension of the Gumbel copula 
with three parameters was added to the Archimedean. For 
simplicity, two versions of the Tawn copula with two 
parameters each were employed. Each type has one of the 
asymmetry parameters fixed to 1, so that the corresponding 
copula density is either left- or right-skewed (in relation to 
the main diagonal). For each of the possible pairs, the tests 
decide which family best fits the given data. 

3.1. Algorithm 

Step 1: 
Simulate two random variables x1 and x2 of equal length n, 

with uniform margins. 
Step 2: 
Using the Vuong and Clarke tests for selecting a bivariate 

copula, select a copula. 
Step 3: 
Repeat Step 1 for different values of n for 49 other pairs of 

simulated x1 and x2 and apply step 2 in each case. 
Example using R;  
set.seed(1) 
Step 1: Nsim=10000 #number of random numbers 

x1=runif(Nsim) 
x2=runif(Nsim) #vectors  

Step 2: 
selectedCopula <- BiCopSelect(x1,x2,familyset=NA) 
selectedCopula 

Tables 1, 2, 3, 4, 5 and 6 give the results of simulated pairs 
of random variables, selected copulas and in some cases their 
parameter values. 

4. Results 
The results of the whole work is summarized in Tables 1, 2, 

3, 4, 5, 6 and 7.  

 

Table 1.  Pairs of Random Variables and Their Copulas (n=30) 

Pairs of Random Variables Bi-Copula Number (Family) Copula Type 

1 134 Rotated Tawn Type 1 (270 degrees) 

2 5 Frank 

3 26 Rotated Joe (90 degrees) 

4 1 Gaussian 

5 124 Rotated Tawn Type 1 (90 degrees) 

6 124 Rotated Tawn Type 1 (90 degrees) 

7 114 Rotated Tawn Type 1 (180 degrees) 
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Pairs of Random Variables Bi-Copula Number (Family) Copula Type 

8 214 Rotated Tawn Type 2 (180 degrees) 

9 224 Rotated Tawn Type 2 (90 degrees) 

10 114 Rotated Tawn Type 1 (180 degrees) 

11 5 Frank 

12 5 Frank 

13 3 Clayton 

14 224 Rotated Tawn Type 2 (90 degrees) 

15 26 Rotated Joe (90 degrees) 

16 6 Joe 

17 23 Rotated Clayton (90 degrees) 

18 16 Rotated Joe (180 degrees) 

19 5 Frank 

20 134 Rotated Tawn Type 1 (270 degrees) 

21 114 Rotated Tawn Type 1 (180 degrees) 

22 104 Tawn Type 1 

23 6 Joe 

24 36 Rotated Joe (270 degrees) 

25 16 Rotated Joe (180 degrees) 

26 36 Rotated Joe (270 degrees) 

27 224 Rotated Tawn Type 2 (90 degrees) 

28 134 Rotated Tawn Type 1 (270 degrees) 

29 5 Frank 

30 214 Rotated Tawn Type 2 (180 degrees) 

31 104 Tawn Type 1 

32 36 Rotated Joe (270 degrees) 

33 214 Rotated Tawn Type 2 (180 degrees) 

34 26 Rotated Joe (90 degrees) 

35 204 Tawn Type 2 

36 204 Tawn Type 2 

37 204 Tawn Type 2 

38 36 Rotated Joe (270 degrees) 

39 134 Rotated Tawn Type 1 (270 degrees) 

40 16 Rotated Joe (180 degrees) 

41 204 Tawn Type 2 

42 5 Frank 

43 224 Rotated Tawn Type 2 (90 degrees) 

44 1 Gaussian 

45 5 Frank 

46 224 Rotated Tawn Type 2 (90 degrees) 

47 16 Rotated Joe (180 degrees) 

48 204 Tawn Type 2 

49 204 Tawn Type 2 

50 1 Gaussian 

NB: Archimedean Copulas are in “RED”. 

Table 1 constitutes simulation 1 for 50 different simulated pairs of random variables subjected to the process in 4.1. Out of 
the 50 pairs of random variables simulated following the process in 4.1, 47 of the pairs had their copula being Archimedean 
Copulas. Only 3 (simulated pair 4, 44 and 50) had their copula being the Elliptical copulas (Gaussian). 
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Table 2.  Pairs of Random Variables and Their Copulas (n = 300) 

Pairs of Random 
Variables 

Bi-Copula Number 
(Family) Copula Type Parameter 1 Parameter 2 

1 204 Tawn Type 2 14.48416 0.008408582 
2 214 Rotated Tawn Type 2 (180 degrees) 6.343869 0.01747199 
3 204 Tawn Type 2 20 0.01181782 
4 104 Tawn Type 1 1.379204 0.1255907 
5 5 Frank -0.2013011 0 
6 114 Rotated Tawn Type 1 (180 degrees) 1.70345 0.04993857 
7 5 Frank -0.8130363 0 
8 13 Clayton 0.02826758 0 
9 2 Student t 0.05698729 7.253719 
10 5 Frank 0.2621446 0 
11 5 Frank 0.544137 0 
12 204 Tawn Type 2 16.98002 0.001705523 
13 1 Gaussian -0.04184862 0 
14 204 Tawn Type 2 1.514891 0.07073632 
15 204 Tawn Type 2 1.475668 0.08042687 
16 23 Rotated Clayton (90 degrees) -0.0695994 0 
17 224 Rotated Tawn Type 2 (90 degrees) -1.270983 0.04145445 
18 134 Rotated Tawn Type 1 (270 degrees) -3.764414 0.003714084 
19 104 Tawn Type 1 6.491484 0.03209095 
20 3 Clayton 0.04233865 0 
21 3 Clayton 0.06988842 0 
22 234 Rotated Tawn Type 2 (270 degrees) -5.845296 0.003570964 
23 234 Rotated Tawn Type 2 (270 degrees) -1.742632 0.06856019 
24 5 Frank -0.2059542 0 
25 1 Gaussian -0.0207488 0 
26 5 Frank 0.5949366 0 
27 5 Frank -0.4023436 0 
28 26 Rotated Joe (90 degrees) -1.040715 0 
29 3 Clayton 0.07450558 0 
30 124 Rotated Tawn Type 1 (90 degrees) -1.548161 0.02793191 
31 134 Rotated Tawn Type 1 (270 degrees) -5.917137 0.01321439 
32 6 Joe 1.074425 0 
33 204 Tawn Type 2 7.83952 0.002106726 
34 134 Rotated Tawn Type 1 (270 degrees) -2.288161 0.02840188 
35 104 Tawn Type 1 20 0.002495725 
36 33 Rotated Clayton (270 degrees) -0.1225876 0 
37 5 Frank -0.5201417 0 
38 204 Tawn Type 2 12.14455 0.00132292 
39 214 Rotated Tawn Type 2 (180 degrees) 2.478545 0.007805447 
40 124 Rotated Tawn Type 1 (90 degrees) -19.47738 0.001608896 
41 26 Rotated Joe (90 degrees) -1.021392 0 
42 114 Rotated Tawn Type 1 (180 degrees) 4.973694 0.002261282 
43 104 Tawn Type 1 20 0.006014855 
44 104 Tawn Type 1 1.471994 0.05110982 
45 5 Frank 0.9312155 0 
46 34 Rotated Gumbel (270 degrees) -1.029469 0 
47 6 Joe 1.075419 0 
48 26 Rotated Joe (90 degrees) -1.030669 0 
49 214 Tawn Type 2 9.1177 0.00751996 
50 224 Rotated Tawn Type 2 (90 degrees) -2.594418 0.02043922 

NB: Archimedean Copulas are in “RED”. 
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Table 3.  Pairs of Random Variables and Their Copulas (n = 1000) 

Pairs of Random 
Variables 

Bi-Copula Number 
(Family) Copula Type Parameter 1 Parameter 2 

1 224 Rotated Tawn Type 2 (90 degrees) -10.07035 0.005185978 
2 224 Rotated Tawn Type 2 (90 degrees) -2.717438 0.01378937 
3 234 Rotated Tawn Type 2 (270 degrees) -4.631492 0.002813678 
4 114 Rotated Tawn Type 1 (180 degrees) 7.839527 0.004410584 
5 134 Rotated Tawn Type 1 (270 degrees) -2.334564 0.006195052 
6 23 Rotated Clayton (90 degrees) -0.006750176 0 
7 36 Rotated Joe (70 degrees) -1.02562 0 
8 5 Frank -0.1620883 0 
9 234 Rotated Tawn Type 2 (270 degrees) -1.325352 0.04519359 
10 23 Rotated Clayton (90 degrees) -0.04660569 0 
11 13 Rotated Clayton (180 degrees) 0.02568463 0 
12 6 Joe 1.029129 0 
13 5 Frank -0.4024086 0 
14 204 Tawn Type 2 8.510368 0.001689399 
15 34 Rotated Gumbel (270 degrees) -1.025861 0 
16 33 Rotated Clayton (270 degrees) -0.05531397 0 
17 5 Frank -0.1864237 0 
18 5 Frank -0.1337674 0 
19 234 Rotated Tawn Type 2 (270 degrees) -12.74722 0.002591045 
20 14 Rotated Gumbel (180 degrees) 1.013389 0 
21 224 Rotated Tawn Type 2 (90 degrees) -17.56683 0.004400793 
22 5 Frank -0.06560941 0 
23 204 Tawn Type 2 13.86403 0.003532782 
24 36 Rotated Joe (270 degrees) -1.03173 0 
25 33 Rotated Clayton (270 degrees) -0.0532508 0 
26 234 Rotated Tawn Type 2 (270 degrees) -16.96935 0.00410771 
27 5 Frank -0.3608203 0 
28 124 Rotated Tawn Type 1 (90 degrees) -2.063189 0.009526584 
29 114 Rotated Tawn Type 1 (180 degrees) 1.394521 0.05358823 
30 13 Rotated Clayton (180 degrees) 0.0520688 0 
31 5 Frank -0.2281523 0 
32 5 Frank 0.5071022 0 
33 14 Rotated Gumbel (180 degrees) 1.017152 0 
34 204 Tawn Type 2 11.35934 0.002482861 
35 34 Rotated Gumbel (270 degrees) -1.022759 0 
36 114 Rotated Tawn Type 1 (180 degrees) 6.4634 0.002659584 
37 3 Clayton 0.06359287 0 
38 16 Rotated Joe (180 degrees) 1.053157 0 
39 36 Rotated Joe (270 degrees) -1.028122 0 
40 34 Rotated Gumbel (270 degrees) -1.035152 0 
41 204 Tawn Type 2 4.413874 0.001551874 
42 1 Gaussian -0.003686919 0 
43 33 Rotated Clayton (270 degrees) -0.05730067 0 
44 3 Clayton 0.05894495 0 
45 224 Rotated Tawn Type 2 (90 degrees) -8.398277 0.006663609 
46 114 Rotated Tawn Type 1 (180 degrees) 1.409001 0.03178957 
47 16 Rotated Joe (180 degrees) 1.046323 0 
48 5 Frank -0.1209836 0 
49 5 Tawn Type 2 -0.1656696 0 
50 36 Rotated Joe (270 degrees) -1.011151 0 

NB: Archimedean Copulas are in “RED”. 
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Table 4.  Pairs of Random Variables and Their Copulas (n = 10000) 

Pairs of Random 
Variables 

Bi-Copula 
Number (Family) Copula Type Parameter 1 Parameter 2 

1 114 Rotated Tawn Type 1 (180 degrees) 1.155907 0.008112878 
2 124 Rotated Tawn Type 1 (90 degrees) -1.478397 0.0019798 
3 1 Gaussian 0.008873408 0 
4 1 Gaussian -0.00268579 0 
5 13 Rotated Clayton (180 degrees) 0.008725757 0 
6 36 Rotated Joe (270 degrees) -1.013391 0 
7 1 Gaussian -0.01122607 0 
8 204 Tawn Type 2 1.316691 0.001950984 
9 33 Rotated Clayton (270 degrees) -0.01331629 0 
10 224 Rotated Tawn Type 2 (90 degrees) -1.114805 0.007540145 
11 3 Clayton 0.02731143 0 
12 204 Tawn Type 2 1.280833 0.001327157 
13 26 Rotated Joe (90 degrees) -1.007268 0 
14 6 Joe 1.010018 0 
15 1 Gaussian -0.003200067 0 
16 23 Rotated Clayton (90 degrees) -0.02488021 0 
17 214 Rotated Tawn Type 2 (180 degrees) 1.485505 0.002267112 
18 23 Rotated Clayton (90 degrees) -0.006219675 0 
19 224 Rotated Tawn Type 2 (90 degrees) -1.414551 0.001361773 
20 14 Rotated Gumbel (180 degrees) 1.013389 0 
21 3 Clayton 0.004166482 0 
22 5 Frank -0.06560941 0 
23 214 Rotated Tawn Type 2 (180 degrees) 1.304129 0.004259981 
24 16 Rotated Joe (180 degrees) 1.007396 0 
25 5 Frank 0.09887132 0 
26 23 Rotated Clayton (90 degrees) -0.009136288 0 
27 114 Rotated Tawn Type 1 (180 degrees) 1.456298 0.00122227 
28 234 Rotated Tawn Type 2 (270 degrees) -1.112805 0.01208872 
29 36 Rotated Joe (270 degrees) -1.012406 0 
30 13 Rotated Clayton (180 degrees) 0.01051188 0 
31 5 Frank -0.02330692 0 
32 14 Rotated Gumbel (180 degrees) 1.005536 0 
33 5 Frank -1.008751 0 
34 26 Rotated Joe (90 degrees) 11.35934 0.002482861 
35 3 Clayton 0.01928258 0 
36 6 Joe 1.00516 0 
37 33 Rotated Clayton (270 degrees) -0.01585007 0 
38 5 Frank 0.099009 0 
39 1 Gaussian -0.00780174 0 
40 214 Rotated Tawn Type 2 (180 degrees) 13.95408 0.0001 
41 224 Rotated Tawn Type 2 (90 degrees) -1.591775 0.002713813 
42 23 Rotated Clayton (90 degrees) -0.002984755 0 
43 24 Rotated Gumbel (90 degrees) -1.008299 0 
44 3 Clayton 0.05894495 0 
45 214 Rotated Tawn Type 2 (180 degrees) 7.60397 0.0001 
46 204 Tawn Type 2 1.069604 0.02780733 
47 33 Rotated Clayton (270 degrees) -0.01872496 0 
48 114 Rotated Tawn Type 1 (180 degrees) 1.282865 0.002601514 
49 1 Gaussian 0.003311384 0 
50 104 Tawn Type 1 1.073471 0.02430817 

NB: Archimedean Copulas are in “RED”. 
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Table 5.  Pairs of Random Variables and Their Copulas (n = 100000) 

Pairs of Random 
Variables 

Bi-Copula Number 
(Family) Copula Type Parameter 1 Parameter 2 

1 1 Gaussian -0.006875427 0 
2 114 Rotated Tawn Type 1 (180 degrees) 1.078467 0.00164116 
3 124 Rotated Tawn Type 1 (90 degrees) -1.130366 0.0003145505 
4 5 Frank -0.02287776 0 
5 5 Frank 0.03985872 0 
6 23 Rotated Clayton (90 degrees) -0.004914904 0 
7 13 Rotated Clayton (180 degrees) 0.002127076 0 
8 23 Rotated Clayton (90 degrees) -0.01035591 0 
9 224 Rotated Tawn Type 2 (90 degrees) -1.012644 0.1094078 
10 23 Rotated Clayton (90 degrees) -0.00150629 0 
11 5 Frank 0.01562637 0 
12 23 Rotated Clayton (90 degrees) -0.004579322 0 
13 234 Rotated Tawn Type 2 (270 degrees) -1.386011 0.0001 
14 5 Frank -0.01935665 0 
15 23 Rotated Clayton (90 degrees) -0.006430406 0 
16 134 Rotated Tawn Type 1 (270 degrees) -1.026183 0.0226184 
17 224 Rotated Tawn Type 2 (90 degrees) -1.11159 0.001197463 
18 6 Joe 1.002038 0 
19 4 Gumbel 1.00342 0 
20 33 Rotated Clayton (270 degrees) -0.004264028 0 
21 23 Rotated Clayton (90 degrees) -0.002700568 0 
22 1 Gaussian 0.001044793 0 
23 124 Rotated Tawn Type 1 (90 degrees) -1.984708 0.0002354378 
24 13 Rotated Clayton (180 degrees) 0.003314794 0 
25 33 Rotated Clayton (270 degrees) -0.002008442 0 
26 13 Rotated Clayton (180 degrees) 0.002977579 0 
27 3 Clayton 0.003536868 0 
28 13 Rotated Clayton (180 degrees) 0.004923761 0 
29 26 Rotated Joe (90 degrees) -1.001959 0 
30 5 Frank 0.04275088 0 
31 33 Rotated Clayton (270 degrees) -0.0031626 0 
32 33 Rotated Clayton (270 degrees) -0.005001467 0 
33 1 Gaussian -0.00517704 0 
34 13 Rotated Clayton (180 degrees) 0.001681644 0 
35 104 Tawn Type 1 5.794707 1e-04 
36 134 Rotated Tawn Type 1 (270 degrees) -2.442294 1e-04 
37 6 Joe 1.00166 0 
38 5 Frank -0.02092695 0 
39 204 Tawn Type 2 2.409549 1e-04 
40 16 Rotated Joe (180 degrees) 1.003354 0 
41 224 Rotated Tawn Type 2 (90 degrees) -2.560946 1e-04 
42 23 Rotated Clayton (90 degrees) -0.003804658 0 
43 3 Clayton 0.003493326 0 
44 114 Clayton 1.974587 1e-04 
45 5 Frank -0.02166793 0 
46 5 Tawn Type 2 0.02274893 0 
47 16 Rotated Joe (180 degrees) 1.001687 0 
48 24 Rotated Gumbel (90 degrees) -1.001685 0 
49 214 Rotated Tawn Type 2 180 degrees) 1.023572 0.0169742 
50 224 Rotated Tawn Type 2 (90 degrees) -1.539881 1e-04 

NB: Archimedean Copulas are in “RED”. 
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Table 6.  Pairs of Random Variables and Their Copulas (n = 1000000) 

Pairs of Random 
Variables 

Bi-Copula Number 
(Family) Copula Type Parameter 1 Parameter 2 

1 13 Rotated Clayton (180 degrees) 0.001874919 0 
2 24 Rotated Gumbel (90 degrees) -1.000554 0 
3 36 Rotated Joe (270 degrees) -1.00101 0 
4 13 Rotated Clayton (180 degrees) 0.001114317 0 
5 5 Frank 0.002921803 0 
6 13 Rotated Clayton (180 degrees) 0.0003793721 0 
7 4 Gumbel 1.000804 0 
8 1 Gaussian -0.001522547 0 
9 1 Gaussian -0.001605963 0 
10 6 Joe 1.000456 0 
11 34 Rotated Gumbel (270 degrees) -1.000444 0 
12 5 Frank -0.007937841 0 
13 36 Rotated Joe (270 degrees) -1.000376 0 
14 114 Rotated Tawn Type 1 (180 degrees) 1.020453 0.002053239 
15 3 Clayton 0.0007436717 0 
16 5 Frank 0.005235035 0 
17 13 Rotated Clayton (180 degrees) 0.002060722 0 
18 13 Rotated Clayton (180 degrees) 0.001075413 0 
19 4 Gumbel 1.000282 0 
20 234 Rotated Tawn Type 2 (270 degrees) -1.001493 0.1002489 
21 14 Rotated Gumbel (180 degrees) 1.000487 0 
22 6 Joe 1.000381 0 
23 5 Frank 0.009592589 0 
24 33 Rotated Clayton (270 degrees) -0.001753083 0 
25 5 Frank -0.01688023 0 
26 1 Gaussian -0.002061574 0 
27 4 Gumbel 1.000285 0 
28 6 Joe 1.00063 0 
29 3 Clayton 0.001117876 0 
30 104 Tawn Type 1 1.004084 0.0611272 
31 1 Gaussian 0.0003216839 0 
32 16 Rotated Joe (180 degrees) 1.000446 0 
33 26 Rotated Joe (90 degrees) -1.000897 0 
34 24 Rotated Gumbel (90 degrees) -1.000973 0 
35 36 Rotated Joe (270 degrees) -1.000724 0 
36 234 Rotated Tawn Type 2 (270 degrees) -1.037894 1e-04 
37 5 Frank -0.002373456 0 
38 3 Clayton 0.0006730301 0 
39 14 Rotated Gumbel (180 degrees) 1.00071 0 
40 16 Rotated Joe (180 degrees) 1.000416 0 
41 224 Rotated Tawn Type 2 (90 degrees) -1.114766 1e-04 
42 13 Rotated Clayton (180 degrees) 0.001378867 0 
43 5 Frank -0.003207516 0 
44 23 Rotated Clayton (90 degrees) -0.0008759278 0 
45 33 Rotated Clayton (270 degrees) -0.001228216 0 
46 13 Rotated Clayton (180 degrees) 0.0008822748 0 
47 5 Frank 0.008797257 0 
48 3 Clayton 0.000924666 0 
49 16 Rotated Joe (180 degrees) 1.000573 0 
50 204 Tawn Type 2 1.039686 0.0009705741 

NB: Archimedean Copulas are in “RED”. 



236 Maxwell Akwasi Boateng et al.:  On Two Random Variables and Archimedean Copulas  
 

 

Table 7.  Summary of simulation (for 50 runs) 

Simulation value of n Number of 
Archimedean 

Number of 
Elliptcal 

Percentage of 
Archimedean 

Percentage of 
Elliptical 

1 30 47 3 94% 6% 
2 300 47 3 94% 6% 
3 1000 49 1 98% 2% 
4 10000 44 6 88% 12% 
5 100000 47 3 94% 6% 
6 1000000 46 4 92% 8% 

 

Table 2 shows results for simulation 2 made up of 
50different pairs of simulated random variables. Out of the 
50 pairs of random variables, 47 of them (in red) had their 
copula being Archimedean Copulas. Pairs 9, 13 and 25 
however had their copula being the Elliptical copula 
(Gaussian and student t). 

From Table 3, out of the 50 pairs of random variables 
simulated, 49 of them (in red) had their copula being 
Archimedean Copulas and only one (pair 42) had its copula 
being Elliptical (Gaussian). 

From Table 4, out of the 50 pairs of random variables 
simulated, 44 of them (in red) had their copula being 
Archimedean Copulas and 6 of them (pairs 2, 3, 7, 15, 39 and 
49) being Elliptical copulas (Gaussian). 

From Table 5, out of the 50 pairs of random variables 
simulated, 47 of them (in red) had their copula being 
Archimedean Copulas whereas 3 of the pairs (pair 1, 2 and 
33) had their copula being Elliptical (Gaussian). 

From Table 6, out of the 50 pairs of random variables 
simulated, 46 of them (in red) had their copula being 
Archimedean Copulas and 4 of them (pairs 8, 9, 26 and 31) 
had their copula being Elliptical (Gaussian). 

Table 7 above indicates that for a run of 50 pairs of 
random variables with different number of data points (n=30, 
300, 1000, 10000 and 1000000 respectively), the 
Archimedean copulas were the most likely to fit those pairs. 

5. Conclusions 
This study sought to check which bivariate copula 

(between the Archimedean and Elliptical copulas) was the 
most likely to fit two random variables. 50 pairs of random 
variables were simulated for sample sizes n = 30, n= 300, n= 
1000, n = 10000, n = 100000 and n = 1000000. For all 
sample sizes under consideration, no regular pattern for the 
copula selection is observed. The question then is, “Is there a 
way to detect a relationship between the random variables 
and the copula selected?”. The study revealed that for all 
simulations under study, the most likely copula to best 
handle pairs of random variables were the Archimedean 
copulas. This study supports the argument that the copula of 
two random variables is Archimedean. It will however be 
interesting to delve deeper into what characteristics of the 
pairs of random variables that account for they being 
Archimedean or elliptical. 
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