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Abstract  In this paper, forecasting of monthly mean rainfall of coastal Andhra (India) having seasonal autoregressive 
integrated moving average (SARIMA) model using R is discussed. We found that the ARIMA (1,0,0)(2,0,0)[12] has been 
fitted to the data and the significance test has been made by using lowest AIC and BIC values. 
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1. Introduction 
A lot of variation can be seen from North to South and 

East to West of India. Top side of country is having a range 
of Mountains that starts from Jammu & Kashmir to 
Arunachal Pradesh; Middle part of country is having plains. 
Most of the south part of country is covered by sea. These 
parameters are responsible for the variation of climate that 
leads to cause of variations in rainfall that is why some 
parts of India are rich in rainfall and some parts of India are 
rain deficient. 

In this blog, we have done analysis like forecasting of 
annual rainfall of Coastal Andhra for coming years. For the 
experiment, we have taken data of Mean Annual Rainfall 
from www.data.gov.in. The data is having the information 
of mean annual rainfall from year 1901 to 2016.  

In this experiment we have taken the help of R 
programming that is now one of most demanded software in 
the field of data science and statistics. For the analysis, first 
column of the dataset is chosen to do analysis that is having 
annual mean rainfall information in mm unit. 

2. Methodology  
ARIMA models are capable of modelling a wide range of 

seasonal data. A seasonal ARIMA model is formed by 
including additional seasonal terms in the ARIMA models 
we have seen so far. It is written as follows: 

ARIMA (p, d, q) (P, D, Q)m: the first parenthesis 
represents the non-seasonal part of the model and second 
represents the seasonal part of the model, where m= number 
of periods per season.  We use uppercase  notation for the  
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seasonal parts of the model, and lowercase notation for the 
non-seasonal parts of the model. The additional seasonal 
terms are simply multiplied with the non-seasonal terms. 

2.1. ACF/PACF 

The seasonal part of an AR or MA model will be seen in 
the seasonal lags of the PACF and ACF. For example, an 
ARIMA(0,0,0)(0,0,1)12 model will show: a spike at lag 12 
in the ACF but no other significant spikes. The PACF will 
show exponential decay in the seasonal lags; that is, at lags 
12, 24, 36,….etc. Similarly, an ARIMA(0,0,0)(1,0,0)12 
model will show: exponential decay in the seasonal lags of 
the ACF a single significant spike at lag 12 in the PACF. In 
considering the appropriate seasonal orders for an ARIMA 
model, restrict attention to the seasonal lags. The modelling 
procedure is almost the same as for non-seasonal data, except 
that we need to select seasonal AR and MA terms as well as 
the non-seasonal components of the model.  

2.2. SARIMA 
Seasonal autoregressive integrated moving average 

(SARIMA) model for any variable involves mainly four 
steps: Identification, Estimation, Diagnostic checking and 
Forecasting. The basic form of SARIMA model is denoted 
by ( )( ), , , ,

m
SARIMA p d q P D Q  and the model is given by

( ) ( ) ( ) ( )m d d m
p p m t q Q tB B Z B B aϕ θΦ ∇ ∇ = Θ

 
where tZ  

is the time series value at time t and , , andϕ θΦ Θ  are 
polynomials of order of p, P, q and Q respectively. B is the 

backward shift operator, m
t t mB Z Z −=  and ( )1 B∇ = − . 

Order of seasonality is represented by m. Non-seasonal and 
seasonal difference orders are denoted by d and D 
respectively. White noise process is denoted by ta . The 
Box-Jenkins methodology involves four steps (Box et al., 
1994): (i) identification (ii) estimation (iii) diagnostic 
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checking and (iv) forecasting. First, the original series must 
be transformed to become stationary around its mean and its 
variance. Second, the appropriate order of p and q must be 
specified using autocorrelation and partial autocorrelation 
functions. Third, the value of the parameters must be 
estimated using some non-linear optimization procedure that 
minimizes the sum of squares of the errors or some other 
appropriate loss function. Diagnostic checking of the model 
adequacy is required in the fourth step. This procedure is 
continued until an adequate model is obtained. Finally, the 
future forecasts generate using minimum mean square error 
method (Box et al. 1994). SARIMA models are used as 
benchmark models to compare the performance of the other 
models developed on the same data set. The iterative 
procedure of SARIMA model building was explained by 
Kumari et al. (2013), Boiroju (2012), Rao (2011) and Box  
et al. (1994). 

2.3. ARIMA ( ) 

By default, the arima() command in R sets c=μ=0 when 
d>0 and provides an estimate of μ when d=0. The parameter 
μ is called the “intercept” in the R output. It will be close to 
the sample mean of the time series, but usually not identical 
to it as the sample mean is not the maximum likelihood 
estimate when p+q>0. The arima() command has an 
argument include.mean which only has an effect when d=0 
and is TRUE by default. Setting include.mean=FALSE will 
force μ=0. 

The Arima() command from the forecast package provides 
more flexibility on the inclusion of a constant. It has an 
argument include.mean which has identical functionality to 
the corresponding argument for arima(). It also has an 
argument include.drift which allows μ≠0μ≠0 when d=1. For 
d > 1, no constant is allowed as a quadratic or higher order 
trend is particularly dangerous when forecasting. The 
parameter μμ is called the “drift” in the R output when d=1. 

This is also an argument include.constant which, if TRUE 
will see include.mean=TRUE if d=0 and 
include.drift=TRUE when d=1. If include.constant=FALSE. 
Both include.mean and include.drift will be set to FALSE. If 
include.constant is used, the values of include.mean=TRUE 
and include.drift=TRUE are ignored. 

2.4. auto.arima ( ) 

The auto.arima() function automates the inclusion of a 
constant. By default, for d=0 or d=1, a constant will be 
included if it improves the AIC value; for d > 1, the constant 
is always omitted. If allow drift=FALSE is specified, then 
the constant is only allowed when d=0. 

There is another function arima() in R which also fits an 
ARIMA model. However, it does not allow for the constant 
cc unless d=0, and it does not return everything required for 
the forecast() function. Finally, it does not allow the 
estimated model to be applied to new data (which is useful 
for checking forecast accuracy). Consequently, it is 
recommended that you use Arima() instead. 

2.5. Modelling Procedure 
When fitting an ARIMA model to a set of time series data, 

the following procedure provides a useful general approach. 
1.  Plot the data. Identify any unusual observations. 
2.  If necessary, transform the data (using a Box-Cox 

transformation) to stabilize the variance. 
3.  If the data are non-stationary: take first differences of 

the data until the data are stationary. 
4.  Examine the ACF/PACF: Is an AR(pp) or MA(qq) 

model appropriate? 
5.  Try your chosen model(s), and use the AICc to search 

for a better model. 
6.  Check the residuals from your chosen model by 

plotting the ACF of the residuals, and doing a 
portmanteau test of the residuals. If they do not look 
like white noise, try a modified model. 

7.  Once the residuals look like white noise, calculate 
forecasts. 

2.6. AIC and BIC 

AIC and BIC are both penalized-likelihood criteria. They 
are sometimes used for choosing best predictor subsets in 
regression and often used for comparing non-nested models, 
which ordinary statistical tests cannot do. The AIC or BIC 
for a model is usually written in the form [-2logL + kp], 
where L is the likelihood function, p is the number of 
parameters in the model, and k is 2 for AIC and log(n) for 
BIC. 

AIC is an estimate of a constant plus the relative distance 
between the unknown true likelihood function of the data 
and the fitted likelihood function of the model, so that a 
lower AIC means a model is considered to be closer to the 
truth. BIC is an estimate of a function of the posterior 
probability of a model being true, under a certain Bayesian 
setup, so that a lower BIC means that a model is considered 
to be more likely to be the true model. Both criteria are based 
on various assumptions and asymptotic approximations. 
Each, despite its heuristic usefulness, has therefore been 
criticized as having questionable validity for real world data. 
But despite various subtle theoretical differences, their only 
difference in practice is the size of the penalty; BIC penalizes 
model complexity more heavily. The only way they should 
disagree is when AIC chooses a larger model than BIC. 

AIC and BIC are both approximately correct according to 
a different goal and a different set of asymptotic assumptions. 
Both sets of assumptions have been criticized as unrealistic. 
Understanding the difference in their practical behaviour is 
easiest if we consider the simple case of comparing two 
nested models. In such a case, several authors have pointed 
out that IC’s become equivalent to likelihood ratio tests with 
different alpha levels. Checking a chi-squared table, we see 
that AIC becomes like a significance test at alpha=0.16, and 
BIC becomes like a significance test with alpha depending 
on sample size, e.g., 0.13 for n = 10, .032 for n = 100, .0086 
for n = 1000, .0024 for n = 10000. Remember that power for 
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any given alpha is increasing in n. Thus, AIC always has a 
chance of choosing too big a model, regardless of n. BIC has 
very little chance of choosing too big a model if n is 
sufficient, but it has a larger chance than AIC, for any given n, 
of choosing too small a model. 

In general, it might be best to use AIC and BIC together in 
model selection. For example, in selecting the number of 
latent classes in a model, if BIC points to a three-class model 
and AIC points to a five-class model, it makes sense to select 
from models with 3, 4 and 5 latent classes. AIC is better in 
situations when a false negative finding would be considered 
more misleading than a false positive, and BIC is better in 
situations where a false positive is as misleading as, or more 
misleading than, a false negative. 

3. Forecasting of Rainfall of     
Coastal Andhra  

The data has been taken to predict the rain fall of coastal 
area of Andhra Pradesh from the year 1951 to 2016. The data 
has monthly rainfall for each year. In this section, we have to 
check forecasting model to this data using one of statistical 
tool R software. In R software majorly we need packages for 
forecasting model. Using these packages is predicting the 
model for the coastal data. The packages are ‘ggplot2’, 
‘forecast’ and ‘tseries’. Install the above mentioned packages 
using install.packages() function and call that packages using 
library function as below: 

Library ('ggplot2') # calls the packages using Library (). 
Library ('forecast') 
Library ('tseries') 
The data has been converted into “.csv” file and then read 

the data into the R programming. 
CA<-read.csv ("D:/ganesh/statistics 

Softwares/project/Analysis2017/Ganesh/CA.csv") # to read 
the data 

To find the summery of the rainfall of coastal Andhra, the 
following command can be use: 

Summary (CA) # to see basic details of data set. 
Summery details: 
 

Coastal 
Andhra 

Min 1st 
Quartile Median Mean 3rd 

Quartile Max 

0.00 12.85 59.50 84.72 140.53 410.50 

 
The minimum and maximum rainfall is 0.00 and 410.50, 

first and third quartiles are 12.85 and 140.53. Basing on the 
quartile, the deviation is 63.84. Average rainfall of coastal is 
84.42 and median rainfall is 59.50. Depending on the above 
summery, we cannot give any decision about the rainfall of 
coastal Andhra. 

To know the pattern of the data, we have applied the below 
mentioned time series command. 

Myts <- ts (CA [, 3], start=c (1951, 1), end = c (2016, 12), 
frequency = 12) # Applying time series to data. 

If you draw the graph of the rainfall, we can observe 
whether the data is in stationary or not. To check the 
stationary of the data we have applied Augmented 
Dickey-Fuller test. The test is significant (p<0.05*), so that 
the data is stationary and we can observe in the graph of the 
data and its difference. 

Plot (Myts, xlab='year', ylab = 'Stocks', main="Rainfall 
difference in coastal Area", col="blue") # Graph for time 
series data. 

adf.test (myts, alternative = "stationary") # Stationary 
checking 

Augmented Dickey-Fuller Test 
Dickey-Fuller = -12.829, Lag order = 9, p-value = 0.01 
Alternative hypothesis: stationary 

 

Dec <- decompose (Myts) # using decompose function to 
see the decompose details. 

 
The above four graphs represents the original data, 

seasonal component, trend component and the remainder 
and this shows the periodic seasonal pattern extracted out 
from the original data and the trend. There is a bar at the 
right hand side of each graph to allow a relative comparison 
of the magnitudes of each component. For this data the 
change in trend is less than the variation doing to the 
monthly variation. 

ARIMA model for data: we are using auto arima method 
for find forecasting model for data set. 

ARIMAfit <- auto.arima (Myts, approximation=FALSE, 
trace=FALSE) # to build forecasting model  

To check the details of ACF and PCF of Rain fall data. 
Acf (ts (Myts), main='ACF Tractor Sales’, col="blue") 
Pacf (ts (Myts), main='PACF Tractor Sales’, 

col="green") 
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The ACF plot of the residuals from the ARIMA 
(1,0,0)(2,0,0)[12] model shows all correlations within the 

threshold limits indicating that the residuals are behaving 
like white noise. A portmanteau test returns a large p-value, 
also suggesting the residuals are white noise. The PACF 
shown is suggestive of model. So an initial candidate model 
is an ARIMA (1,0,0)(2,0,0)[12]. There are no other obvious 
candidate models. 

3.1. ARIMA (1,0,0)(2,0,0)[12] with Non-zero Mean 
 

Coefficients: AR (1) SAR (1) SAR (2) Mean 

Estimate 0.0656 0.3897 0.3617 83.1067 

SE 0.0377 0.0314 0.0335 8.5691 

sigma^2 estimated as 3580 Log likelihood=-4366.76 

AIC=8743.52 AICc=8743.6 BIC=8766.89 

 
Automate ARIMA model for the data is ARIMA 

(1,0,0)(2,0,0)[12] with non-zero mean. The predicted values 
for coast area rain fall details using ARIMA method of (1, 0, 
0) and (2, 0, 0). 

By applying auto ARIMA, we got the best fitted model 
which has the lowest AICc. When models are compared 
using AICc values, it is important that all models have the 
same orders of differencing. However, when comparing 
models using a test set, it does not matter how the forecasts 
were produced - the comparisons are always valid. The given 
model has been passed the residual tests. In practice, we 
would normally use the best model we could find, even if it 
did not pass all tests. Forecasts from the 
ARIMA(1,0,0)(2,0,0)[12] model are shown in the figure 
below. 

 
Fact <- forecast (ARIMAfit, h=60) #forecasting values 

 
Point Forecast Lo 80 Hi 80 Lo 95 Hi 95 

Jan 2017 25.62493 -51.051177 102.3010 -91.641056 142.8909 

Feb 2017 25.66684 -51.173953 102.5076 -91.851009 143.1847 

Mar 2017 32.02999 -44.811511 108.8715 -85.488942 149.5489 

Apr 2017 40.65928 -36.182216 117.5008 -76.859649 158.1782 

May 2017 97.90564 21.064139 174.7471 -19.613294 215.4246 

Jun 2017 86.90636 10.064860 163.7479 -30.612573 204.4253 

Jul 2017 138.02755 61.186046 214.8690 20.508613 255.5465 

Aug 2017 111.54306 34.701564 188.3846 -5.975869 229.0620 

Sep 2017 102.43148 25.589983 179.2730 -15.087450 219.9504 

Oct 2017 130.08825 53.246754 206.9298 12.569321 247.6072 

Nov 2017 51.08534 -25.756157 127.9268 -66.433590 168.6043 

Dec 2017 58.98300 -17.858504 135.8245 -58.535937 176.5019 

Jan 2018 30.64249 -51.804198 113.0892 -95.448841 156.7338 

Feb 2018 35.03598 -47.433990 117.5060 -91.090957 161.1629 

Mar 2018 35.41754 -47.052532 117.8876 -90.709552 161.5446 

Apr 2018 43.48308 -38.986989 125.9532 -82.644009 169.6102 

May 2018 113.79586 31.325781 196.2659 -12.331239 239.9229 
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Jun 2018 78.57996 -3.890110 161.0500 -47.547130 204.7071 

Jul 2018 108.41365 25.943573 190.8837 -17.713447 234.5407 

Aug 2018 101.31229 18.842213 183.7824 -24.814807 227.4394 

Sep 2018 94.54197 12.071895 177.0120 -31.585125 220.6691 

Oct 2018 145.83557 63.365499 228.3056 19.708479 271.9627 

Nov 2018 41.10696 -41.363111 123.5770 -85.020131 167.2341 

Dec 2018 78.51460 -3.955477 160.9847 -47.612497 204.6417 

Jan 2019 41.86761 -49.522977 133.2582 -97.902229 181.6374 

Feb 2019 43.59490 -47.832168 135.0220 -96.230732 183.4205 

Mar 2019 46.04545 -45.381772 137.4727 -93.780419 185.8713 

Apr 2019 52.31020 -39.117019 143.7374 -87.515666 192.1361 

May 2019 100.41966 8.992444 191.8469 -39.406204 240.2455 

Jun 2019 82.71717 -8.710056 174.1444 -57.108704 222.5430 

Jul 2019 112.83628 21.409057 204.2635 -26.989591 252.6621 

Aug 2019 100.48818 9.060954 191.9154 -39.337693 240.3140 

Sep 2019 94.55370 3.126480 185.9809 -45.272167 234.3796 

Oct 2019 124.54746 33.120240 215.9747 -15.278407 264.3733 

Nov 2019 55.15585 -36.271374 146.5831 -84.670022 194.9817 

Dec 2019 72.59045 -18.836767 164.0177 -67.235415 212.4163 

Jan 2020 48.05710 -47.038026 143.1522 -97.378343 193.4925 

Feb 2020 50.31955 -44.791035 145.4301 -95.139540 195.7786 

Mar 2020 51.41256 -43.698101 146.5232 -94.046641 196.8718 

Apr 2020 56.77161 -38.339047 151.8823 -88.687587 202.2308 

May 2020 100.95527 5.844611 196.0659 -44.503929 246.4145 

Jun 2020 81.31736 -13.793299 176.4280 -64.141839 226.7766 

Jul 2020 103.84698 8.736321 198.9576 -41.612219 249.3062 

Aug 2020 96.46605 1.355396 191.5767 -48.993144 241.9252 

Sep 2020 91.70425 -3.406403 186.8149 -53.754944 237.1634 

Oct 2020 121.94812 26.837463 217.0588 -23.511077 267.4073 

Nov 2020 57.02099 -38.089666 152.1316 -88.438207 202.4802 

Dec 2020 77.34736 -17.763294 172.4580 -68.111834 222.8066 

Jan 2021 54.52979 -43.670596 152.7302 -95.654741 204.7143 

Feb 2021 56.03631 -42.177155 154.2498 -94.168222 206.2408 

Mar 2021 57.34873 -40.864788 155.5622 -92.855885 207.5533 

Apr 2021 61.70340 -36.510115 159.9169 -88.501212 211.9080 

May 2021 96.32517 -1.888347 194.5387 -53.879444 246.5298 

Jun 2021 82.26848 -15.945036 180.4820 -67.936132 232.4731 

Jul 2021 101.94376 3.730236 200.1573 -48.260861 252.1484 

Aug 2021 94.60052 -3.612997 192.8140 -55.604093 244.8051 

Sep 2021 90.59808 -7.615444 188.8116 -59.606540 240.8027 

Oct 2021 113.23422 15.020700 211.4477 -36.970396 263.4388 

Nov 2021 62.82999 -35.383525 161.0435 -87.374621 213.0346 

Dec 2021 77.05807 -21.155454 175.2716 -73.146551 227.2627 
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plot(fact) # Plot the actual and forecast values 

 

3.2. Forecasting for Seasonal Differences 

In this section, we have considered the rainfall data with 
differences. The same interpretation has been carried out for 
the below mentioned model. 

Plot (diff (Myts), main="Rainfall difference in coastal 
Area", ylab='Differenced Stocks', col="green") Graph for 
time series difference data 

 

To check the details of ACF and PCF of Rain fall data 
differences. 

Acf (ts (diff (Myts)), main='ACF Tractor Sales’, 
col="blue") 

Pacf (ts (diff (Myts)), main='PACF Tractor Sales’, 
col="green") 

 

 

ARIMAfit <- auto.arima (diff (Myts), 
approximation=FALSE, trace=FALSE) # difference in data. 

3.3. ARIMA (5,0,0)(2,0,0)[12] with Zero Mean 
 

Coefficients: AR (1) AR (2) AR (3) AR (4) AR (5) SAR (1) SAR (2) 

Estimate -0.7705 -0.5696 -0.4344 -0.3261 -0.1415 0.4248 0.3806 

SE 0.0382 0.0477 0.0492 0.0455 0.0358 0.0335 0.0339 

sigma^2 estimated as 4286 Log likelihood=-4432.65 

AIC=8881.3 AICc=8881.49 BIC=8918.69 

 
Fact<- forecast (ARIMAfit, h=60)  

Point   Forecast       Lo 80       Hi 80       Lo 95       Hi 95 

Jan 2017      -81.895900   -165.79903    2.007230   -210.2147    46.42286 

Feb 2017      13.403017   -92.51827   119.324303  - 148.5896   175.39564 

Mar 2017      17.759524   -88.18104    123.700092  -144.2626    179.78164 

Apr 2017      5.414171    -100.53293   111.361271   -156.6179    167.44628 

May 2017     59.618513   -46.32965    165.566674  -102.4152    221.65224 

Jun 2017      -5.633938    -111.93382   100.665949  -168.2056    156.93771 

Jul 2017       47.002709   -59.31734    153.322762  -115.5998    209.60520 

Aug 2017    -25.452518   -131.97881   81.073771   -188.3704    137.46538 

Sep 2017     -9.121570    -115.64802   97.404878   -172.0397    153.79657 

Oct 2017      30.139089   -76.38747    136.665646  -132.7792    193.05740 

Nov 2017      -85.677162   -192.20834   20.854019   -248.6025    77.24822 

Dec 2017      9.724583    -96.81238    116.261544   -153.2096    172.65880 
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Jan 2018      -36.110640   -148.30198   76.080696   -207.6925    135.47120 

Feb 2018      10.609217   -105.05671   126.275149  -166.2866    187.50499 

Mar 2018      5.325888    -110.34327   120.995047  -171.5748    182.22660 

Apr 2018      7.236671    -108.43324   122.906579  -169.6652    184.13853 

May 2018     75.875857   -39.79483    191.546544  -101.0272    252.77891 

Jun 2018      -34.984855   -150.71584   80.746133   -211.9801    142.01042 

Jul 2018       30.373891   -85.35959    146.107373  -146.6252    207.37298 

Aug 2018      -7.394764    -123.16418   108.374648  -184.4488    169.65927 

Sep 2018      -7.264840    -123.03428   108.504605  -184.3189    169.78925 

Oct 2018      55.430234   -60.33922    171.199684  -121.6239    232.48433 

Nov 2018      -114.183930  -229.95426    1.586402    -291.2394    62.87151 

Dec 2018      40.237753   -75.53351    156.009022  -136.8191    217.29463 

Jan 2019      -46.505507   -171.39715   78.386132   -237.5108    144.49977 

Feb 2019      9.610638    -120.52290   139.744180  -189.4114    208.63272 

Mar 2019      9.021187     -121.11735   139.159727  -190.0085    208.05091 

Apr 2019      5.135150    -125.00486   135.275157  -193.8968    204.16712 

May 2019     54.921528   -75.21899    185.062042  -144.1112    253.95427 

Jun 2019      -17.007416   -147.23911   113.224273   -216.1796    182.16477 

Jul 2019       30.791195    -99.44521    161.027598  -168.3882    229.97059 

Aug 2019      -12.827209   -143.11750   117.463079   -212.0890    186.43459 

Sep 2019      -6.557507    -136.84784   123.732826  -205.8194    192.70436 

Oct 2019      35.017990   -95.27236    165.308343  -164.2439    234.27989 

Nov 2019      -81.113798   -211.40540   49.177800   -280.3776    118.15001 

Dec 2019      20.794983   -109.49809   151.088054  -178.4711    220.06104 

Jan 2020      -33.498935   -167.97667   100.978804  -239.1649    172.16702 

Feb 2020      8.120306    -128.89367   145.134283  -201.4245    217.66510 

Mar 2020      5.859270    -131.15712   142.875662  -203.6892    215.40776 

Apr 2020      4.935482    -132.08156   141.952520  -204.6140    214.48496 

May 2020     52.207107   -84.81030    189.224510  -157.3429    261.75714 

Jun 2020      -20.538840   -157.60072   116.523038   -230.1569    189.07921 

Jul 2020       24.639945   -112.42404   161.703929  -184.9813    234.26122 

Aug 2020      -8.263500    -145.35386   128.826863  -217.9251    201.39812 

Sep 2020      -5.550491    -142.64088   131.539896  -215.2121    204.11116 

Oct 2020      35.970839   -101.11955   173.061233  -173.6908    245.63250 

Nov 2020      -77.912655   -215.00367   59.178363   -287.5753    131.74996 

Dec 2020      24.146927   -112.94480   161.238653  -185.5168    233.81063 

Jan 2021      -31.929179   -172.69928   108.840924  -247.2185    183.36012 

Feb 2021      7.107114     -135.87650   150.090728  -211.5675    225.78168 

Mar 2021      5.922235    -137.06351    148.907975  -212.7556    224.60005 

Apr 2021      4.050942    -138.93540   147.037281  -214.6278    222.72968 

May 2021     43.079751   -99.90685    186.066350  -175.5994    261.75888 

Jun 2021     -15.197766   -158.22331   127.827777  -233.9365    203.54093 

Jul 2021       22.185488   -120.84199   165.212968  -196.5562    240.92714 

Aug 2021     -8.392018    -151.44256   134.658519  -227.1689    210.38490 

Sep 2021      -4.853499    -147.90406   138.197059  -223.6304    213.92345 

Oct 2021      28.607734   -114.44283   171.658298  -190.1692    247.38469 

Nov 2021      -63.967814   -207.01892   79.083290   -282.7456    154.80997 

Dec 2021      18.171964   -124.87976   161.223692  -200.6068    236.95070 
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4. Conclusions 
The data has been fitted to the ARIMA (5, 0, 0) (2, 0, 0)[12] 

model for rainfall of coastal Andhra. Augmented 
Dickey-Fuller Test has been tested for stationarity of the data. 
Basing on the p-value (p=0.01), the data has been stationary 
and we have applied for auto ARIMA to find and check the 
best model using R. We have made the interpretation basing 
on the AIC and BIC values of the model. The lowest AIC and 
BIC will give us the best fit of the forecast model. Based on 
auto ARIMA, the best fitted model has been found ARIMA 
(5, 0, 0) (2, 0, 0)[12], which has the seasonality. The 
prediction values and its graphs have been shown.  
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