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Abstract  The concept of pool testing originated with Dorfman in the context of blood testing as an economical method of 
testing blood samples of army inductees in order to detect the characteristic of interest. Apart from classification problem, 
pool testing can also be used in estimating the prevalence rate of a trait in a population which was the focus of our study. In 
approximating the prevalence rate, one-at-a-time testing is time consuming, expensive and is bound to errors hence pool 
testing procedures have been proposed to address these problems. Despite these procedures, when pool testing strategies are 
used using imperfect kits, there tend to be loss of sensitivity. Lost sensitivity of a test is recovered by retesting pools classified 
positive in the initial test. This study has developed statistical model which is used to consecutively choosing some 
combination of the three experiments namely: one–at-a-time, pooled testing and pooled testing with retesting of the positive 
pools for estimating the prevalence rate of a trait with imperfect tests. The experiments are selected sequentially, so that at 
each stage, the information available at that stage is used to determine which experiment to carry out at the next stage. The 
method of maximum likelihood estimator (MLE) is used in obtaining the estimators. The Fisher information for each of the 
three experiments is compared and the cut-point values where one experiment is better than the other are computed. 
Properties of the estimators are discussed and compared and the joint model is found to be more efficient.  
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1. Introduction 
In many applications, units can be classified as defective 

or non defective. Pool testing involves pooling such units 
into groups or pools, testing the groups, and classifying each 
group as defective or non-defective. A group is defined as 
non-defective if non of the unit in the group contains the 
characteristic of interest otherwise a group is said to be 
defective. A group testing design has been shown to be a 
compelling alternative to one-at-a-time testing in many areas 
where rare traits are of interest. Research has shown that pool 
studies can be used in plant pathology, genetics and 
reduction of cost in early stages of drug discovery (Hammick 
and Gastwirth, 1994; Swallow, 1985; Xie et al., 2001). Pool 
testing has also been applied in screening the population  
for the presence of HIV antibody (Kline et al., 1989 and  
Manzon et al., 1992). Computational testing that focuses on 
classifying subjects has been developed Maheswaran et al. 
(2008).  
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Recently more research work are focused on estimating 
the rate of trait. Thomson (1962) considered estimation 
problem using pool testing which was later considered by 
Brookmayer (1999) by introducing errors. Sufficiently 
accurate estimate of the prevalence can be obtained from 
testing pooled samples as demonstrated by Hammick and 
Gastwirth (1994) and their procedure provides greater 
protection of respondent’s identity which can be useful in 
improving the response rate. On the same year, Gastwirth 
and Johnson (1994) used pool testing to estimate HIV 
prevalence cost-effectively. Hardwick et al., (1998) 
considered sequentially deciding between two experiments 
for estimating a common success prevalence rate where he 
considered the individual Bernoulli trials or the product of k 
individual independent Bernoulli trials. Nyongesa (2011) 
used moment method to estimate the prevalence and he 
observed that his proposed testing procedure reduced 
misclassification, particularly the false positives. 
Computational statistics has been used in pool testing to 
compute the statistical measures when perfect and imperfect 
tests are used (Syaywa and Nyongesa, 2010; Tamba et al., 
2012).  

Benefits from group testing depend on size of the pools. 
Swallow (1985) showed that large group sizes can lead to 
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estimators with enormous bias. In addition, there are 
biological issues to be considered. For example in HIV 
testing, enzyme-linked immunosorbent assay tests (ELISA) 
are commonly used in screening experiments to detect the 
presence of the virus. However, sensitivity levels for such 
tests are known to be poor when many blood samples are 
pooled together. With many of the standard enzyme-linked 
immunosorbent assay tests (ELISA), group sizes of up to 15 
are typically used without experiment dilution effects 
(Behets et al., 1990; Cahoon-Young et al., 1989; Kline et al., 
1989; Tu al., 1995). Recent studies have provided algorithm 
for the computation of pool sizes (Ding and Xiong, 2015).  

This study has focused on estimation of proportions and in 
particular a better estimation of the prevalence rate. The 
essence of the study, is to device a method of selecting 
between three experiments namely:  

i)  individual testing of items of a population with a view 
to estimating prevalence rate p, with misclassification, 
this experiment will be denoted by 1E, 

ii)  pool testing experiment as proposed by Dorfman 
(1943) but with errors in inspection, this experiment 
will be denoted by 2E and  

iii)  estimating the prevalence rate of the characteristic of 
interest by retesting the pools declared positive in the 
first pool test and this experiment will be denoted by 
3E.  

The rest of the paper is arranged as follows: in Section 2 
we shall develop the models and formula for calculating 
Fisher information, in Section 3 we shall plot the graphs 
Fisher information against the value of p. In Section 4 we 
shall compute the cut off values. In Section 5 we shall 
develop the joint model and in section 6 we shall compute 
the MLE of p of the joint model. In section 7 we shall 
compare the variances of the models by plotting their graphs. 
In Section 8 we shall compute the ARE values and in section 
9 we shall have conclusion of the study. 

2. The Model 
The model have been split into three, that is 1E-, 2E-, and 

3E-experiments. r, s and t have been assumed to be the total 
number of observations from 1E-, 2E-, and 3E-experiments 
respectively. In typical sequential allocation problems, 
different experiments give information about different 
parameters. However, in this study, the three experiments i.e 
1E-, 2E-, and 3E-experiments give information about the 
same parameter (p), although one experiment have given 
more information than the other two experiments under 
consideration depending on the actual value of the parameter, 
pool size, sensitivity and specificity of the tests. For 
simplicity, it has been assumed that individual units being 
pooled are independent and identically distributed Bernoulli 
random variables.  

2.1. The 1E-experiment  
If 1E-experiment is to be used to estimate the prevalence 

rate p , and if 1iX for 1,..., r=i  is a sequence of 
identically independent distributed random variable, then 

1 1~ B ( )iX ernouli  where 1  is the probability of 
declaring an individual as positive defined by the relation, 

1 (1 )(1 p)η β= + − − p  given η  and β  are sensitivity 
and specificity of the tests respectively. 

For a single experiment, the probability density function is  

1 11
1 11( , | , ) (1 )η β −= − 

i ix x
if x p       (1) 

The Fisher information denoted by 
1

1( E)xI , on the 

prevalence rate p contained in a single observation of the 
1E-experiment is 

1

2
1

1 1

( 1)( E)
(1 )

η β+ −
=

− 

xI            (2) 

easily obtained by MLE method from (1). If r  observations 
from only the 1E-experiment are used to estimate p , then 

the maximum likelihood estimator of p, denoted by 1 ˆr p , is  

11
1

1
ˆ

1

β

η β

=− +
=

+ −

∑r
ii

r

x
rp

.          (3) 

The asymptotic variance of 1 ˆr p  is obtained from (2) 
which yields  

1 1 1
2

(1 )ˆvar( )
( 1)η β

−
==

+ −

 

r p .        (4) 

2.2. The 2E-experiment  
The 2E-experiment involves putting together items to form 

a pool and testing the pool rather than testing each individual 
for the evidence of a characteristic of interest. A negative 
reading indicates that the pool contains no defective item and 
a positive reading indicates at least one defective item in the 
pool. Pooling procedures have proved to reduce the cost of 
testing when the prevalence rate is low. In this experiment, 
the probability of declaring a pool of size k  positive is 

denoted by 2 (1 (1 p) ) (1 )(1 p)η β= − − + − −

k k . If 

2 jX  denote a sequence of identically independent 

distributed random variables for 1,...,=j s , then 

2 2~ ( )jX Bernouli . For a single experiment 
equivalently the probability density function is 

2 21
2 22( , | , , ) (1 )η β −= − 

j jx x
jf x p k       (5) 
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and the Fisher information denoted by 2( E)xI  contained 
in a single observation of the 2E-experiment is 

2 2 2 2
2

2 2

(1 p) ( 1)( E)
(1 )

η β−− + −
=

− 

k

x
kI         (6) 

Suppose there are s  pools for the 2E-experiment each of 
size k, available for estimating p  and suppose 2 jX  pool 
test positive on the test, then the maximum likelihood 
estimator of p, denoted by 2 ˆs p , is  

1

21
2 ˆ 1

1

η

η β

=
 
 − 

= −  + − 
 
 

∑ s k
jj

s

x

sp .         (7) 

Noted is Thompson (1962) maximum likelihood estimator 
(MLE) of p i.e 

1

21ˆ 1 1 =
 
 = − −  
 

∑n k
jj x

p
s

 is a special case of (7). 

The asymptotic variance of 2 ˆs p  is  

2 2 2
2 2 2 2

(1 )ˆvar( )
k (1 p) ( 1)η β−

−
=

− + −

 

s kp .     (8) 

2.3. The 3E-experiment 
The 3E-experiment involves retesting of the pools declared 

positive in the first pool test inorder to approximate the 
prevalence rate. Retesting of already tested pools reduce 
misclassification (Nyongesa, 2011). In this experiment, the 
probability of declaring a pool of size k  positive is denoted 
by 3  where 2 2

3 (1 (1 p) ) (1 ) (1 p)η β= − − + − −

k k . If 

3zX  denote a sequence of identically independent 
distributed random variables for 1,..., t=z , then 

3 3~ ( )zX Bernouli . For a single experiment the 
probability density function is 

3 31
3 3 3( , | , , ) ( ) (1 )η β −= − 

z zx x
zf x p k .    (9) 

Similarly the Fisher information contained in a single 
observation of the 3E-experiment is 

2 2 2 2 2 2
3

3 3

(1 p) ( (1 ) )( E)
(1 )
η β−− − −

=
− 

k

x
kI .  (10) 

If t observations from the 3E -experiment are used to 
estimate p and 3zX  pool tests positive, then the maximum 

likelihood estimator of p, denoted by 3 ˆt p , is  

1

32 1
3

2 2
ˆ 1 .

(1 )

η

η β

=
 
 −
 = −  − − 
 
 

∑t k
zz

t

x
tp          (11) 

Equivalently the asymptotic variance of 3 ˆt p  obtained 
from (10) is  

3 3 3
2 2 2 2 2 2

(1 )ˆvar( )
k (1 p) ( (1 ) )η β−

−
=

− − −

 

t kp .    (12) 

3. Comparison of ( )⋅xI  of 1E-, 2E- and 
3E-experiments  

This study compares the Fisher information of 1E-, 2E- and 
3E-experiments in this section by plotting the graphs of 

( )⋅xI  of 1E-, 2E- and 3E-experiments for values of 
2, 5, 10; 0.9, 0.8η β= = =k  versus p : 

As seen from Figures 1 to 6, the Fisher information for the 
1E -experiment is independent of the pool size hence it is not 
affected by change of the value of k . For the 2E - and 
3E-experiments, the Fisher information is very high for small 
values of p and it approaches zero as p increases. As 
sensitivity and specificity of the test kits increases, the gap 
between the Fisher information of the 2E - and 3E 
-experiments shrinks. Holding k constant, increasing 
sensitivity and specificity of the test kits, the region at which 
the Fisher information of the 1E- and 3E-experiments is better 
shrinks while for 2E-experiment increases. Similarly as k  
increases the region in which the Fisher information of 1E - 
and 3E-experiments is better decreases while that of 
2E-experiment increases. From Figures 1 to 6 it can be 
concluded that the 3E-experiment is better than 1E- and 
2E-experiments for values of p relatively small, for values 
of p relatively large, the 1E-experiment is better and the 
2E-experiment is better for some values of p  between 0 
and 1. It is also noted that the region in which one experiment 
is better than the other experiments depends on sensitivity, 
specificity and the pool size. 

4. Computation of Cut-Point Values  
The cut-point value is defined as the value of p at the point 

where the Fisher information of one of the experiment 
surpasses the Fisher information of the other experiment 
while comparing any two of the 1E-, 2E- and 3E-experiments. 
If ξij is the cut-point value, then ξij  is a unique root in   

[0, 1] of the equation ( E) ( E)=i j
x xI I  for , 1, 2, 3=i j , 

≠i j  and ξ ξ=ij ji . 
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4.1. Computation of Cut-Point Values of 1( E)xI  and 
2( E)xI  

In this section the cut-point values of 1E- and 
2E-experiments are computed by equating the Fisher 
information of the two experiments. Therefore equating (2) 
and (6) and simplifying yields 

2 2 2
2 2 1 1(1 )(1 p) k (1 p) (1 ) 0− − − − − =   

k .  (13) 

(13) has no solution in closed form therefore the equation 
is solved iteratively using an R code that we developed 
which is presented in Appendix A. 

 

Figure 1.  A plot of Fisher information against the value of p with 0.90η β= = and 2=k  

 

Figure 2.  A plot of Fisher Information against the value of p with 0.90η β= = and 5=k  
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Figure 3.  A plot of Fisher information against the value of p with 0.90η β= = and 10=k  

 

Figure 4.  A plot of Fisher Information against the value of p with 0.80η β= = and 2=k  

4.2. Computation of Cut-Point Values of 1( E)xI  and 
3( E)xI  

The cut-point values of 1E- and 3E-experiments are 
computed in this section by equating (2) and (10) which 
yields 

2 2 2 2
3 3 1 1(1 )(1 p) (1 p) ( 1) (1 ) 0η β− − − − − + − =   

kk  
(14) 

after simplifying. Similarly (14) is solved iteratively using an 
R code that we developed presented in Appendix B. 

4.3. Computation of Cut-Point Values of 2( E)xI  and 
3( E)xI  

Similarly the cut-point values of 2E- and 3E-experiments 
are computed by equating (6) and (10) which yields  

2
3 3 2 2(1 ) ( 1) (1 ) 0η β− − − + − =        (15) 
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after simplifying. Equivalently (15) is solved iteratively 
using an R code developed which is presented in Appendix 
C. 

For various values of ,k η  and β , the values ξij , the 
roots of (13), (14) and (15) are given in Table 1. 

From Table 1 it can be noted that the cut-point values are 
sensitive to k (pool size). As specificity and sensitivity 
increases the cut point value between 1E- and 3E-experiments 
increases while that between 2E- and 3E-experiments 

decreases. It is observed from Table 1 that as the pool size (k) 
increases, keeping η  and β  the same, the region in which 
the 3E-experiment is better than the 2E- and 1E- shrinks. 
Increase in sensitivity and specificity leads to decrease of the 
area which 1E- and 3E -experiments is better than 
2E-experiment. In general the exact values of p where one 
experiment is better than the others depends on the pool size 
(k), sensitivity (η ) and specificity ( β ) of the tests. 

 

Figure 5.  A plot of Fisher Information against the value of p with 0.80η β= = and 5=k  

 

Figure 6.  A plot of Fisher Information against the value of p with 0.80η β= = and 10=k  
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Table 1.  Cut-point point values for various values of ,k andη β  

 
k 

0.80η β= =  0.90η β= =  

12ξ  13ξ  23ξ  12ξ  13ξ  23ξ  

2 0.528 0.500 0.394 0.563 0.515 0.334 

3 0.446 0.422 0.284 0.477 0.438 0.237 

5 0.348 0.329 0.182 0.371 0.342 0.150 

10 0.234 0.222 0.095 0.248 0.229 0.078 

15 0.181 0.172 0.065 0.190 0.177 0.053 

20 0.150 0.142 0.049 0.156 0.145 0.040 

50 0.078 0.075 0.020 0.080 0.075 0.016 

For example if 0.80η β= = , k = 3 and N tests are 
available, then the allocation that maximizes the information 
about p  is: 

3

2

1

2 3

1 2

0.283

0.283 0.446

0.446

0.283

0.446

 <

 < <
= >


=
 =

observe all E if p

observe all E if p

N observe all E if p

arbitrary E or E if p

arbitrary E or E if p

 

In general, if N tests are available, then the allocation that 
maximizes the information about p is 

3
23

2
23 12

2
12

2 3
23

1 2
12

ξ

ξ ξ

ξ

ξ

ξ

 <

 < <
= >


=
 =

observe all E if p

observe all E if p

N observe all E if p

arbitrary E or E if p

arbitrary E or E if p

 

Note also that the region where one experiment is better 
than the other depends on the unknown parameter p , hence 
adaptive rule is suggested where p is estimated at each stage 
and the next observation is allocated depending on the 
relationship between the estimated p and the cut-point value.  

5. The Joint Model  
If r, s and t are the total number of observations from 1E-, 

2E- and 3E-experiment respectively, then the joint probability 
density function of the random variables 1iX , 2 jX  and 

3zX  from the 1E-, 2E- and 3E-experiments respectively is a 
multinomial probability density function. The joint 
probability density function is given by the product of their 
respective density functions, since the random variables are 
assumed to be independent, therefore 

 

2 21 31 311 1
1 2 31 2 3( , | , , ) (1 ) (1 ) (1 )η β −− −= − × − × −     

j ji zi zx xx xx xf x p k             (16) 

The joint likelihood function of (16) is 

[ ] [ ] [ ] [ ] [ ] [ ]1 1 2 2 3 31 1 1 1 1 11 1 2 2 3 3L( , k, , ) 1 1 1η β == = = = =− − −∑ ∑ ∑ ∑ ∑ ∑∝ − × − × −     

r r s s t t
i i j j z zi i j j z zx r x x s x x t xx p  

(17) 
Taking logarithm on both sides of (17) and differentiating with respect to q  yields  

2 21 1 3 311 31 2 1

1 1 2 2 3 3

mdlog (.)
(1 ) (1 ) (1 )

== =
−− −

= + +
− − −

∑∑ ∑

 

 

     

sr t
ji zji z

x nx x r dd dL
dq dq dq dq

           (18) 

where 1 1 η β= − −
d

dq
, ( )12 1 η β−= − −
 kd kq
dq

 and ( )1 2 23 (1 )β η−= − −
 kd kq

dq
. 

Equating (18) to zero leads to  

2 21 1 3 311 31 2 1

1 1 2 2 3 3
0

(1 ) (1 ) (1 )
== =

−− −
+ + =

− − −

∑∑ ∑

 

 

     

sr t
ji zji z

x sx r x t dd d
dq dq dq

.             (19) 

The only variable in (19) is q . Hence  

2 21 1 3 311 31 2 1

1 1 2 2 3 3
(q)

(1 ) (1 ) (1 )
== =

−− −
= + +

− − −

∑∑ ∑

 

 

     

sr t
ji zji z

x sx r x t dd df
dq dq dq

             (20) 

is a function of q  which can be solved iteratively. The value of q, computed from (20) is denoted by ˆmleq , hence the 

maximum likelihood estimator of p, denoted by ˆmlep , of the joint model is ˆ ˆ1= −mle mlep q . The asymptotic variance of 
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ˆmlep  is obtained by solving 
12

2
log ( )

−
  − ⋅ 

      

d fE
dp

 where ( )⋅f  is the joint probability density function given by (16). 

Therefore 

1 2 3 1 2 3(1 )(1 )(1 )ˆvar( )
ζ

− − −
=
     

mlep                             (21) 

where 
2 2 2 2 2

2 3 2 3 1 3 1 3
2 2 2 2 2 2

1 2 1 2

( 1) (1 )(1 ) (1 ) ( 1) (1 )(1 )

(1 ) ( (1 ) ) (1 )(1 )

ζ η β η β

η β

−

−

= + − − − + − + − − −

+ − − − − −

       

   

k

k

r sk p

tk p  

 
6. Estimator of Prevalence Rate, Its 

Variance and Confidence Interval 
The maximum likelihood estimator p̂  of the prevalence 

rate of the joint model, the variance and 95% Wald-type 
confidence interval of the MLE for values of 5, 10=k  and 

80%, 90%η β= =  are computed in this section. 
From Tables 2 and 3 it is observed that the maximum 

likelihood estimators of the prevalence rate are very close to 
the actual value which were used to simulate the estimators. 
The population estimators resulting from the experiments are 
used to evaluate the (1 )100%α−  confidence limits of the 
confidence interval of the simulated estimators where α  is 
the level of significance and it is noted from Tables 2 and 3 
that the actual value is within the limits. 

Table 2.  Maximum likelihood estimator, variance and Confidence interval 
for different  values of p for 80%η β= =  and 5, 10=k  

 p  p̂  ˆvar(p)  95% CI  

5=k  

0.01 0.01566 6.8293× 10-5 -0.00868, 0.03999 

0.05 0.06397 1.7588× 10-4 0.01600, 0.11193 

0.10 0.10386 2.8551× 10-4 0.04407, 0.16366 

0.15 0.17263 5.5743× 10-4 0.09856, 0.24671 

0.30 0.33119 2.1054× 10-3 0.23895, 0.42344 

10=k  

0.01 0.01745 2.8592× 10-5 -0.00821, 0.04312 

0.05 0.03052 4.5378× 10-5 -0.00319, 0.06428 

0.10 0.08585 1.6443× 10-4 0.03094, 0.14076 

0.15 0.12212 3.2699× 10-4 0.05794, 0.18630 

0.30 0.28662 4.2189× 10-3 0.19800, 0.37525 

7. Comparison of Variances  
In this section, the graphs of the variance of p of 1E-, 2E- 

and 3E-experiments and joint model for various values of 
,ηk and β  versus p  are plotted for comparison 

purposes. 
It is observed from Figures 7 to 12 that: 

i)  3 ˆvar( p)t  is smaller than 1 ˆvar( p)r  and 2 ˆvar( p)s  
for values of p close to 0,  

ii)  for values of p close to 1 the 1 ˆvar( p)r  is smaller 

than 3 ˆvar( p)t  and 2 ˆvar( p)s  while  

iii)  for some values of p between 0 and 1 the 2 ˆvar( p)s  
is smaller than the variance of the other two models.  

It is also noted that holding sensitivity and specificity 
constant and increasing the value of k from 2 to 10, makes 
the area in which the 3 ˆvar( p)t  is smaller than the variance 
of the other models shrinks. Increasing sensitivity and 
specificity of the tests shrinks the area between 2 ˆvar( p)s  

and 3 ˆvar( p)t . It is also observed from Figures 7 to 12 that 

the variance of the joint model ( ˆvar(p )mle ) is smaller than 
the variance of p of the 1E-, 2E- and 3E-models. Hence the 
joint model is more reliable compared to the other three 
models. 

Table 3.  Maximum likelihood estimator, variance and Confidence interval 
for different  values of p for 90%η β= =  and 5, 10k =  

 p  p̂  ˆvar(p)  95% CI  

5=k  

0.01 0.02017 3.7091× 10-5 -0.00738, 0.04772 

0.05 0.05229 8.2334× 10-5 0.00866, 0.09592 

0.10 0.09213 1.4452× 10-4 0.03544, 0.14881 

0.15 0.16454 2.9124× 10-4 0.09187, 0.23721 

0.30 0.29088 7.6689× 10-4 0.20187, 0.37990 

10=k  

0.01 0.00971 9.3065× 10-6 -0.00951, 0.02893 

0.05 0.04671 4.1100× 10-5 0.00535, 0.08807 

0.10 0.10616 1.3268× 10-4 0.04578, 0.16653 

0.15 0.13960 2.2985× 10-4 0.07168, 0.20753 

0.30 0.27932 1.8171× 10-3 0.19139, 0.36726 
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Figure 7.  A graph of ˆ(p)Var  as a function of p with 0.90η β= = and 2=k  

 

Figure 8.  A graph of ˆ(p)Var  as a function of p with 0.90η β= = and 5=k  
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Figure 9.  A graph of ˆ(p)Var  as a function of p with 0.90η β= = and 10=k  

 

Figure 10.  A graph of ˆ(p)Var  as a function of p with 0.80η β= = and 2=k  
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Figure 11.  A graph of ˆ(p)Var  as a function of p with 0.80η β= = and 5=k  

 

Figure 12.  A graph of ˆ(p)Var  as a function of p with 0.80η β= = and 10=k  
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8. Asymptotic Relative Efficiency (ARE) 

The ˆvar(p )mle , 1 ˆvar( p)r , 2 ˆvar( p)s  and 3 ˆvar( p)t  are 
compared in this section. This is accomplished by computing 
asymptotic relative efficiency (ARE) values for various 

values of , ,η β k  and .p  Let 1
1

ˆvar(p )
ˆvar( p)

= mle

r
ARE , 

2
2

ˆvar(p )
ˆvar( p)

= mle

s
ARE  and 3

3
ˆvar(p )

ˆvar( p)
= mle

t
ARE . 

Table 4.  The ARE of the joint model relative to the 1E-, 2E- and 3E-models 
with 0.80η β= =  and 2, 3, 5 10=k and  

p  2=k  3=k  5=k  10=k  

 
0.01 

1ARE  0.056 0.028 0.012 0.004 

2ARE  0.215 0.235 0.264 0.314 

3ARE  0.729 0.736 0.723 0.682 

 
0.05 

1ARE  0.087 0.052 0.020 0.016 

2ARE  0.289 0.332 0.382 0.443 

3ARE  0.624 0.616 0.589 0.541 

 
0.10 

1ARE  0.115 0.077 0.051 0.040 

2ARE  0.333 0.380 0.429 0.483 

3ARE  0.551 0.543 0.520 0.476 

 
0.15 

1ARE  0.139 0.102 0.079 0.05 

2ARE  0.356 0.401 0.446 0.484 

3ARE  0.505 0.497 0.475 0.421 

 
0.30 

1ARE  0.205 0.193 0.251 0.720 

2ARE  0.378 0.407 0.406 0.163 

3ARE  0.417 0.400 0.343 0.118 

From Tables 4 and 5 it is observed that increase in 
sensitivity and specificity of test leads to increase in the 
values of ARE. For the given values of pool size, sensitivity 
and specificity the highest value of ARE is 0.761. Hence the 
other models under consideration in the study 1E-, 2E- and 
3E-models can only be 76.1% efficiency as the joint model.  

9. Conclusions 
This study focused on construction of the a new model for 

approximating the prevalence rate of a trait in a population 
with imperfect tests by consecutively choosing between 
three experiments namely 1E-, 2E- and 3E -experiments. The 
model should select the better experiment and once the better 
experiment is being used, the estimator should approximate 

the individual maximum likelihood estimator (MLE) for that 
experiment. From this study it is clear that the best estimators 
for small, medium and large values of p, respectively, are 
1 2ˆ ˆ,r sp p  and 3 ˆt p . From Tables 2 and 3, the computed 

values of asymptotic relative efficiency (ARE) for various 
values of , ,η β k and p are less than one hence the 
proposed joint model for sequential choice of the best 
experiment for optimal estimation of a trait with 
misclassification is more efficient than the 1E-, 2E- and 
3E-models. 

Table 5.  The ARE of the joint model relative to the 1E-, 2E- and 3E -models 
with 0.90η β= =  

p  2=k  3=k  5=k  10=k  

 
0.01 

1ARE  0.051 0.029 0.015 0.006 

2ARE  0.188 0.224 0.277 0.350 

3ARE  0.761 0.746 0.708 0.644 

 
0.05 

1ARE  0.107 0.070 0.042 0.024 

2ARE  0.316 0.365 0.415 0.465 

3ARE  0.577 0.565 0.543 0.512 

 
0.10 

1ARE  0.142 0.100 0.069 0.052 

2ARE  0.359 0.403 0.445 0.488 

3ARE  0.499 0.497 0.487 0.461 

 
0.15 

1ARE  0.165 0.124 0.096 0.101 

2ARE  0.375 0.414 0.452 0.488 

3ARE  0.460 0.461 0.452 0.411 

 
0.30 

1ARE  0.219 0.199 0.234 0.642 

2ARE  0.385 0.412 0.421 0.218 

3ARE  0.396 0.388 0.345 0.140 

It is assumed that the samples being pooled for use in the 
model are independent and identically distributed Bernoulli 
random variables. It is also assumed that there is a laboratory 
test that can determine whether or not a unit or at least a unit 
in a pool has the characteristic of interest and that the tests 
are conditionally independent of each other. Sensitivity and 
specificity of the test kits are also assumed to be the same at 
each step of testing and for all samples in use in the model. 

The findings of the study of a better approximation of the 
prevalence rate have important health implications for 
prevention, intervention and treatment of HIV infections in a 
population. HIV infected population are known to greatly 
increase the spread of HIV infection. Our improved estimate 
of the prevalence rate of HIV infection could substantially 
reduce the potential risks for secondary HIV transmission by 
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HIV infected population who are unaware of HIV infections. 
A prompt diagnosis of HIV infection might prevent the 
infected population from engaging in high-risk behaviours 
with uninfected population and avoid new HIV infections to 
occur. But the population with HIV infection should take 
counselling, regarding risk-reduction strategies such as 
abstinence and safer sexual behaviours such as 100% use of 

condoms.  
Based on the model developed a pool testing model of 

retesting of both positive and negative pools can be studied. 
A model based on cost analysis when sampling from 
different experiments can also be looked at when using 
imperfect kits.  

Appendix A: R code to Determine the Cut-Point Value of (P )I
xI  and (P )G

xI   

( )2 2

#Pr int (P ) (P )
#

0.80 #sensitivityof the test
0.80 #
2 #

# det min
1

   

* 1

η
β

τ τ

−

=
=
=

= −

I G
x xogram to compute the cut po value of I I

Specify the parameters in use

specificity of thetest
k pool size

Define the function whose root is to be er ed
fun

and

( ) ( ) ( )1 1* 1 ^ 2 ^ 2* 1 ^ (2* k)* * 1
cutoffvalue uniroot(fun1,c(0,1), tol 1e 5)
cutoffvalue

τ τ− − − −

= = −

p k p

 

Appendix B: R Code to Determine the Cut-Point Value of (P )I
xI  and (P )R

xI   

( )3 3

#Pr int (P ) (P )
#

0.80 #sensitivityof the test
0.80 #
2 #

# det min
2

   

* 1

η
β

τ τ

−

=
=
=

= −

I R
x xogram to compute the cut po value of I I

Specify the parameters in use

specificity of thetest
k pool size

Define the function whose root is to be er ed
fun

and

( ) ( ) ( )( )1 1* 1 ^ 2 ^ 2* 1 ^ (2* k)* * 1 1 ^ 2
cutoffvalue uniroot(fun 2,c(0,1), tol 1e 5)
cutoffvalue

τ τ η β− − − − − +

= = −

p k p

 

Appendix C: R Code to Determine the Cut-Point Value of (P )G
xI  and (P )R

xI   

( )3 3

#Pr int (P ) (P )
#

0.80 #sensitivityof the test
0.80 #
2 #

# det min
3

   

* 1

η
β

τ τ

−

=
=
=

= −

G R
x xogram to compute the cut po value of I I

Specify the parameters in use

specificity of thetest
k pool size

Define the function whose root is to be er ed
fun

and

( ) ( )2 21 ^ 2* * 1
cutoffvalue uniroot(fun3,c(0,1), tol 1e 5)
cutoffvalue

η β τ τ− − + −

= = −
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