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Abstract  A Variance Weighted Gradient Projection (VWGP) method that uses experimental design principles based on 
variance, and simultaneously optimizes several response surfaces is introduced as an alternative to popularly used 
one-at-a-time optimization methods. The method relies on the general line search equation whose components are the starting 
(initial) point of search, the direction of search, the step-length and the point arrived at the jth iteration. At the end of an 
iteration, the optimizer(s) reached are successively added to the previous immediate design measure(s). The use of projection 
operator scheme that allows the projection of design points from one design space to another is employed. Unlike most 
existing optimization methods which use guess initial point of search, a weighted average of design points selected from the 
design region and sufficiently spread over the entire region, is proposed as the initial point of search. By the choice of the 
proposed initial point of search, two limitations of the guess point methods are overcome, namely cycling and possible lack of 
convergence. Results obtained using the VWGP simultaneous optimization method have been compared with the BFGS 
Quasi-Newton algorithm and the VWGP method is seen comparatively efficient in locating the optimizers of several 
response surfaces. 

Keywords  Simultaneous Optimization, Response Surfaces, Variance Weighted Gradients, Projection Operator, 
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1. Introduction 
The optimization of response surfaces plays a vital role in 

locating the best set of factor levels to achieve some goals. 
Scientists and researchers have explored Response Surface 
Methodology (RSM) in various areas such as chemical, 
manufacturing and processing industries, managerial studies, 
engineering and science disciplines, etc. RSM is essentially a 
sequential procedure and entails response surface designs, 
modeling and optimization. It usually explores the 
relationships between several explanatory variables and one 
or more response variables. The response model used is only 
an approximation to the true unknown model. In many 
practical situations, the need for a solution of a set of 
approximating polynomial response functions arises. 
Attempts have been made by several researchers to address 
the optimization of response surfaces. In fact, various 
gradient and non-gradient based optimization methods have 
been formulated to address the need. Some of the methods 
include Newton’s Method (NM), Quasi-Newton’s Method 
(QNM), Genetic Algorithm (GA), Particle Swarm  
Algorithm (PSA), Mesh Adaptive Direct Search Method, etc.  
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Comparatively, the gradient methods seem to be faster than 
the non-gradient methods in terms of the required iterative 
steps to convergence. The Newton’s Method, which was 
developed by [7] optimizes polynomial functions when the 
functions are differentiable. Due to the computational rigour 
involved in the Newton’s method, [10] gave an improvement 
to the Newton’s Method thus overcoming the tedious 
computational challenges. For historical development of the 
Newton-Raphson method, see [11]. Quasi-Newton Methods 
are used as alternatives to the Newton’s method and are 
frequently used in Non-Linear Programming to improve the 
computational speed of the Newton’s method. The first 
Quasi Newton Method, though rarely used today, was 
developed by [2] and was later given attention by other 
researchers like [3]. Although the Quasi Newton Method has 
faster computational time than the Newton’s Method, the 
convergence rate is however still slow. The most commonly 
used Quasi Newton algorithms are the SR1 formular, the 
BHHH method and the BFGS. The BFGS Quasi Newton 
Method, suggested independently by Broyden, Fletcher, 
Goldfarb and Shanno (See [1]), is the method used in the 
mathematical software, MATLAB. Although having their 
drawbacks, Newton’s method as well as Quasi Newton 
Methods have been extensively and successfully used in 
single objective optimization problems as seen in [5] and [9]. 
As opposed to single-objective optimization problems, 
interests are moving deeply into multiobjective optimization 
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problems involving two or more objective functions to be 
optimized simultaneously. For both single- and 
multiple-objective optimization problems, the use of 
gradient-based algorithms seem successfully utilized. [4] 
presented an extension of Newton’s method for solving 
unconstrained multiobjective optimization problems. One 
very recent paper on the subject of multiobjective 
optimization is due to [12]. The paper presented a 
quasi-Newton’s method for solving unconstrained 
multiobjective optimization problems when the objective 
functions are strongly convex. For the successes in using 
gradient-based algorithms, we present in this paper the 
Variance Weighted Gradient Projection (VWGP) method for 
simultaneously optimizing several response functions 
defined over different constraints and having disjoint 
feasible regions. The method is gradient-based, relying on 
weighted gradients of the response functions resulting from 
the variances of the design points. The method uses the 
properties of line equations, such as could be seen in [8] to 
obtain the optimum responses. The consideration for the 
Variance Weighted Gradient Projection algorithm stems 
from the successful use of the Variance Weighted Gradient 
algorithm in optimizing response surfaces defined over same 
feasible region and having same constraints as in [6]. In 
handling the problem involving different regions and 
different constraints, a projection scheme that allows the 
projection of design points from one design region to another 
is proposed. The projection scheme enhances fast 
convergence of the algorithm to the desired optima as 
measured by the number of iterative moves made. It is 
possible to have one or more response functions converge 
before others, however, all functions are certain to converge 
to the required optima. 

2. Methodology  
The proposed method relies on the properties of line 

equation, having a starting point of search, a direction of 
search and a step length. The three parameters of the line 
search are optimally chosen. 

2.1. The Starting Point of Search 

The starting point of search is obtained as the weighted 
mean of the selected design points from the design region, 
where the weighting factor is a function of the variance of the 
design points. 

For an N-point design measure, Nξ , comprising of the 
design points 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑁𝑁 we define a weighted mean 
vector 

N

i i
i 1

x w x X w
=

′= =∑  

where, 

1

N

x
X

x

 
 =  
 
 

  

is an N n×  design matrix and 

N

1 2 N i i
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w (w ,w , ,w ) ;w 0, w 1
=

′= ≥ =∑

 
is the vector of weights associated with the design points. 

The optimal starting point *x  is obtained by minimizing 
the norm 

N 1 N 1
2 2
i ii i N N
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− −

= =

′ ′′ = + −∑ ∑  

To minimize x x′  with respect to iw , we solve 

i
x x

w
′∂
∂  = 0 

The optimal starting point of search is  
N

* *
i i

i 1
x w x

=
=∑  

2.2. The Direction of Search 
The direction of search is in the direction of minimum 

variance and is computed as 
N

i i i
i 1

d g ; (0,1)θ θ
=

= ∈∑  

where 
i

g  is the gradient vector and iθ  weighting factor 

vector. 
The direction variance is given as 

N
2
i i

i 1
Var (d ) Vθ

=
=∑  

where iV  is the variance of the function at the ith support 
point.  

The weighting vector i i (1,N){ }θ =  is obtained from the 
partial derivatives 
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1θ θ
−
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The normalized weighting factor vector *
iθ  is given as  

1
2N N

* 2 *2
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 
= =  

 
∑ ∑

 

2.3. The Step Length of Search 

Given that the response function is constrained and the 
optimizer lies on the boundary of the feasible region 
governed by 

ssc x b ;s 1,2, ,S= =   

The optimal step-length *ρ  of the function f (.)  is 
obtained as the minimum distance covered in an average step 
for s number of constraint and is defined as: 

*
* ss

*s s

c x b
min

c d
ρ

 − =  
  

 

Where sc  and x  are vectors and sb  is a scalar for s 

number of constraints, while *x  is the optimal starting 

point and *d  is the optimal direction vector. 

2.4. The Variance Weighted Gradient Projection (VWGP) 
Approach  

Let 

rf (x) a x e′= +  

be the n-variate, p-parameter polynomial of degree m, 
defined on the rth feasible regions rX  supported by s 
constraints. Such that  

r srsrx X {c x , , b };r 1,2, ,R ;s 1,2, ,S′∈ = ≤ = ≥ = =

   

where a  is a p-component vector of known coefficients, 

independent random variable rx X∈   and 𝑒𝑒 is the random 
error component assumed normally and independently 
distributed with zero mean and constant variance. While sc  

is a component vector of know coefficients and sb  is a 
scalar for s number of constraints in the rth region. 

 
 

The Variance Weighted Gradient (VWG) method is given 
by the following sequential steps: 

i) From rX  obtain the design measures 
r

j
rNξ  which are 

made up of support points from respective regions such that  

r
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where rN  support points are spread evenly in rX  
ii) From the support points that make up the design 

measure compute R starting points as, the arithmetic mean 
vectors.  

rN

rli
* l 1

rr r1 r2 rn ri
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iii) Obtain the n-component gradient function for the rth 
region. 

r1

r2r
r
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g (x)
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x
g (x)
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where 

rig (x) q x e′= +
 
is an (m 1)−  degree polynomial; 

i (1,n)=
 

q  is a t-component vector of known coefficients  
iv) Compute the corresponding r gradient vectors, by 

substituting each design point defined on the rth region to the 
gradient function 

r
g  as 

r
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v) Using the gradient function and design measures obtain 
the corresponding design matrices rX . 
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In order to form the design matrix rX , a single polynomial 
that combines the respective gradient function 

ri
g (x)  

associated with each response function rf (x)  is 
r

g (x) . 

vi) Compute the variances of each l design point rlx  
defined on the rth region as  

r r

( j) ( j)I
rl r r r rrN j rN jrl rlV x M x ; M X ( ) X ( )ξ ξ−

+ +
′ ′= =  

vii) Obtain the direction vector in the rth region as 
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and the normalize direction vector 
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that *
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viii) Compute the step-length *
rρ  as 

*
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with *
rx , *

rρ  and *
rd make a move to 

* * **
rr, j r rx x dρ= −  

using *
r, jx  evaluate the projection operator rP  as 

* * * *
r r r r rP x (x x )x′ ′=  

and obtain the projector optimizers for each region *
rx  as  
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ix) To make a next move set j j 1= +  and define the 
design measure as 

r

r
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rN( j)
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ξ
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and repeat the process from step (ii) then obtain  

rr, j 1 r rx x dρ∗ ∗ ∗∗
+ = −  

x) If * *
r rr, j r, j 1f ( x ) f ( x )+≤ .  

where *
r r, jf ( x )  is the rth feasible region at the jth step and

r r, j 1,f (x )+  is the rth feasible region at the next j+1th step. 
then set the optimizers as  

*
r, j 1 rx x∗
+ =  

and STOP. Else, set j j 1= +  and repeat the process from 
(ii). 
Theorem  

Let the direction vector 
N
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3. Results 
We present the working of the algorithm using a numerical illustration involving two response functions. The problem is; 

Minimize 3 2
1 1 2 1 1 2 1f (x ,x ) x 2x x 3x 4= − − −  subject to 1 2 1 22x x 3 ;x ,x 0+ ≤ ≤  

and 

Minimize 2 2
2 1 2 1 1 2 2 1f (x ,x ) 2x 2x x 2x 6x 6= − + − +  subject to 1 2 1 2x x 2 ;x ,x 0+ ≤ ≤  

The design regions are defined by 

1 1 2 1 2X {2x x 3 ;x ,x 0}= + ≤ ≤  

2 1 2 1 2X {x x 2 ;x ,x 0}= + ≤ ≤  

To solve this problem using the VWGP technique, we select design points from 𝑋𝑋�1 and 𝑋𝑋�2 to make up the respective 
initial design measures as 
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Taking the weighted averages, the initial starting points for the two functions are, respectively, 

*
1
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x
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 

=  
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                 and    *
2
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x
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The gradient vectors are obtained as
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Hence the gradient functions are, respectively,  
2

1 2 0 1 1 1 2 21
g (x ,x ) b x b x b x= − −   and   1 2 0 1 1 2 22

g (x ,x ) b b x b x= + +  

Using the gradient functions and the design measures, we form the corresponding design matrices as 

1

1.5 0 2.25
1 1 1
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0 0.5 0
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1 0.5 0
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The variances associated with the design points of each design measure are computed as illustrated below for the design 
point 

𝑥𝑥11 = (1.5 0 2.25)𝑇𝑇 . 
The variance of 𝑥𝑥11 denoted 𝑉𝑉11 is computed as 

𝑉𝑉11 = (1.5 0 2.25) 

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎛

1.5 0 2.25
1 1 1
1 0.5 1

0.5 0.5 0.25
0.5 1 0.25
1 0 1
0 0.5 0
0 1.5 0

0.5 0 0.25
0 1  0 ⎠

⎟
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⎟
⎟
⎟
⎞
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⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎛
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1 1 1
1 0.5 1

0.5 0.5 0.25
0.5 1 0.25
1 0 1
0 0.5 0
0 1.5 0

0.5 0 0.25
0 1  0 ⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

−1

 (1.5 0 2.25)𝑇𝑇 

 = 0.8571 
The process continues similarly in obtaining the variance of each design point from the two regions. Thus the vectors of 

variances are respectively,  

1i

0.8571
0.2460
0.1905
0.1905
0.2460

V
0.2460
0.0556
0.5000
0.2460
0.2222

 
 
 
 
 
 
 
 =
 
 
 
 
 
 
 
 

     and     2l

0.3702
0.2080
0.1545
0.2097
0.3737
0.1832
0.0857

V 0.0857
0.2009
0.1492
0.1063
0.1726
0.2707
0.2875
0.5470

 
 
 
 
 
 
 
 
 
 
 

=  
 
 
 
 
 
 
 
 
 
 
 
 

 

The weighting factors are obtained as 
I

rN 1 r rA Bθ −
− =  

where 

r1 rN rN rN

rN r2 rN
r

rN rN rN rN 1 rN

V V V V
V V V

A

V V V V V−

+ 
 + =
 
 

+ 



 

   

 and 

rN

rN
r

rN

V
V

B

V

 
 
 =
 
 
 



 

Thus 
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1l

1.0793 0.2222 0.2222 0.2222 0.2222 0.2222 0.2222 0.2222 0.2222
0.2222 0.4682 0.2222 0.2222 0.2222 0.2222 0.2222 0.2222 0.2222
0.2222 0.2222 0.4127 0.2222 0.2222 0.2222 0.2222 0.2222 0.2222
0.2222 0.2222 0.2222 0.4127 0.2222 0.22

θ =
22 0.2222 0.2222 0.2222

0.2222 0.2222 0.2222 0.2222 0.4682 0.2222 0.2222 0.2222 0.2222
0.2222 0.2222 0.2222 0.2222 0.2222 0.4682 0.2222 0.2222 0.2222
0.2222 0.2222 0.2222 0.2222 0.2222 0.2222 0.2778 0.2222 0.2222
0.2222 0.2222 0.2222

1 0.2222
0.2222
0.2222
0.2222
0.2222
0.2222
0.2222

0.2222 0.2222 0.2222 0.2222 0.7222 0.2222 0.2222
0.2222 0.2222 0.2222 0.2222 0.2222 0.2222 0.2222 0.2222 0.4682 0.2222

−
   
   
   
   
   
   
   
   
   
   
   
  
  
   




=

0.0222
0.0775
0.1001
0.1001
0.0775
0.0775
0.3431
0.0381
0.0775

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

and  

1

1

N 1

1N 1l
l 1

1 0.0858θ θ
−

=
= − =∑  

1lθ  is normalized as 

*
1l

0.0537
0.1874
0.2420
0.2420
0.1874
0.1874
0.8293
0.0922
0.1874
0.2075

θ

 
 
 
 
 
 
 
 =
 
 
 
 
 
 
 
 

  

2l

0.9172 0.5470 0.5470 0.5470 0.5470 0.5470 0.5470 0.5470 0.5470 0.5470 0.5470 0.5470 0.5470 0.5470
0.5470 0.7550 0.5470 0.5470 0.5470 0.5470 0.5470 0.5470 0.5470 0.5470 0.5470 0.5470 0.5470 0.5470
0.5470 0.5470 0.7015 0.5470 0.54

θ =

70 0.5470 0.5470 0.5470 0.5470 0.5470 0.5470 0.5470 0.5470 0.5470
0.5470 0.5470 0.5470 0.7567 0.5470 0.5470 0.5470 0.5470 0.5470 0.5470 0.5470 0.5470 0.5470 0.5470
0.5470 0.5470 0.5470 0.5470 0.9207 0.5470 0.5470 0.5470 0.5470 0.5470 0.5470 0.5470 0.5470 0.5470
0.5470 0.5470 0.5470 0.5470 0.5470 0.7302 0.5470 0.5470 0.5470 0.5470 0.5470 0.5470 0.5470 0.5470
0.5470 0.5470 0.5470 0.5470 0.5470 0.5470 0.6327 0.5470 0.5470 0.5470 0.5470 0.5470 0.5470 0.5470
0.5470 0.5470 0.5470 0.5470 0.5470 0.5470 0.5470 0.6327 0.5470 0.5470 0.5470 0.5470 0.5470 0.5470
0.5470 0.5470 0.5470 0.5470 0.5470 0.5470 0.5470 0.5470 0.7479 0.5470 0.5470 0.5470 0.5470 0.5470
0.5470 0.5470 0.5470 0.5470 0.5470 0.5470 0.5470 0.5470 0.5470 0.6962 0.5470 0.5470 0.5470 0.5470
0.5470 0.5470 0.5470 0.5470 0.5470 0.5470 0.5470 0.5470 0.5470 0.5470 0.6533 0.5470 0.5470 0.5470
0.5470 0.5470 0.5470 0.5470 0.5470 0.5470 0.5470 0.5470 0.5470 0.5470 0.5470 0.7196 0.5470 0.5470
0.5470 0.5470 0.5470 0.5470 0.5470 0.5470 0.5470 0.5470 0.5470 0.5470 0.5470 0.5470 0.8177 0.5470
0.5470 0.5470 0.5470 0.5470 0.5470 0.5470 0.5470 0.5470 0.5470 0.5470 0.5470 0.5470 0.5470 0.8345























1 0.5470
0.5470
0.5470
0.5470
0.5470
0.5470
0.5470
0.5470
0.5470
0.5470
0.5470
0.5470
0.5470
0.5470

−
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

   
   

  
 Thus  

[ ]2l 0.0313 0.0558 0.0751 0.0553 0.0310 0.0633 0.1355 0.1355 0.0578 0.0778 0.1092 0.0672 0.0429 0.0403θ ′=  
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and  

2

2

N 1

2N 2l
l 1

1 0.0220θ θ
−

=
= − =∑ . 

2lθ  is normalized as 

[ ]*
2l 0.1078 0.1922 0.2587 0.1905 0.1067 0.2180 0.4667 0.4667 0.1991 0.2680 0.3761 0.2315 0.1477 0.1388 0.0757θ ′=  

The computed statistics are summarized in Table 1. 

Table 1.  Summary statistics for the first and second response functions at respective design points in the first iteration 

Runs 

Design Points 

1N =

1i 2i(x ,x )  

Gradient 
Vector 

1
g =

1i 2i(g ,g )  

Variances 

( 1lV ) 

Weighting 
Factor 

( *
1lθ ) 

Design Points 

2N =

1i 2i(x ,x )  

Gradient 
Vector 

1i 2i2
g (g ,g )=  

Variances 

( 2lV ) 

Weighting 
Factor 

( *
2lθ ) 

1 1.5, 0 -2.25, -3 0.8571 0.0537 0, 0 -6,  0 0.3702 0.1078 
2 1, 1 -5, -2 0.2460 0.1874 0.5, 0 -4, -1 0.2080 0.1922 
3 1, 0.5 -4, -2 0.1905 0.2420 1, 0 -2, -2 0.1545 0.2587 

4 0.5, 0.5 -3.25, -1 0.1905 0.2420 1.5, 0 0, -3 0.2097 0.1905 
5 0.5, 1 -4.25, -1 0.2460 0.1874 2, 0 2, -4 0.3737 0.1067 
6 1, 0 -3, -2 0.2460 0.1874 0, 0.5 -6.5, 2 0.1832 0.2180 

7 0, 0.5 -1,  0 0.0556 0.8293 0.5, 0.5 -4.5, 1 0.0857 0.4667 
8 0, 1.5 -3,  0 0.5000 0.0922 1, 0.5 -2.5, 0 0.0857 0.4667 
9 0.5, 0 -2.25, -1 0.2460 0.1874 1.5, 0.5 -0.5 -1 0.2009 0.1991 

10 0, 1 -2,  0 0.2222 0.2075 0, 1 -7, 4 0.1492 0.2680 
11 

 
 

  
0.5, 1 -5, 3 0.1063 0.3761 

12 
 

 
  

1, 1 -5, 2 0.1726 0.2315 

13 
 

 
  

0, 1.5 -7.5, 6 0.2707 0.1477 
14 

 
 

  
0.5, 1.5 -5.5, 5 0.2875 0.1388 

15 
 

 
  

0, 2 -8, 8 0.5470 0.0757 

 
The direction vectors are respectively  

1
6.1119

d
2.0094
− 

=  − 
 

and
 

2
13.4341

d
3.8462
− 

=  
 

 

The normalized direction vectors are respectively 
*
1

0.9499
d

0.3123
− 

=  − 
 

and
 

*
2

0.9613
d

0.2752
− 

=  − 
 

The associated step-lengths are computed as 

( )

( )
1

0.60
2 1 3

0.60 1.2 0.5424
0.9499 2.2121

2 1
0.3123

ρ ∗

  
−   −  = = = − −    −  

 

( )

( )
2

0.66
1 1 2

0.66 0.68 0.9911
0.9613 0.6861

1 1
0.2752

ρ ∗

  
−   −  = = = − −      

 

With the starting points of search, the directions of search 
and the step-lengths we make a first move for each of the 
functions to 

( )*
1

0.6 0.9499 1.12
x 0.5424

0.6 0.3123 0.77
−     

= − =     −     
 

( )*
2

0.66 0.9613 1.61
x 0.9911

0.66 0.2752 0.39
−     

= − =     
       
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Table 2.  Summary statistics for the two response functions at respective design points in the second iteration 

Runs 

Design Points 

1N =

1i 2i(x ,x )  

Gradient 
Vector 

1i 2i1
g (g ,g )=

 

Variances 

( 1lV ) 

Weighting 
Factor 

( *
1lθ ) 

Design 
Points 

2N =

1i 2i(x ,x )  

Gradient 
Vector 

1i 2i2
g (g ,g )=  

Variances 

( 2lV ) 

Weighting 
Factor 

( *
2lθ ) 

1 1.5, 0 -2.25, -3 0.7203 0.0614 0, 0 -6, 0 0.3651 0.0929 
2 1, 1 -5, -2 0.2216 0.1996 0.5, 0 -4, -1 0.1997 0.1700 
3 1, 0.5 -4, -2 0.1650 0.2679 1, 0 -2, -2 0.1406 0.2414 

4 0.5, 0.5 -3.25, -1 0.1892 0.2339 1.5, 0 0, -3 0.1875 0.1810 
5 0.5, 1 -4.25, -1 0.2449 0.1806 2, 0 2, -4 0.3406 0.0996 
6 1, 0 -3, -2 0.2195 0.2015 0, 0.5 -7, 2 0.1986 0.1709 

7 0, 0.5 -1, 0 0.0555 0.7969 0.5, 0.5 -5, 1 0.0850 0.3994 
8 0, 1.5 -3, 0 0.4999 0.0883 1, 0.5 -3, 0 0.0775 0.4380 
9 0.5, 0 -2.25, -1 0.2445 0.1808 1.5, 0.5 -1 -1 0.1762 0.1926 

10 0, 1 -2, 0 0.2222 0.1989 0, 1 -8, 4 0.1428 0.2377 
11 1.2, 0.3 -3.44, -2.46 0.2171 0.2038 0.5, 1 -6, 3 0.0809 0.4196 
12 

 
 

  
1, 1 -4, 2 0.1251 0.2713 

13 
 

 
  

0, 1.5 -9, 6 0.1977 0.1717 
14 

 
 

  
0.5, 1.5 -7, 5 0.1875 0.1810 

15 
 

 
  

0, 2 -10, 8 0.3632 0.0934 

16     1.2, 0.8 -2.8, 0.8 0.1319 0.2574 

 

The resulting values of response functions are, 
respectively, 1f 8.083= −  and 2f 0.572.=  

In order to make a second move, a projector operator rP  
is formulated by projecting design points from one design 
space or feasible regions to another feasible region. The 
resulting projector operator rP  is used to compute the 

projector optimizers *
1x  and *

2x  which are added to the 

design measure of respective response function and the 
process of search continues.  

The computations are as follows: 
I

1
1.12 1.12 1.12 1.12 0.6790 0.4668

P
0.77 0.77 0.77 0.77 0.4668 0.3210

−′ ′           = =                    

 

* *
1 22

0.6790 0.4668 1.61 1.2
x P x

0.4668 0.3210 0.39 0.8
    

= = =    
    

  

I

2
1.61 1.61 1.61 1.61 0.9446 0.2288

P
0.39 0.39 0.39 0.39 0.2288 0.0554

−′ ′           = =                    

 

* *
2 11

0.9446 0.2288 1.12 1.2
x P x

0.2288 0.0554 0.77 0.3
    

= = =    
    

 

Adding the projector optimizers to the initial design 
measures result in the following augmented design measures 

(1)
1,11

1.5 0
1 1
1 0.5
0.5 0.5
0.5 1
1 0
0 0.5
0 1.5
0.5 0
1.2 0.3

ξ

 
 
 
 
 
 
 
 =
 
 
 
 
 
 
 
 

 and (1)
2,16

0 0
0.5 0
1 0
1.5 0
2 0
0 0.5
0.5 0.5
1 0.5
1.5 0.5
0 1
0.5 1
1 1
0 1.5
0.5 1.5
0 2
1.2 0.8

ξ

 
 
 
 
 
 
 
 
 
 
 
 

=  
 
 
 
 
 
 
 
 
 
 
 
 

 

With the new design measures, the computed statistics are 
summarized in Table 2.

 The starting points of search at the second iteration are 
respectively  

*
1

0.657
x

0.582
 

=  
   
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and 

*
2

0.700
x

0.675
 

=  
 

 

As previously described, the directions of search and the 
step-lengths of search at the second iteration are computed 
similarly as 

1
6.9081

d
2.6191
− 

=  −   

2
16.1968

d
4.5961
− 

=  
 

 

and normalized as 

*
1

0.9350
d

0.3545
− 

=  − 
 

*
2

0.9620
d

0.2729
− 

=  
 

 

Compute the step-lengths of search are respectively  

( )

( )
1

0.6570
2 1 3

0.572 1.114 0.5007
0.9350 2.2245

2 1
0.3545

ρ ∗

  
−   −  = = = − −    −  

 

( )

( )
2

0.70
1 1 2

0.67 0.63 0.9142
0.9620 0.6891

1 1
0.2729

ρ ∗

  
−   −  = = = − −      

 

The points reached at the second iteration are respectively  

( )*
1

0.657 0.9350 1.12
x 0.5007

0.572 0.3545 0.75
−     

= − =     −     
 

( )*
2

0.700 0.9620 1.58
x 0.9142

0.675 0.2729 0.43
−     

= − =     
     

 

The corresponding values of objective functions are 
respectively 1f 8.038= −  and 2f 0.529.=  Since for the 

first function, * *
1 112 11f (x ) 8.038 f (x ) 8.083= − > = − , 

convergence is established for the first function. However, 

since for the second function * *
2 222 21f (x ) 0.529 f (x )= <  

0.572,=  a next iteration is required. Using a projector 
operator, a new design point (1.57 0.43)𝑇𝑇 is obtained and 
thus the design measure is augmented as 

(2)
2,17

0 0
0.5 0
1 0
1.5 0
2 0
0 0.5
0.5 0.5
1 0.5
1.5 0.5
0 1
0.5 1
1 1
0 1.5
0.5 1.5
0 2
1.2 0.8
1.57 0.43

ξ

 
 
 
 
 
 
 
 
 
 
 
 
 =  
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Continuing the process, the computed statistics using the 
new design measure are summarized in Table 3.

 Table 3.  Summary statistics for the second response function at respective 
design points in the third iteration 

Runs 

Design 
Points 

2N =

1i 2i(x ,x )  

Gradient 
Vector 

2

1i 2i

g

(g ,g )

=
 

Variances 

( 2lV ) 

Weighting 
Factor 

( *
2lθ ) 

1 0, 0 -6, 0 0.3606 0.0863 
2 0.5, 0 -4, -1 0.1997 0.1562 
3 1, 0 -2, -2 0.1343 0.2320 

4 1.5, 0 0, -3 0.1644 0.1898 
5 2, 0 2, -4 0.2900 0.1076 
6 0, 0.5 -7, 2 0.1960 0.1592 

7 0.5, 0.5 -5, 1 0.0845 0.3692 
8 1, 0.5 -3, 0 0.0684 0.4559 
9 1.5, 0.5 -1 -1 0.1479 0.2107 

10 0, 1 -8, 4 0.1417 0.2201 
11 0.5, 1 -6, 3 0.0794 0.3927 
12 1, 1 -4, 2 0.1127 0.2769 

13 0, 1.5 -9, 6 0.1974 0.1580 
14 0.5, 1.5 -7, 5 0.1845 0.1689 
15 0, 2 -10, 8 0.3632 0.0859 

16 1.2, 0.8 -2.8, 0.8 0.1139 0.2739 
17 1.57 0.43 -0.58 1.42 0.1613 0.1932 

The starting point of search at the third iteration is 

*
2

0.7511
x

0.6605
 

=  
 
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The direction of search, normalized direction of search 
and step-length of search at the third iteration are 
respectively 

2
15.499

d
3.894
− 

=  
   

*
2

0.9698
d

0.2436
− 

=  
 

 

and

 
( )

( )
2

0.7511
1 1 2

0.6605 0.5884 0.8102
0.9698 0.7262

1 1
0.2436

ρ ∗

  
−   −  = = = − −      

 

The point reached at the third iteration is  

( )*
2

0.7511 0.9698 1.54
x 0.8102

0.6605 0.2436 0.46
−     

= − =     
     

 

The corresponding value of objective function is 
2f 0.509=  

Since * *
2 223 22f (x ) 0.509 f (x ) 0.529= < = , a next 

iteration is required.  
Using a projector operator, a new design point 

(1.54 0.46)𝑇𝑇 is obtained and thus the design measure is 
augmented as 

(3)
2,18

0 0
0.5 0
1 0
1.5 0
2 0
0 0.5
0.5 0.5
1 0.5
1.5 0.5
0 1
0.5 1
1 1
0 1.5
0.5 1.5
0 2
1.2 0.8
1.57 0.43
1.54 0.46

ξ

 
 
 
 
 
 
 
 
 
 
 
 
 
 =
 
 
 
 
 
 
 
 
 
 
 
 
  
 

 

The computed statistics using the new design measure are 
summarized in Table 4.

 

Table 4.  Summary statistics for the second response function at respective 
design points in the fourth iteration 

Runs 

Design 
Points 

2N =

1i 2i(x ,x )  

Gradient 
Vector 

2

1i 2i

g

(g ,g )

=
 

Variances 

( 2lV ) 

Weighting 
Factor 

( *
2lθ ) 

1 0, 0 -6, 0 0.3573 0.0801 
2 0.5, 0 -4, -1 0.1997 0.1433 
3 1, 0 -2, -2 0.1302 0.2201 

4 1.5, 0 0, -3 0.1488 0.1927 
5 2, 0 2, -4 0.2554 0.1121 
6 0, 0.5 -7, 2 0.1943 0.1576 

7 0.5, 0.5 -5, 1 0.0841 0.3407 
8 1, 0.5 -3, 0 0.0620 0.4625 
9 1.5, 0.5 -1 -1 0.1280 0.2239 

10 0, 1 -8, 4 0.1410 0.2031 
11 0.5, 1 -6, 3 0.0782 0.3665 
12 1, 1 -4, 2 0.1035 0.2771 

13 0, 1.5 -9, 6 0.1973 0.1453 
14 0.5, 1.5 -7, 5 0.1819 0.1576 
15 0, 2 -10, 8 0.3632 0.0790 

16 1.2, 0.8 -2.8, 0.8 0.1010 0.2837 
17 1.57 0.43 -0.58 -1.42 0.1397 0.2050 
18 1.54 0.46 -0.76 -1.24 0.1344 0.2135 

The starting point of search at the fourth iteration is 

*
2

0.7950
x

0.6494
 

=  
 

 

The direction of search, normalized direction of search 
and step-length of search at the fourth iteration are 
respectively 

2
14.8298

d
3.2315
− 

=  
 

 

*
2

0.9770
d

0.2129
− 

=  
 

 

and 

( )

( )
2

0.7950
1 1 2

0.6494 0.5556 0.7271
0.9770 0.7641

1 1
0.2129

ρ ∗

  
−   −  = = = − −      

 

The point reached at the fourth iteration is  

( )*
2

0.7950 0.9770 1.51
x 0.7271

0.6494 0.2129 0.49
−     

= − =     
     

 

The corresponding value of objective function is 
2f 0.500=  

Since * *
2 224 23f (x ) 0.500 f (x ) 0.509= < = , a next 

iteration is required.  
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Using a projector operator, a new design point 
(1.51 0.49)𝑇𝑇 is obtained and thus the design measure is 
augmented as 

(4)
2,19

0 0
0.5 0
1 0
1.5 0
2 0
0 0.5
0.5 0.5
1 0.5
1.5 0.5
0 1
0.5 1
1 1
0 1.5
0.5 1.5
0 2
1.2 0.8
1.57 0.43
1.54 0.46
1.51 0.49

ξ

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 =
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The computed statistics using the new design measure are 
summarized in Table 5. 

The starting point of search at the fifth iteration is 

*
2

0.8326
x

0.6410
 

=  
 

 

The direction of search, normalized direction of search 
and step-length of search at the fifth iteration are respectively 

2
14.2093

d
2.6246
− 

=  
 

 

*
2

0.9833
d

0.1816
− 

=  
 

 

and 

( )

( )
2

0.8326
1 1 2

0.6410 0.5264 0.6566
0.9833 0.8017

1 1
0.1816

ρ ∗

  
−   −  = = = − −      

 

The point reached at the fifth iteration is  

( )*
2

0.8326 0.9833 1.478
x 0.6566

0.6410 0.1819 0.521
−     

= − =     
     

 

The corresponding value of objective function is 
2f 0.503=  

Since * *
2 225 24f (x ) 0.503 f (x ) 0.500= > = , convergence is 

established and hence no indication for a further search. 

Table 5.  Summary statistics for the second response function at respective 
design points in the fifth iteration 

Runs 

Design 
Points 

2N =

1i 2i(x ,x )  

Gradient 
Vector 

2

1i 2i

g

(g ,g )

=  

Variances 

( 2lV ) 

Weighting 
Factor 

( *
2lθ ) 

1 0, 0 -6, 0 0.3547 0.0742 

2 0.5, 0 -4, -1 0.1997 0.1318 
3 1, 0 -2, -2 0.1273 0.2068 

4 1.5, 0 0, -3 0.1376 0.1913 
5 2, 0 2, -4 0.2305 0.1143 
6 0, 0.5 -7, 2 0.1931 0.1365 

7 0.5, 0.5 -5, 1 0.0839 0.3140 
8 1, 0.5 -3, 0 0.0573 0.4597 
9 1.5, 0.5 -1 -1 0.1133 0.2326 

10 0, 1 -8, 4 0.1406 0.1873 
11 0.5, 1 -6, 3 0.0772 0.3414 
12 1, 1 -4, 2 0.0964 0.2731 

13 0, 1.5 -9, 6 0.1973 0.1333 
14 0.5, 1.5 -7, 5 0.1796 0.1468 
15 0, 2 -10, 8 0.3631 0.0726 

16 1.2, 0.8 -2.8, 0.8 0.0911 0.2894 
17 1.57 0.43 -0.58 -1.42 0.1237 0.2131 
18 1.54 0.46 -0.76 -1.24 0.1190 0.2215 

19 1.51 0.49 -0.94 -1.06 0.1147 0.2294 

4. Discussion 
Variance is a principle commonly used in statistical 

theories. It has been used in design constructions as well as in 
optimization problems. Variances of direction vectors have 
been studied and it is well established that a good direction of 
search should satisfy the minimum variance property. In 
optimization, moving in the direction of minimum variance 
has been shown to optimize performance. This has been 
clearly stated and proved in literature. Available literatures 
also show advantage of moving in the direction of minimum 
variance. The use of variance principle in the VWGP 
algorithm employed in solving multi-objective problems has 
assisted in getting optimal solutions with possible minimum 
iterative moves. Also, optimal choices on the starting point 
of search and the step-length of search greatly enhanced 
performance.  

As mentioned in the literature review, various gradient 
and non-gradient based optimization methods have been 
formulated to obtain optimal solutions for constrained 
polynomial response functions defined over continuous 
variables. We have compared the solutions obtained using 
the new algorithm with those obtained using the 
Quasi-Newton method. With the Quasi-Newton     
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method, results show that the function 1 1 2f (x ,x ) =
3 2
1 1 2 1x 2x x 3x 4 e− − − +  converged after four iterations 

with optimal values as 1 2x 1.12,x 0.76= = and a 
corresponding value of response function, 1f 8.06= − . Also 
using the Quasi-Newton method, the function 

2 2
2 1 2 1 1 2 2 1f (x ,x ) 2x 2x x 2x 6x 6 e= − + − + +  converged 

after four iterations with optimal values as 
1 2x 1.5,x 0.5= = and a corresponding value of response 

function, 2f 0.5= . We observed that the guess initial point 
requirement of the Quasi-Newton method poses limitation in 
the use of the Quasi-Newton method. It is sometimes 
difficult to get a good guess point and thus results in slow 
convergence of the algorithm or even non-convergence of 
the algorithm. For the illustration presented in this paper, the 
optimal solution for the first function was found at the first 
iterative move and the optimal solution for the second 
function was found at the fourth iterative move. The printout 
from MATLAB showing the results are presented in 
Appendices A and B. 

The use of the Variance Weighted Gradient Projection 
(VWGP) method is a reliable optimization method for 
optimizing polynomial response surfaces defined by 

constraints on different feasible regions. The algorithm is 
reliable and converges to the desired optima with few 
iterative steps. The performance of the new algorithm agrees 
with the suggestion of [7] that a good algorithm should have 
less computation and a quick convergence. The present study 
may be extended to searching for optimal solutions to 
multi-objective functions defined on distinct regions but 
where some or all of the regions may have two or more 
objective functions. 

5. Limitation of the Method 
The VWGP algorithm is not yet implemented in a 

Mathematical or Statistical software and hence the 
computation time and memory resources are not addressed. 
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Appendix 1 
The Quasi-Newton Optimization with the aid of MATLAB  

Response Function: minimize 3 2
1 1 2 1 1 2 1f (x ,x ) x 2x x 3x 4 e= − − − +   

2 2
2 1 2 1 1 2 2 1f (x ,x ) 2x 2x x 2x 6x 6 e= − + − + +  

subject to  

1 1 2 1 2X {x ,x : 2x x 3}= + ≤

 
QN 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 

Diagnostic Information  
Number of variables: 2 
Functions  
Objective:                            Objfun1 
Gradient:                             finite-differencing 
Hessian:                              finite-differencing (or Quasi-Newton) 
Constraints 
Nonlinear constraints:                    do not exist 
Number of linear inequality constraints:    1 
Number of linear equality constraints:      0 
Number of lower bound constraints:        0 
Number of upper bound constraints:        0 
Algorithm selected 
medium-scale 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
End diagnostic information  
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                                     Max       Line search      Directional       First-order  
 Iter    F-count        f(x)      constraint     steplength        derivative     optimality Procedure  
    0      3           -4             -2                                          
    1      6          -8.032          0              1              -3.94              3.28    
    2      9         -8.04036        0              1             -0.00763           0.38 Hessian modified   
    3     12         -8.06066        0              1             -0.00103           0.0156    
    4     15         -8.06067        0              1             -6.17e-007        0.000354    

Optimization terminated: magnitude of directional derivative in search direction less than 2*options.TolFun and maximum 
constraint violation is less than options.TolCon. 

Active inequalities (to within options.TolCon = 1e-006): 
  lower      upper     ineqlin   ineqnonlin 
x = 
    1.12    0.761 
fval = 
  -8.06 

Appendix 2 
The Quasi-Newton Optimization with the aid of MATLAB  

Response Function: minimize 2 2
2 1 2 1 1 2 2 1f (x ,x ) 2x 2x x 2x 6x 6 e= − + − + +  

subject to   

2 1 2 1 2X {x ,x : 2x x 3}= + ≤  

QN 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
Diagnostic Information  
Number of variables: 2 
Functions  
Objective:                                Objfun2 
Gradient:                                 finite-differencing 
Hessian:                                  finite-differencing (or Quasi-Newton) 
Constraints 
Nonlinear constraints:                    do not exist 
Number of linear inequality constraints:    1 
Number of linear equality constraints:      0 
Number of lower bound constraints:        0 
Number of upper bound constraints:        0 
Algorithm selected 
medium-scale 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% 
End diagnostic information  
                                    Max        Line search     Directional     First-order  
 Iter   F-count      f(x)       constraint       steplength      derivative     optimality Procedure  
    0      3          6               -2                                          
    1      8         3.5              -1.5           0.25            4                3    
    2     11        0.514139       -2.22e-016     1              -1.33             1.17    
    3     14        0.500197         0              1              0.00373          0.0481    
    4     17         0.5               0              1            -1.31e-012        1.36e-008    

Optimization terminated: first-order optimality measure less than options.TolFun and maximum constraint violation is less 
than options.TolCon. 

Active inequalities (to within options.TolCon = 1e-006): 
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  lower      upper     ineqlin   ineqnonlin 
                  1            
x = 
    1.5    0.5 
fval =    0.5 
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