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Abstract  Though the rate of poverty in Ghana has consistently declined over the years, some parts of the country still 
record substantially high figures [1], and this is a major concern for stake holders. Previous research to identify causal factors 
has commonly used the binary logit or probit models. These models, however, mask the effect of important intermediate 
information during the binary transformation of the response variable. This has the potential to misestimate the probability of 
poverty. In this study, the ordered probit model was used, thus creating a framework that includes the ordinal nature of 
poverty severity. The model was based on the round 6 dataset of the Ghana Living Standards Survey. Our findings show that 
poor and extremely poor were negatively affected by rural location, illiteracy, and Savannah ecological zone. Policies to 
eradicate poverty must therefore aim at optimizing these significant variables contributions to welfare conditions in the 
country.  
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1. Introduction  
Poverty is the inability to retain a minimal standard of 

living measured in terms of basic consumption needs or 
some income required for satisfying them [2]. It is a global 
development issue [3], and its magnitude and burden is 
evident, even to the non-observant, especially in developing 
countries. Thus, the need for research designed to identify 
the determinants of poverty and to monitor the impact of 
programs aimed at poverty reduction is imperative. 

Predictor variables commonly used in poverty studies 
include socio-economic and demographic attributes of the 
household [4], which in this study include age, sex, 
household size, rural/urban location, employment status, and 
educational level of household head. An additional covariate, 
ecological zone, was added in this study to estimate the 
effect of differences in agro-climatic conditions on level of 
wellbeing. Table 1 gives details of relevant variables 
extracted from the GLSS dataset for this study.  

Previous research to investigate the link between poverty 
and potential predictors in regression analysis is abundant in 
the literatures, albeit with varying degrees of sophistication 
and often with mixed conclusions. For instance, [5] used the 
logistic regression model to identify household-level 
determinants of poverty in Albania, and concluded that the  
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probability of being poor is influenced mainly by education 
and employment status of household head, the household 
composition and geographic divisions. Dudek and Lisicka [6] 
used the binary logit model but included interaction terms to 
describe poverty in Poland. They found that the probability 
of being poor is influenced by size of the household, living in 
a rural area, and working in manual positions. Akin to these 
findings, a recent study in Ghana by [7] using logistic 
regression to estimate the probability of being in poverty 
based on living standards survey (LSS) data, reported that 
large households, and households headed by illiterates 
negatively affect poverty levels in the country. An important 
and a notable conclusion reached in their study identified 
households in the savannah ecological zone of Ghana to be 
almost four times poorer than those living in the coastal and 
forest zones.  

Most studies, including this one, have used household 
income or expenditure to measure poverty. A common 
approach has been to dichotomize the dependent variable 
into poor or non-poor, and use the binary logit or probit 
models (being the natural choices) to estimate the probability 
of a household being in poverty. These binary models, 
however, usually mask the effect of important intermediate 
information during the binary transformation of the response 
variable. This has the potential for incomplete and inaccurate 
conclusions.  

What we do differently in this study is to adopt a 
framework for poverty analysis that allows for the response 
variable to assume all of its key response categories; 
“non-poor”, “poor”, and “extremely poor” [1]. We then use 
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the proportional odds ordered probit (OP) model [8], thus 
creating a framework that includes the ordinal nature of 
poverty severity. This approach allows thorough 
investigations to determine whether or not distances between 
the poverty categories differ, and the probability of slipping 
into the next category given that an individual is already in a 
lower-risk category, and vice versa.  

The few previous studies that have used 
multi-classification methods to model poverty have largely 
ignored the ordinal nature of the variable. For example, in 
separate studies, [9] and [10] used a multinomial 
econometric approach in their bit to quantify the relationship 
between poverty and socio-economic and demographic 
variables. The intention to include the multi-categorical 
nature of poverty was explicit. However, the natural ordering 
of the variable was ignored. This can easily bias results of the 
study.  

The ordered probit (OP) model is an extension of the 
ordinary binary probit model. It is generally used when 
categories of the dependent variable exceeds two, and follow 
a natural order. Ordered models are generally derived within 
a framework of unobservable underlying latent processes 
generating observable ordered outcomes. Although it is 
generally not possible to observe the latent variable, we 
make the assumption that some factors jointly determine its 
behaviour. Thus, the latent variable is assumed to be a 
random function. In this setting, the goal is to understand the 
influence of the latency on the probability of observing a 
particular outcome based on individual-related factors. 

Proportional odds ordered probit models describe the 
relationship between covariates and the probability to be in a 
higher ordered category [1]. Intercepts for each comparison 
is different, but share the same set of estimated beta 
coefficients. The intercepts show the effect when X = 0. 
Unlike the partial proportional odds (PPO) model [11] and 
the generalized ordered probit (GOP) model [12], 
proportional odds ordered probit models are less complicated 
and simple to interpret.  

Estimation of categorical ordered models can be 
challenging because non-linear optimization methods are 
involved in the process. Moreover, the regression-based 
ordered probit model has a unique feature that includes the 
thresholds as part of unknown parameters to be estimated. 
This further complicates the estimation process: because of 
possible unequal spacing between categories, ordinary least 
squares (OLS) regression, which, theoretically, requires 
equal interval widths to function properly, is inappropriate. 
However, 𝐽𝐽 → ∓∞  OLS regression becomes legitimate. 
Additionally, thorough procedures to fest predictability of 
the model is absent in OLS regression. This is important 
because the primary aim is to use the developed models for 
prediction of the unobserved.  

For these reasons, we employ the Bayesian paradigm for 
parameter estimation and inference instead of the traditional 
ordinary least squares (OLS) approach. Bayesian estimation 
in particular is attractive largely because the latent variable is 
naturally incorporated as an additional parameter via data 

augmentation. With advancement in computing power, and 
the advent of Markov Chain Monte Carlo (MCMC) [13], 
implementation of the Bayesian framework is easy. A key 
advantage of Bayesian inference is to fully account for 
parameter uncertainty associated with the predicted values 
[14]. Besides, Bayesian inference is robust, and does not 
need to satisfy any regularity conditions to function properly.  

The primary objective is to attempt to provide a full 
description of the character of poverty in a simple and 
straightforward language, and predict the probability of an 
unobserved household being in a particular severity category 
given some covariate characteristics of households in the 
study area. This way, even non-technical end-users such as 
government and social-support groups can understand how 
patterns of economic, social and demographic changes affect 
different classes of the poor in the country, helping to avoid 
blanket approach to combating poverty. We base our 
inference on the latest Ghana living standards survey (GLSS) 
dataset collected in 2012. 

Table 1.  Study Variables  

Predictor Variables 

Variables Meaning 

Age Householder age in years 

Household size Number of household members 

Sex 1 if male, 0 female 

Rural/Urban 1 if rural, 0 urban 

Ecological zone 1 if coastal, 2 forest, 3 savannah, 4 Accra 

Education level 
1 if no education, 2 basic education (JSS or 
below), 3 SHS/Vocational (or equivalent 
certificate), 3 Tertiary 

Employment status 1 self-employed, 2 unemployed, 3 wage 
employment 

Response variable 

Poverty status 1 if Non-poor, 2 Poor, 3 Extremely poor 

2. Measurement of Poverty  
This work, in line with the Ghana Statistical Service 

(GSS), and following international common practice, adopts 
monetary measures of poverty. This approach measures 
poverty in relation to the amount of money necessary to meet 
some basic consumption needs such as food, clothing, and 
shelter [15].  

Estimation of monetary measures of poverty requires us to 
choose between disposable income and total consumption 
expenditure as the indicator of wealth, the latter being the 
preferred choice in most developing countries, and in this 
study [1]. 

Moreover, to measure monetary poverty, we need to set 
minimum standards of the poverty indicator to separate the 
various categories of the poor from the non-poor. These are 
called poverty lines [15, 1]. The three categories of poverty 
lines proposed by [15] are based on family daily expenditure 
per adult equivalent. Households who spend at least $1.25 a 
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day are non-poor, whiles those who spend less than $1.25 are 
poor. The extremely poor are those with expenditure less 
than $1 a day. In Ghana, these thresholds are set at GHC 3.60 
per day- non-poor, less than GHC3.60 –poor, and GHC2.17- 
extremely poor [1].  

3. The Ordinal Probit Model
The ordinal probit (OP) model derives from the 

multinomial distribution, albeit with ranked categories, thus, 
its likelihood function is multinomially distributed. The 
multinomial distribution is an extension of the binomial 
distribution where, now, the number of parameters being 
modelled exceeds one. The density function for the 
multinomial distribution is: 

𝑃𝑃𝑃𝑃𝑃𝑃(𝑃𝑃|𝑌𝑌) = ∏ ∏ 𝑝𝑝𝑖𝑖𝑦𝑦𝑖𝑖𝑖𝑖
𝐽𝐽
𝑗𝑗=1

𝑛𝑛
𝑖𝑖=1    (1) 

To derive the cumulative ordinal probit (OP) generalized 
linear model (GLM) from the multinomial distribution, let 
the responses 𝑗𝑗 = 1, … , 𝐽𝐽 be arranged in order of magnitude, 
and 𝛼𝛼𝑗𝑗  the corresponding thresholds associated with the 
ordering. Further let 𝑌𝑌𝑖𝑖∗  be a Gaussian random variable 
assumed to be latent [8, 16], and assigning values to  𝛼𝛼𝑗𝑗  
according to a regression function: 

𝑌𝑌𝑖𝑖∗ = 𝑋𝑋𝑖𝑖𝛽𝛽 + 𝜀𝜀𝑖𝑖 ,   (2) 
where 𝑋𝑋  is 𝑛𝑛 × 𝑝𝑝  design matrix, 𝛽𝛽  is a 𝑝𝑝 × 1  unknown 
vector of regression coefficients, and 𝜀𝜀 is the 𝑛𝑛 × 1 vector 
of independently and identically distributed (𝑖𝑖. 𝑖𝑖.𝑑𝑑) 

measurement errors: 𝜀𝜀𝑖𝑖~𝑁𝑁(0,1). Though the values of 𝑦𝑦𝑖𝑖∗ 
cannot be directly observed, the rule that assigns 𝑦𝑦𝑖𝑖∗ to 𝛼𝛼𝑗𝑗  is 
that if 𝑦𝑦𝑖𝑖∗ exceeds a given threshold, then, for example, a 
household falls in the 𝑗𝑗𝑡𝑡ℎ  category of poverty. This 
culminates in cumulative multiple binary outcomes:  

𝑌𝑌𝑖𝑖 = �
𝑗𝑗,𝛼𝛼𝑗𝑗−1 < 𝑦𝑦𝑖𝑖∗ ≤ 𝛼𝛼𝑗𝑗  

0, otherwise ,
�   (3) 

where 𝛼𝛼𝑗𝑗 ∈ ℝ, and 𝛼𝛼1 < 𝛼𝛼2 … < 𝛼𝛼𝐽𝐽 . 
Cleary,  𝑌𝑌𝑖𝑖∗  in our application, refers to the Gaussian 

expenditure line, and is asymptotic of the ordinal variable 𝑌𝑌𝑖𝑖  
when  𝐽𝐽 → ∓∞.  

Our objective is to predict the probability of a household 
falling in or below the 𝑗𝑗𝑡𝑡ℎ  category given the observed 
covariates  𝑥𝑥 = (𝑥𝑥1, … , 𝑥𝑥𝑛𝑛)𝑇𝑇 . This probability is determined 
by the values of the latent variable  𝑌𝑌𝑖𝑖∗, and is given by  

𝑝𝑝(𝑦𝑦𝑖𝑖 = 𝑗𝑗|𝑥𝑥𝑖𝑖) = 𝑝𝑝� 𝛼𝛼𝑗𝑗−1 < 𝑦𝑦𝑖𝑖∗ ≤ 𝛼𝛼𝑗𝑗 �    (4) 

Since 𝑌𝑌𝑖𝑖∗ is Gaussian, and 𝜀𝜀𝑖𝑖  is assumed to be normally 
distributed, the outcome is a probit model, implying that the 
probability of falling in or below the 𝑗𝑗𝑡𝑡ℎ  category is: 

𝑝𝑝(𝑦𝑦𝑖𝑖 = 𝑗𝑗|𝑥𝑥𝑖𝑖) = 𝑝𝑝� 𝛼𝛼𝑗𝑗−1 − 𝑋𝑋𝑖𝑖𝑇𝑇𝛽𝛽 < 𝜀𝜀𝑖𝑖 ≤ 𝛼𝛼𝑗𝑗 − 𝑋𝑋𝑖𝑖𝑇𝑇𝛽𝛽� 

 = Φ�𝛼𝛼𝑗𝑗 − 𝑋𝑋𝑖𝑖𝑇𝑇𝛽𝛽� − Φ�𝛼𝛼𝑗𝑗−1 − 𝑋𝑋𝑖𝑖𝑇𝑇𝛽𝛽�   (5) 

where Φ(. )  is the cumulative distribution function (cdf) 
for the standard normal 𝜀𝜀𝑖𝑖~𝑁𝑁(0,1):  

𝐹𝐹(𝜀𝜀𝑖𝑖) = � 1
2𝜋𝜋
�
−𝑛𝑛2 exp(− 1

2
𝜀𝜀𝑖𝑖2). 

Thus, the likelihood function for the parameters is 

𝐿𝐿(𝛽𝛽,𝛼𝛼|𝑦𝑦 = 𝑗𝑗) = ∏ ∏ �Φ�𝛼𝛼𝑗𝑗 − 𝑋𝑋𝑖𝑖𝑇𝑇𝛽𝛽� − Φ�𝛼𝛼𝑗𝑗−1 − 𝑋𝑋𝑖𝑖𝑇𝑇𝛽𝛽��
𝐽𝐽
𝑗𝑗=1

𝑛𝑛
𝑖𝑖=1     (6) 

3.1. Distributional Assumptions and Normalizations of the OP Model 
Several normalizations are often needed to identify the ordered model parameters. First, to preserve the positive signs of all 

the probabilities, it is required that  𝛼𝛼𝑗𝑗 > 𝛼𝛼𝑗𝑗−1.  
Second, if the support for the categories is to be the entire real line, then 𝛼𝛼𝑗𝑗−1 = −∞ and 𝛼𝛼𝑗𝑗 = +∞.  
Third, following standard practice, we assume the continuous latent variable 𝑌𝑌𝑖𝑖∗ is standard normal [8, 16]. 
Finally, we assume, following [8], and [16], that  𝑥𝑥𝑖𝑖  contains a constant term. Then it is required for  𝛼𝛼0 = 0. If this 

restriction is not imposed, adding a constant to 𝛼𝛼𝑗𝑗  and another constant to the vector of beta coefficients results in 
identifiability problems (the model may appear to contain two constant terms or intercepts). 

3.2. Parameter Estimation and Inference 

3.2.1. Maximum Likelihood Estimation (MLE) 

In our poverty severity application, given that our response is multinomial ordered with 𝑛𝑛𝑖𝑖  observations and 𝑦𝑦𝑗𝑗  categories, 
where  𝑛𝑛1 + ⋯+ 𝑛𝑛𝑁𝑁 = 𝑛𝑛 and  𝑗𝑗 = 1, … , 𝐽𝐽, we use the likelihood function for the OP model derived from (1):  

𝐿𝐿(𝛽𝛽,𝛼𝛼|𝑥𝑥,𝑦𝑦) = ∏ ∑ �Φ�𝛼𝛼𝑗𝑗 − 𝑋𝑋𝑋𝑋� − Φ�𝛼𝛼𝑗𝑗−1 − 𝑋𝑋𝑋𝑋��𝐼𝐼
(𝑦𝑦𝑖𝑖=𝑗𝑗 )𝐽𝐽

𝑗𝑗=1
𝑛𝑛
𝑖𝑖=1 ,    (7) 

the log-likelihood being 

𝑙𝑙𝑙𝑙𝑙𝑙⁡𝐿𝐿(𝛽𝛽,𝛼𝛼|𝑥𝑥,𝑦𝑦) = ∏ ∑ 𝐼𝐼(𝑦𝑦𝑖𝑖 = 𝑗𝑗)𝑙𝑙𝑙𝑙𝑙𝑙�Φ�𝛼𝛼𝑗𝑗 − 𝑋𝑋𝑋𝑋� − Φ�𝛼𝛼𝑗𝑗−1 − 𝑋𝑋𝑋𝑋��𝐽𝐽
𝑗𝑗=1

𝑛𝑛
𝑖𝑖=1  

 = ∏ ∑ 𝐼𝐼(𝑦𝑦𝑖𝑖 = 𝑗𝑗)𝑙𝑙𝑙𝑙𝑙𝑙�Φ�𝛼𝛼𝑦𝑦𝑖𝑖� − Φ�𝛼𝛼𝑦𝑦𝑖𝑖−1��
𝐽𝐽
𝑗𝑗=1

𝑛𝑛
𝑖𝑖=1  

 = ∏ ∑ 𝐼𝐼(𝑦𝑦𝑖𝑖 = 𝑗𝑗)𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖
𝐽𝐽
𝑗𝑗=1

𝑛𝑛
𝑖𝑖=1    (8) 
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where 𝐼𝐼 is the identity matrix.  
The ML process chooses that estimators, 𝛽̂𝛽  and  𝛼𝛼� of the set of unknown parameters,  𝛽𝛽,𝛼𝛼 which maximize the data [17, 

18, 16].  
Like many models, the curve of 𝐿𝐿(𝛽𝛽,𝛼𝛼|𝑥𝑥,𝑦𝑦) is non-linear [16] and 𝛽̂𝛽 and  𝛼𝛼� is the point at which  

 
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 ( 𝑃𝑃𝑖𝑖𝑖𝑖 )

𝜕𝜕� 𝛽𝛽 ,𝛼𝛼𝑗𝑗 �
= 0, 𝑗𝑗 = 1, … , 𝐽𝐽 − 1.                                 (9) 

Equation (9) is maximized to obtain the MLE of 𝛽𝛽,𝛼𝛼𝑗𝑗  subject to 𝛼𝛼0 = −∞,𝛼𝛼1 = 0,  𝛼𝛼𝑗𝑗 = ∞. This equation cannot easily 
be solved analytically. So we adopt the Newton-Raphson iterative algorithm [8].  

A measure of how well the model fits is important, and is determined by the significance of the overall model fit statistic. 
Fit indices include the likelihood ratio test, which is approximately chi-square 𝜒𝜒[𝑃𝑃+𝐽𝐽−2]

2 = 2[𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 − 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑁𝑁𝑁𝑁  𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ] for 
large  𝑛𝑛.  

3.2.2. Bayesian Estimation via Gibbs Sampling  

Following the Bayesian criteria, we set priors for the parameters, and build the posterior as: 

𝑓𝑓(𝛽𝛽,𝛼𝛼|𝑦𝑦𝑖𝑖∗,𝑦𝑦, 𝑥𝑥) =
∏ �Φ�𝛼𝛼𝑗𝑗−𝑋𝑋𝑋𝑋�−Φ�𝛼𝛼𝑗𝑗−1−𝑋𝑋𝑋𝑋��
𝑛𝑛
𝑖𝑖=1 𝑝𝑝(𝛽𝛽 ,𝛼𝛼)

∫Θ ∏ �Φ�𝛼𝛼𝑗𝑗−𝑋𝑋𝑋𝑋�−Φ�𝛼𝛼𝑗𝑗−1−𝑋𝑋𝑋𝑋��𝑛𝑛
𝑖𝑖=1 𝑑𝑑(𝛽𝛽 ,𝛼𝛼)

                        (10) 

where Φ�𝛼𝛼𝑗𝑗 − 𝑋𝑋𝑋𝑋� − Φ�𝛼𝛼𝑗𝑗−1 − 𝑋𝑋𝑋𝑋� is the data likelihood, 𝑝𝑝(𝛽𝛽,𝛼𝛼) is the density of the prior, and 
∫Θ ∏ �Φ�𝛼𝛼𝑗𝑗 − 𝑋𝑋𝑋𝑋� − Φ�𝛼𝛼𝑗𝑗−1 − 𝑋𝑋𝑋𝑋��𝑛𝑛

𝑖𝑖=1 𝑑𝑑(𝛽𝛽,𝛼𝛼) is the integrated likelihood with Θ being the parameter space. 
The 𝑃𝑃 × 1 matrix of beta coefficients 𝛽𝛽 arises from the mean structure of the multivariate latent multivariate Gaussian 

variable  𝑌𝑌∗, so we assign a multivariate prior 𝛽𝛽~𝑁𝑁𝑝𝑝(ℎ,𝐻𝐻), where ℎ is the mean and 𝐻𝐻 is the covariance matrix. If ℎ is 
small 𝐻𝐻 is large, this becomes non-informative prior. 

The thresholds  𝛼𝛼𝑗𝑗 , where 𝛼𝛼1 < 𝛼𝛼2 … < 𝛼𝛼𝐽𝐽  and 𝛼𝛼0 = −∞,𝛼𝛼1 = 0,𝛼𝛼𝑗𝑗 = ∞ for 𝑗𝑗 = 1, … , 𝐽𝐽, are jointly distributed with 
 𝑌𝑌∗. We therefor impose a conjugate multivariate normal distribution on 𝛼𝛼: 𝛼𝛼~𝑁𝑁𝐽𝐽−2(𝑡𝑡,𝑇𝑇), where 𝑡𝑡 is 𝐽𝐽 × 1 vector and 𝑇𝑇 is 
diagonal matrix. For 𝑡𝑡 → 0 and 𝑇𝑇 → ∞, this is also a non-informative prior. 

The unknown values 𝑦𝑦𝑖𝑖∗ are treated as nuisance parameters to be estimated along with  𝛽𝛽,𝛼𝛼. Conditional on 𝛽𝛽,𝛼𝛼, 𝑥𝑥,  and 
 𝑦𝑦𝑖𝑖 , 𝑦𝑦𝑖𝑖∗  is a truncated normally distributed variable with mean 𝑋𝑋𝛽𝛽  and variance 1. That is, the latent variable has a 
multivariate normal prior distribution with density:  

𝑝𝑝(𝑦𝑦∗|𝛼𝛼,𝛽𝛽,𝑦𝑦, 𝑥𝑥) = 𝑁𝑁(𝑣𝑣,𝑉𝑉)                                (11) 
where 𝑣𝑣 is the mean, and 𝑉𝑉 is the variance. This is a doubly truncated normal distribution (truncated to the left by 𝛼𝛼𝑗𝑗−1 and 
to the right by  𝛼𝛼𝑗𝑗 ).  

Posterior estimation is done by setting up the Gibbs sampler [19], which requires us to derive full conditionals for all 
parameters:  

𝑝𝑝(𝛽𝛽|𝑦𝑦∗,𝑦𝑦,𝛼𝛼) = 𝑝𝑝(𝑦𝑦∗|𝛽𝛽)𝑝𝑝(𝛽𝛽) 

 = ∏ 𝑒𝑒𝑒𝑒𝑒𝑒 �− 1
2

(𝑦𝑦∗ − 𝑋𝑋𝛽𝛽)Σ−1(𝑦𝑦∗ − 𝑋𝑋𝛽𝛽)� × 𝑒𝑒𝑒𝑒𝑒𝑒 �− 1
2

(𝛽𝛽 − ℎ)𝑇𝑇𝐻𝐻−1(𝛽𝛽 − ℎ)�𝑛𝑛𝑖𝑖
𝑖𝑖=1              (12) 

𝑝𝑝(𝛼𝛼|𝑦𝑦∗,𝑦𝑦,𝛽𝛽) = 𝑝𝑝(𝑦𝑦| 𝛼𝛼)𝑝𝑝(𝛼𝛼)                               (13) 
where 𝑝𝑝(𝑦𝑦|𝛼𝛼) is an indicator variable. The likelihood function of 𝛼𝛼𝑗𝑗  is thus 

𝐿𝐿�𝛼𝛼𝑗𝑗 |𝑦𝑦𝑖𝑖� = ∏ ∑ 𝟏𝟏(𝑦𝑦𝑖𝑖 = 𝑗𝑗) × 𝟏𝟏� 𝛼𝛼𝑗𝑗−1 < 𝑦𝑦∗ ≤ 𝛼𝛼𝑗𝑗 �
𝐽𝐽
𝑗𝑗=1

𝑛𝑛
𝑖𝑖=1 × 𝑝𝑝(𝛼𝛼)                    (14) 

where 𝟏𝟏 is 𝐽𝐽 × 1 vector of ones, 𝛼𝛼1 < 𝛼𝛼2 … < 𝛼𝛼𝐽𝐽−1 and 𝛼𝛼0 = −∞,  𝛼𝛼1 = 0,𝛼𝛼𝑗𝑗 = ∞ for  𝑗𝑗 = 1, … , 𝐽𝐽 − 1. Thus, we obtain 
the full conditional posterior of 𝛼𝛼𝑗𝑗  conditioned on  𝛼𝛼𝑗𝑗≠−𝑗𝑗 : 

𝑝𝑝�𝛼𝛼𝑗𝑗 |𝛼𝛼𝑗𝑗≠−𝑗𝑗 ,𝑦𝑦,𝛽𝛽,𝜎𝜎2,𝜙𝜙� = ∏ �∑ 𝟏𝟏(𝑦𝑦𝑖𝑖 = 𝑗𝑗) × 𝟏𝟏� 𝛼𝛼𝑗𝑗−1 < 𝑦𝑦∗ ≤ 𝛼𝛼𝑗𝑗 �
𝐽𝐽
𝑗𝑗=1 � × 𝑁𝑁𝐽𝐽−1(𝑡𝑡,𝑇𝑇) × 𝟏𝟏�𝛼𝛼1 < 𝛼𝛼2 … < 𝛼𝛼𝐽𝐽−1�𝑛𝑛

𝑖𝑖=1 .  

= ∏ �
𝟏𝟏(𝑦𝑦𝑖𝑖 = 𝑗𝑗) × 𝟏𝟏� 𝛼𝛼𝑗𝑗−1 < 𝑦𝑦∗ ≤ 𝛼𝛼𝑗𝑗 � +
𝟏𝟏(𝑦𝑦𝑖𝑖 = 𝑗𝑗 + 1) × 𝟏𝟏� 𝛼𝛼𝑗𝑗 < 𝑦𝑦∗ ≤ 𝛼𝛼𝑗𝑗+1�

� × 𝑒𝑒𝑒𝑒𝑒𝑒 �− 1
2𝑇𝑇
�𝛼𝛼𝑗𝑗 − 𝑡𝑡�2� × 𝟏𝟏�𝛼𝛼1 < 𝛼𝛼2 … < 𝛼𝛼𝐽𝐽−1� 𝒏𝒏

𝒊𝒊=𝟏𝟏 (15) 

This is a truncated normal distribution. We allow 𝑡𝑡 → 0 whiles 𝑇𝑇 → ∞ to impose vague prior on 𝛼𝛼𝑗𝑗 . Thus, 

𝑝𝑝�𝛼𝛼𝑗𝑗 |𝛼𝛼𝑗𝑗≠−𝑗𝑗 ,𝑦𝑦,𝛽𝛽,𝜎𝜎2,𝜙𝜙� = ∏ 𝟏𝟏�𝛼𝛼𝑗𝑗
𝑖𝑖𝑖𝑖𝑖𝑖 < 𝛼𝛼𝑗𝑗 < 𝛼𝛼𝑗𝑗

𝑠𝑠𝑠𝑠𝑠𝑠 � × 𝑒𝑒𝑒𝑒𝑒𝑒 �− 1
2𝐻𝐻
�𝛼𝛼𝑗𝑗 − 𝑡𝑡�2�𝑛𝑛

𝑖𝑖=1               (16) 

MCMC techniques then make draws from the uniform distribution in the interval: 

� 𝛼𝛼𝑗𝑗
𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑚𝑚𝑚𝑚𝑚𝑚�𝑚𝑚𝑚𝑚𝑚𝑚(𝑦𝑦𝑖𝑖∗|𝑦𝑦𝑖𝑖 = 𝑗𝑗),𝛼𝛼𝑗𝑗−1� 

𝛼𝛼𝑗𝑗
𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑚𝑚𝑚𝑚𝑚𝑚�𝑚𝑚𝑚𝑚𝑚𝑚(𝑦𝑦𝑖𝑖∗|𝑦𝑦𝑖𝑖 = 𝑗𝑗 + 1),𝛼𝛼𝑗𝑗+1�

� ≡ [𝑚𝑚𝑚𝑚𝑚𝑚(𝑦𝑦:𝑦𝑦 ∈ 𝑗𝑗 − 1),𝑚𝑚𝑚𝑚𝑚𝑚(𝑦𝑦:𝑦𝑦 ∈ 𝑗𝑗)] 
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𝑝𝑝(𝑦𝑦𝑖𝑖∗|𝑦𝑦,𝛼𝛼,𝛽𝛽) = 𝑝𝑝(𝑦𝑦|𝑦𝑦𝑖𝑖∗,𝛼𝛼,𝛽𝛽)𝑝𝑝(𝑦𝑦𝑖𝑖∗) 

 = ∏ ∑ 𝟏𝟏(𝑦𝑦𝑖𝑖 = 𝑗𝑗) × 𝟏𝟏� 𝛼𝛼𝑗𝑗−1 < 𝑦𝑦∗ ≤ 𝛼𝛼𝑗𝑗 �
𝐽𝐽
𝑗𝑗=1

𝑛𝑛
𝑖𝑖=1 × 𝑒𝑒𝑒𝑒𝑒𝑒 �− 1

2
(𝑦𝑦𝑖𝑖∗ − 𝑣𝑣)𝑇𝑇𝑉𝑉−1(𝑦𝑦𝑖𝑖∗ − 𝑣𝑣)�          (17) 

The Gibbs algorithm to generate posterior samples is extended in the following steps: 
i.  Choose initial values for all parameters including thresholds.  
ii.  Sample the latent variable 𝑌𝑌𝑖𝑖∗ from truncated normal distributions on the truncation interval �𝛼𝛼𝑗𝑗−1,𝛼𝛼𝑗𝑗 �.  
iii.  Sample thresholds 𝛼𝛼𝑗𝑗 , 𝑗𝑗 = 1, … , 𝐽𝐽 from uniform distributions on the interval 

�𝑚𝑚𝑚𝑚𝑚𝑚�𝑚𝑚𝑚𝑚𝑚𝑚(𝑦𝑦𝑖𝑖∗|𝑦𝑦𝑖𝑖 = 𝑗𝑗),𝛼𝛼𝑗𝑗−1�,𝑚𝑚𝑚𝑚𝑚𝑚�𝑚𝑚𝑚𝑚𝑚𝑚(𝑦𝑦𝑖𝑖∗|𝑦𝑦𝑖𝑖 = 𝑗𝑗 + 1),𝛼𝛼𝑗𝑗+1��. 
iv.  Sample the regression coefficients from 𝑐𝑐 = (𝑋𝑋𝑇𝑇𝑋𝑋)−1𝑋𝑋𝑇𝑇𝑦𝑦∗. 
v.  Repeat the steps until enough samples are drawn for inference. 

3.3. Posterior Predictions and Model Evaluation 
Predictions of the unobserved  𝑌𝑌𝑖𝑖+1 are made using the posterior predictive density: 

𝑓𝑓(𝑌𝑌𝑖𝑖+1|𝑦𝑦,𝛽𝛽,𝛼𝛼) = ∫Θ𝑓𝑓(𝑌𝑌𝑖𝑖+1|𝑦𝑦,𝛽𝛽,𝛼𝛼)𝑓𝑓(𝛽𝛽,𝛼𝛼|𝑦𝑦)𝑑𝑑(𝛽𝛽,𝛼𝛼),                      (18) 

where Θ is the parameter space. The posterior predictive density is the distribution of possible future observations that could 
arise from the current model. 

Subsequently, it is important to assess whether the model built fits the data sufficiently for prediction within and, possibly, 
beyond the observed data. That is, we determine a checking function for both predicted data and actual observations to assess 
whether the predictive model adequately reproduces at least some key features of the actual observations to conclude the 
model fits well. In standard ML analyses, a repertoire of fit measures includes 𝑅𝑅2 and likelihood-ratio 𝜒𝜒2 statistics. In 
Bayesian analyses, predictive model selection is checked within the framework of Bayesian decision theory [20], where 
prediction accuracy is based on the Bayesian expected loss (the expected value of the loss function given the data) [20]. The 
loss function  𝐿𝐿(𝑌𝑌𝑖𝑖 ,𝑌𝑌𝑖𝑖+1), represented here by the squared prediction error loss, assigns zero loss to correct predictions [21]. 
For the multi-categorical application, the Bayesian expected loss is expressed as  

𝐸𝐸[𝐿𝐿(𝑌𝑌𝑖𝑖+1,𝑌𝑌𝑖𝑖)] = 1
𝑛𝑛
∑ 𝐸𝐸 ��(𝑌𝑌𝑖𝑖+1 − 𝑌𝑌𝑖𝑖)�

𝑇𝑇(𝑌𝑌𝑖𝑖+1 − 𝑌𝑌𝑖𝑖)|𝑦𝑦�𝑛𝑛
𝑖𝑖=1   

 = 1
𝑛𝑛
∑ 𝐸𝐸 ���𝑌𝑌𝑖𝑖+1 − 𝐸𝐸(𝑌𝑌𝑖𝑖+1|𝑦𝑦)� − �𝑌𝑌𝑖𝑖+1 − 𝐸𝐸(𝑌𝑌𝑖𝑖+1|𝑦𝑦)��2|𝑦𝑦�𝑛𝑛
𝑖𝑖=1   

= 1
𝑛𝑛
∑ 𝐸𝐸 ��𝑌𝑌𝑖𝑖+1 − 𝐸𝐸(𝑌𝑌𝑖𝑖+1|𝑦𝑦)�2|𝑦𝑦�𝑛𝑛
𝑖𝑖=1 + 1

𝑛𝑛
∑ �𝑌𝑌𝑖𝑖+1 − 𝐸𝐸(𝑌𝑌𝑖𝑖+1|𝑦𝑦)�𝑛𝑛
𝑖𝑖=1

2.                     (19) 

 
The optimal Bayes predictor (the category with the largest 

probability) is found at  
𝑌𝑌𝑖𝑖+1 = 𝐸𝐸(𝑌𝑌𝑖𝑖+1|𝑦𝑦) where 𝐸𝐸[𝐿𝐿(𝑌𝑌𝑖𝑖+1,𝑌𝑌𝑖𝑖)] is at its minimum.  
Alternative procedures to measure fit include Bayesian 

p-values. To calculate the p-value, we first define a test 
statistic 𝑇𝑇(𝑦𝑦) (high values of which show poor fit) to be a 
function of the data, and 𝑇𝑇(𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠 ) to be the same function 
but applied to simulated or training data. We then compute 
the Bayesian p-value as: 

p − value = 𝑝𝑝[𝑇𝑇(𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠 ) ≥ 𝑇𝑇(𝑦𝑦)].      (20) 
Equation (20) represents the proportion of simulated 

future datasets whose functional values 𝑇𝑇(𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠 ) exceed that 
of the function 𝑇𝑇(𝑦𝑦) applied to the original data. That is, the 
probability that a future observation would exceed the 
observed data, given the model. So, an extreme p-value 
implies poor model fit [22]. We jointly apply the two fit 
measures (Bayesian expected loss and Bayesian p-value) to 
determine the model’s ability to forecast future values. 

4. Data Description  
The study used secondary data from the Ghana Living 

Standard round 6 Survey. The Ghana Living Standard 
Survey (GLSS) focuses on the household as the 

socioeconomic unit, but collects information on individuals 
within the household and on the communities in which the 
households are identified. Data are gathered on wide ranging 
issues including demographic characteristics, education, 
economic activities, and health.  

For the GLSS round 6, a total of 16772 households were 
sampled across Ghana. Cumulative proportional odds probit 
models are constructed to categorize households using a set 
of cut-point values (non-poor, poor, and extremely poor) 
based on the micro data of the GLSS.  

5. Preliminary Analysis  
In this section, we examine the relationship between 

poverty and its correlates using the ordered probit model. We 
subject the model to relevant cross-validation tests by 
randomly splitting our dataset into two parts: one part (5000) 
as hold-out set and the other (11772) as validation set. Our 
sample size of 16772 is relatively large to permit a hold-out 
dataset. We use comparisons of the two datasets to 
investigate the model’s ability to estimate parameters and 
accurately predict future observations under similar 
conditions. This step is important [23], especially when 
dealing with non-Gaussian models.  
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First, using the hold-out set, we conducted a graphical 
analysis to test conformity of the model with the proportional 
odds assumptions [17]; the assumption that independent 
variables’ effect on the cumulative odds does not change 
from one cumulative odds to the next. Results obtained show 
a fairly affirmative picture (Figure 1). Some deviations were 
observed in the effects of location and ecological zone, 
though. 

Next, to examine the usefulness of the model for 
prediction, we fit a one-covariate model to the hold-out 
dataset. The model was fit using the procedure detailed in 
this study and implemented in [24]. We ran the MCMC chain 
for 10000 iterations. Posterior summaries for prediction and 
estimation were based on the last 5000 iterations of the 
chain. 

Summaries of results for Bayesian expected loss (BEL) 
(0.21), and Bayesian p-value (0.364) show that the model 
appears very effective in predicting unobserved values, the 
low BEL values indicating barely noticeable mis-prediction 
losses. 

Using 95% posterior credible intervals to summarize the 
range of possible values (Table 2), it is obvious that the 
model was successful at capturing the data-generating 

process. This means that the model provides correct 
conclusions about the association between the response and 
the predictor. 

 

Figure 1.  Test of Proportional Odds Assumption 

Table 2.  ML and MCMC Estimates for the Ordinal Probit Model 

 
 

Coefficient 

Ordered Probit Model  

ML Estimation Bayesian Estimation 

Estimate 95% C.I. Posterior 
Mean 

Credible Interval 
2.5%       97.5% 

Intercept 1.551 1.409 1.633 1.523 1.411 1.633 

Age 0.001 0.000 0.003 0.001 -0.0003 0.003 

Household size 0.122 0.113 0.130 0.122 0.114 0.129 

Sex 
Male -0.016 -0.075 0.043 -0.016 -0.072 0.039 

Female Reference - - - - - 

Location 
Rural 0.654 0.595 0.714 0.655 0.598 0.712 

Urban Reference -  - - - 

Ecological 
zone 

Coastal 0.280 0.118 0.447 0.275 0.116 0.435 

Forest 0.280 0.128 0.438 0.001 -0.078 0.079 

Savannah 0.876 0.723 1.036 0.596 0.521 0.676 

Accra Reference - - - - - 

Education 

No education 1.087 0.887 1.300 1.094 0.898 1.291 

Basic 0.720 0.518 0.934 0.773 0.672 0.876 

Secondary 0.316 0.099 0.544 0.368 0.311 0.425 

Tertiary Reference - - - - - 

Employment 

Self 0.079 -0.004 0.163 0.084 -0.005 0.163 

unemployed 0.163 0.052 0.275 0.163 0.058 0.273 

Wage Reference - - - - - 

𝛼𝛼1 1.991 0.919 2.494 1.997 1.091 2.497 

𝛼𝛼2 3.381 3.772 4.282 3.381 3.770 4.283 

𝛼𝛼3 Fixed - - Fixed - - 

Pseudo-𝑅𝑅2 0.293 - - 0.401 - - 
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6. Model Results  
In this section, we fit the model on the remaining dataset. 

Inference compared MCMC simulations (via Gibbs 
sampling) with the commonly used ML estimation. Results 
of the two models were generally identical. However, the 
Bayesian pseudo-𝑅𝑅2 value of 0.401 shows that the Bayesian 
model is superior to the ML model (pseudo-𝑅𝑅2 value =
0.293 ). More importantly, the Bayesian expected 
loss (𝐵𝐵𝐵𝐵𝐵𝐵 = 0.17), and p-value (𝑃𝑃 = 0.464) show that the 
Bayesian model is suitable for parameter estimation and 
prediction. For the MLE, coefficients of the threshold are 
𝛼𝛼1 = 1.997 and 𝛼𝛼2 = 3.381, and differ significantly from 
each other (Table 2), with 𝛼𝛼2  (poor) being more likely 
regardless of the covariates. The threshold values for the 
Bayesian model are similarly distributed (Table 2), so the use 
of the ordered probit model that categorizes the poor 
according to severity levels is better than using a single 
model to describe poverty. The observed differences in the 
threshold parameters basically reflect the differential 
parameterizations between the two approaches. 

Table 2 summarizes and compares results of ML estimates 
and the Bayesian inference. The results show that all but the 
coefficients for sex, age and self-employment were 
statistically significant in both models. Whiles forest 
ecological zone was statistically significant in the ML model, 
its contribution to the Bayesian model was negligible.  

Many of the statistically significant covariates were 
generally strongly related with the response variable. The 
coefficient of the variable household size for example, is 
statistically significant in both models; its contribution to 
change in log-odds ratio being 1.130. The impact of a unit 
change in the variable no education on the log-odds of a 
change in economic status is similarly high (𝑂𝑂𝑂𝑂 = 2.965 for 
the MLE and 𝑂𝑂𝑂𝑂 = 2.986 for the Bayesian model). The 
converse is true for households whose heads have higher 
education. Using Tertiary education as reference, and the 
ML model, the odds ratios are 2.965, 2.054, and 1.372 for no 
education, basic, and secondary education. Living in the 
savannah ecological zone or rural place negatively impacts 
the log-odds of poverty among households in Ghana by 
2.401 and 1.923 respectively. We also observed strong 
association between poverty severity and location 
(Rural/Urban). The estimated model is given in Table 2.  

Marginal effects of the covariates were estimated for the 
Bayesian model (Table 3). In ordered modelling, a unit 
increase in the independent variable changes the probability 
of falling in the 𝑗𝑗𝑡𝑡ℎ  alternative by the marginal effect in 
percentage terms. For this study, results of Table 3 show that 
every one unit increase in household size decreases the 
probability of falling in the non-poor category by 2.8%, but 
increases the probability of poor and extremely poor by 1.9% 
and 0.09% respectively, implying that a 1 unit increase in 
household size tends to deteriorate the economic conditions 
of households (from non-poor through poor to extremely 
poor). 

Table 3.  Marginal Effects for the Bayesian Ordinal Probit Model 

Poverty Status 

Marginal effects for 

Non-poor Poor Extremely 
poor 

Age 0.000 0.000 0.000 

Household size -0.028 0.019 0.009 

Sex Female -0.008 0.005 0.003 

Location Urban 0.149 -0.101 -0.049 

Ecological 
zone 

Forest -0.002 0.001 0.001 

Savannah -0.154 0.101 0.053 

Accra 0.072 -0.050 -0.022 

Education 

Basic 0.076 -0.052 -0.024 

Secondary 0.129 -0.090 -0.039 

Tertiary 0.147 -0.104 -0.043 

Employment 
unemployed -0.017 0.011 0.005 

Wage 0.021 -0.014 -0.007 

Moreover, urban location increases the probability of 
non-poor by 14.9%, but is associated with being 10.1% and 
4.9% more likely to be in the poor or extremely poor 
categories respectively. Similarly, having a higher level of 
education significantly decreases the expected levels of 
poverty on the log-odds scale, tertiary education contributing 
the largest in this respect. 

 
 
Based on results of Table 2, the Bayesian ordered probit (BOP) model equations for prediction are: 

𝑙𝑙𝑙𝑙𝑙𝑙 �
𝑝𝑝(𝑛𝑛𝑛𝑛𝑛𝑛 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)

𝑝𝑝(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) + 𝑝𝑝(𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)� = 1.997 + 0.112ℎℎ+0.655𝑙𝑙𝑙𝑙𝑙𝑙 + 0.596 𝑠𝑠𝑠𝑠𝑠𝑠 + 0.275𝐶𝐶𝐶𝐶  

+1.094𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 + 0.773𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 +0.368𝑠𝑠𝑠𝑠𝑠𝑠 + 0.084𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 0.163𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢                    (21) 

𝑙𝑙𝑙𝑙𝑙𝑙 �
𝑝𝑝(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)

𝑝𝑝(𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)� = 3.381 + 0.112ℎℎ+0.655𝑙𝑙𝑙𝑙𝑙𝑙 + 0.596 𝑠𝑠𝑠𝑠𝑠𝑠 + 0.275𝐶𝐶𝐶𝐶  

+1.094𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 + 0.773𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 +0.368𝑠𝑠𝑠𝑠𝑠𝑠 + 0.084𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 0.163𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢                   (22) 
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where 𝒉𝒉𝒉𝒉 = Household size, 𝒍𝒍𝒍𝒍𝒍𝒍 = location (rural/urban), 
𝒔𝒔𝒔𝒔𝒔𝒔 = savannah ecological zone, 𝑪𝑪𝑪𝑪 = coastal ecological 
zone, 𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵 =No education, 𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃= Basic level education, 
𝒔𝒔𝒔𝒔𝒔𝒔 =  Secondary school certificate, and 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 = 
self-employed, 𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖 = unemployed. 

Predictions using (17) show that for a Ghanaian, the 
probability of being non-poor, poor or extremely poor, 
respectively, are 75.93%, 14.15% and 9.92%. 

Figure 2 presents results to compare predicted and 
expected probabilities of falling into poverty. 

 
Figure 2.  Predicted and Expected Probabilities of Falling in a Poverty 
Category 

7. Discussion 
The study employed the proportional odds cumulative 

probit model that ordered the population into three distinct 
categories (non-poor, poor, and extremely poor). The model 
was built to forecast the risk of household poverty in Ghana. 
Inference compared MCMC simulations (via Gibbs 
sampling) with the commonly used ML estimation. A key 
difference between the Gibbs sampler and that for the ML is 
the necessity to sample latent data from doubly truncated 
normal distributions. Though results were generally identical, 
the Bayesian pseudo-𝑅𝑅2  value of 0.401 shows that the 
Bayesian model is superior to the ML model with a 
pseudo-𝑅𝑅2 value of 0.310.  

The estimated marginal effects clearly highlighted the 
strong association between poverty and its correlates. 
Similar findings were made by [25] who used both a 
bivariate and an ordered probit model to estimate the effects 
of different socio-economic and demographic variables on 
the probability of a household being in poverty in Malaysia. 
In their analyses, the authors found that the probability of 
being in poverty was higher for rural families. [26] also 

applied the binary logit model to assess the causal 
relationship between poverty and some household-specific 
economic and demographic explanatory variables in Nigeria. 
They similarly found that being located in a rural community 
and having a large household size significantly increases the 
probability of falling below the poverty line. Many other 
studies have shown poverty to be predominantly rural and 
affected by large household size [5, 6].  

Furthermore, our estimation results show significant 
variations in the relationship of the response variable with 
the different levels of categorical covariates. We see in Table 
2, for example, that effect of the coefficients for education 
are inversely related to the probability of poverty, reducing 
the likelihood of dropping from non-poor to poor or 
extremely poor as education advances. This scenario was 
also found with the ecological zone variable. The high 
log-odds ratio value of the savannah ecological zone variable 
corroborate the work of [7] who reported that households in 
the savannah ecological zone of Ghana were almost four 
times poorer than those living in the coastal and forest 
zones in 2005/06. This could be attributed to the fact that 
the seaports and heavy industrial plants (along with the 
recently discovered crude oil) are found predominantly 
across the middle and coastal belts of the country, where 
both the rich agricultural lands and tropical rain forest 
coincide.  

We also observe that being male reduced the risk of falling 
into poor or extremely poor 0.984. This finding is consistent 
with the work of [26] in Nigeria, who concluded that 
households with female heads were more likely to be poorer. 
This variable’s effect is, however, not statistically 
significant.  

8. Conclusions 
The results we obtained show that out of the seven 

observed covariates, age, sex, as well as one level of 
ecological zone (forest) and self-employed do not 
significantly affect the distribution of household poverty in 
Ghana.  

The most powerful predictors of extreme poverty include 
rural location, Savannah ecological zone and household 
heads with little or no education. We therefore entreat 
pro-education and pro-rural development agencies such as 
the Savannah Accelerated Development Authority (SADA) 
to intensify efforts aimed at combating poverty. We also 
recommend more diverse research into the area because the 
ability to correctly predict who is at risk should be the first 
step, and an integral part of efforts to combat poverty. 

To improve parameter estimation, since the data was 
collected at different geographical locations, further 
research into the area using spatial analysis tools, instead of 
the standard regression methods used in this study, is 
recommended. 
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