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Abstract  In this paper, a size-biased Poisson-Amarendra distribution (SBPAD) has been proposed by size-biasing the 
Poisson-Amarendra distribution (PAD) of Shanker (2016 b), a Poisson mixture of Amarendra distribution introduced by 
Shanker (2016 a). The first four moments (about origin) and the central moments (about mean) have been obtained and 
expressions for coefficient of variation (C.V), skewness, kurtosis and index of dispersion have been given. The estimation of 
its parameter has been discussed using maximum likelihood estimation and method of moments. Three examples of real 
data-sets have been presented to test the goodness of fit of SBPAD over size-biased Poisson distribution (SBPD), size-biased 
Poisson-Lindley distribution (SBPLD) and size-biased Poisson-Sujatha distribution (SBPSD). 

Keywords  Amarendra distribution, Poisson-Amarendra distribution, Sujatha distribution, Poisson-Sujatha distribution, 
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1. Introduction 
Size-biased distributions are a particular class of weighted 

distributions which arise naturally in practice when 
observations from a sample are recorded with probability 
proportional to some measure of unit size. In field 
applications, size-biased distributions can arise either 
because individuals are sampled with unequal probability by 
design or because of unequal detection probability. 
Size-biased distributions come into play when organisms 
occur in groups, and group size influences the probability of 
detection. Fisher (1934) firstly introduced these distributions 
to model ascertainment biases which were later formalized 
by Rao (1965) in a unifying theory for problems where the 
observations fall in non-experimental, non-replicated and 
non-random categories. Size-biased distributions have 
applications in environmental science, econometrics, social 
science, biomedical science, human demography, ecology, 
geology, forestry etc. Van Duesen (1986) has detailed study 
about the applications of size-biased distributions for fitting 
distributions of diameter at breast height (DBH) data arising 
from horizontal point sampling (HPS). Later, Lappi and 
Bailey (1987) have applied size-biased distributions to 
analyze HPS diameter increment data. The applications of 
size-biased distributions to the analysis of data relating to 
human population and ecology can be found in Patil and Rao  
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(1977, 1978). A number of research have been done relating 
to size-biased distributions and their applications in different 
fields of knowledge by different researchers including 
Scheaffer (1972), Patil and Ord (1976), Singh and Maddala 
(1976), Patil (1981), McDonald (1984), Gove (2000, 2003), 
Correa and Wolfson (2007), Drummer and McDonald 
(1987), Ducey (2009), Alavi and Chinipardaz (2009), Ducey 
and Gove (2015), are some among others. 

Let a random variable X  has probability distribution 
( )0 ; ; 0,1,2,..., 0P x xθ θ= > . If sample units are 

weighted or selected with probability proportional to xα , 
then the corresponding size-biased distribution of order α  
is given by its probability mass function 
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αµ θ

∞

=

′ = = ∑ . When 1α = , 

the distribution is known as simple size-biased distribution 
and is applicable for size-biased sampling and for 2α = , 
the distribution is known as area-biased distribution and is 
applicable for area-biased sampling. 

2. Size-Biased Poisson-Amarendra 
Distribution (SBPAD) 

The Poisson-Amarendra distribution (PAD) having 
probability mass function (p.m.f.) 
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has been introduced by Shanker (2016 b) for modeling count data in various fields of knowledge. Its various statistical 
properties, estimation of parameter and applications have been discussed in details by Shanker (2016 b) and shown that it is 
better than Poisson distribution (PD), Poisson-Lindley distribution (PLD) of Sankaran (1970) and Poisson-Sujatha 
distribution (PSD) introduced by Shanker (2016 d). It would be recall that PSD is a Poisson mixture of Sujatha distribution 
introduced by Shanker (2016 c). Shanker and Hagos (2016 a) have detailed study about the applications of PSD for modeling 
discrete data from biological sciences.  

The PAD arises from the Poisson distribution when its parameter λ  follows Amarendra distribution introduced by 
Shanker (2016 a) with probability density function (p.d.f.) 
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The p.m.f. of the size-biased Poisson-Amarendra distribution (SBPAD) with parameter θ  can be obtained as 
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 is the mean of the PAD with p.m.f. (2.1). 

Recall that the p.d.f. (2.3) of SBPAD can also be obtained from the size-biased Poisson distribution (SPBD) with p.m.f. 
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when its parameter λ  follows the size-biased Amarendra distribution (SBAD) with p.d.f. 
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which is the p.m.f of SBPAD. 
The p.m.f. of size-biased Poisson-Sujatha distribution (SBPSD) given by 
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( ) ( )

( )

3 2 24

3 2 3

4 3 4
; ; 1,2,3,.., 0

2 6 1 x

x x x
P x x

θ θ θθθ θ
θ θ θ +

+ + + + +
= = >

+ + +
          (2.7) 

has been introduced by Shanker and Hagos (2016 b), which is a size biased version of Poisson-Sujatha distribution (PSD) 
proposed by Shanker (2016 d).  

   

   

   

Figure 1.  Graphs of pmf of SBPAD, SBPSD and SBPLD for selected values of the parameter θ  

It would be recall that the p.m.f of size-biased Poisson-Lindley distribution (SBPLD) given by  
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has been introduced by Ghitany and Mutairi (2008), which is a size-biased version of Poisson-Lindley distribution introduced 
by Sankaran (1970). The Poisson-Lindley distribution (PSD) is a Poisson mixture of Lindley (1958) distribution. Ghitany and 
Mutairi (2008) have discussed its various mathematical and statistical properties, estimation of the parameter using maximum 
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likelihood estimation and the method of moments, and goodness of fit. Shanker et al (2015) have critical study on the 
applications of SBPLD for modeling data on thunderstorms and found that SBPLD is a better model for thunderstorms than 
size-biased Poisson distribution (SBPD). 

The graphs of the probability mass functions of SBPAD, SBPSD and SBPLD for selected values of their parameter θ  are 
shown in the figure 1. 

3. Moments and Associated Measures 
Using (2.6), the r th factorial moment about origin of the SBPAD (2.3) can be obtained as 
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Using gamma integral and some small algebraic simplification, the r th factorial moment about origin of SBPAD (2.3) 
can be obtained as 
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Taking r = 1,2,3, and 4 in (3.1), the first four factorial moments about origin can be obtained and using the relationship 
between moments about origin and factorial moments about origin, the first four moments about origin of the SBPAD (2.3) 
are thus obtained as 
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Now, using the relationship between central moments and the moments about origin, the central moments of the SBPAD 
(2.3) are thus obtained as 
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The coefficient of variation ( ).C V , coefficient of skewness ( )1β , coefficient of kurtosis ( )2β and index of dispersion 

( )γ  of the SBPAD (2.3) are finally obtained as  
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The conditions under which SBPAD, SBPSD and SBPLD are over-dispersed ( )2µ σ< , equi-dispersed ( )2µ σ=  and 

under-dispersed ( )2µ σ>  are presented in table 3.1. 

Table 3.1.  Condition for over-dispersion, equi-dispersion, and under-dispersion for SBPAD, SBPSD and SBPLD  

Distribution Over-dispersion ( )2µ σ<  Equi-dispersion ( )2µ σ=  Under-dispersion ( )2µ σ>  

SBPAD 2.273739θ <  2.273739θ =  2.273739θ >  

SBPSD 1.961384θ <  1.961384θ =  1.961384θ >  

SBPLD 1.671162θ <  1.671162θ =  1.671162θ >  
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To study the characteristics of 1 2 1 2, , . , ,C Vµ µ β β′  and γ  of SBPAD, SBPSD and SBPLD for varying values of their 
parameter θ , the numerical values of these characteristics have been presented in table 3.2. 

Table 3.2.  Characteristics of 
1 2 1 2, , . , , andC Vµ µ β β γ′  for SBPAD, SBPSD and SBPLD for selected values of the parameter θ     

 Values of θ for SBPAD 

 1 2 3 4 5 6 

1 'µ  5.606061 3.00000 2.149425 1.763889 1.558952 1.436782 

2µ  9.753903 3.307692 1.690316 1.034529 0.7129 0.53336 

CV 0.557098 0.606235 0.604869 0.576634 0.541604 0.508299 

1β  0.988214 1.208372 1.451176 1.657626 1.826565 1.970615 

2β  4.375715 4.939156 5.773739 6.609862 7.343342 7.986343 

γ  1.739885 1.102564 0.786404 0.586505 0.457295 0.371218 

 
 Values of θ for SBPSD 

 1 2 3 4 5 6 

1 'µ  4.555556 2.571429 1.952381 1.666667 1.507317 1.407407 

2µ  7.580247 2.530612 1.346939 0.872222 0.630434 0.48834 

CV 0.604366 0.61864 0.594442 0.560357 0.526763 0.496525 

1β  1.138007 1.360076 1.554876 1.719786 1.864608 1.996131 

2β  4.820343 5.497561 6.191562 6.820256 7.394639 7.935729 

γ  1.663957 0.984127 0.689895 0.523333 0.418249 0.346979 

 
 Values of θ for SBPLD 

 1 2 3 4 5 6 

1 'µ  3.666667 2.25 1.8 1.583333 1.457143 1.375 

2µ  5.555556 1.9375 1.093333 0.743056 0.556735 0.442708 

CV 0.642824 0.61864 0.580903 0.544425 0.512061 0.483901 

1β  1.318047 1.49478 1.649924 1.790721 1.921224 2.043701 

2β  5.4744 6.057232 6.599941 7.118613 7.625214 8.125813 

γ  1.515152 0.861111 0.607407 0.469298 0.382073 0.32197 

 

The graphs of coefficient of variation (C.V), coefficient of skewness ( )1β , coefficient of kurtosis ( )2β and index of 

dispersion ( )γ  of SBPAD, SBPSD and SBPLD are shown in figure 2 
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Figure 2.  Graphs of coefficient of variation (C.V), coefficient of skewness ( )1β , coefficient of kurtosis ( )2β , and index of dispersion ( )γ  for 

SBPAD, SBPSD and SBPLD for selected values of their parameter θ 

4. Unimodality and Increasing Failure Rate 
Using p.m.f. of SBPAD from (2.3), we have   
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which is a deceasing function of x , ( )1 ;P x θ  is log-concave. Therefore, SBPAD is unimodal, has an increasing failure rate 
(IFR), and hence increasing failure rate average (IFRA). It is new better than used in expectation (NBUE) and has decreasing 
mean residual life (DMRL). The definitions, concepts and interrelationship between these aging concepts have been 
discussed in Barlow and Proschan (1981). 

5. Parameter Estimation  
5.1. Maximum Likelihood Estimate (MLE): Let 1 2, ,..., nx x x be a random sample of size n from the SBPAD (2.3) and 
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The log likelihood function can be obtained as 
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The first derivative of the log likelihood function is thus given by  

( ) ( ) ( ) ( )
( ) ( ) ( )

2 22

3 2 3 2 2 3 21

2 5 3 8 73 4 6 4log 5
12 6 24 7 5 15 4 7 10

k x

x

x x fn n xd L n
d x x x

θ θ θθ θ

θ θ θθ θ θ θ θ θ θ θ θ=

 + + + + ++ + +  = − − +
+  + + + + + + + + + + + + 

∑  

where x  is the sample mean. 

The maximum likelihood estimate (MLE), θ̂  of θ  of SBPAD (2.3) is the solution of the equation 
log 0d L
dθ

=  and is 

given by the solution of the following non-linear equation 
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This non-linear equation can be solved by any numerical iteration methods such as Newton- Raphson method, Bisection 
method, Regula –Falsi method etc. In the present paper, Newton-Raphson method has been used to solve the above 
non-linear equation to find MLE of the parameter. 

5.2. Method of Moment Estimate (MOME): Equating the population mean to the corresponding sample mean, the 
method of moment estimate (MOME) θ of θ  of SBPAD (2.3) is the solution of the following fourth degree polynomial 
equation in θ  

( ) ( ) ( ) ( )4 3 21 2 2 6 2 24 2 120 0x x x xθ θ θ θ− + − + − + − + =  
where x is the sample mean. 

6. Goodness of Fit 
In this section the goodness of fit of the SBPAD, SBPSD, SBPLD and SBPD have been presented for three count data- sets. 

The fitting of these distributions are based on maximum likelihood estimates of the parameter. The first data-set is 
immunogold assay data of Cullen et al. (1990) regarding the distribution of number of counts of sites with particles from 
immunogold assay data, the second data-set is animal abundance data of Keith and Meslow (1968) regarding the distribution 
of snowshoe hares captured over 7 days, and the third data-set is number of counts of pairs of running shoes owned by 60 
members of an athletics club, reported by Simonoff (2003). 

Table 6.1.  Distribution of number of counts of sites with particles from Immunogold data 

No. of sites with 
particles 

Observed 
Frequency 

Expected Frequency 

SBPD SBPLD SBPSD SBPAD 

1 
2 
 

3 
4 
5 

122 
50 

 
18 
4 
4 

111.3 
64.1 

18.5

3.5

0.6






 

119.0 
53.8 
18.0 

5.3

1.9




 

119.3 
53.4 
17.9 

5.3

2.1




 

119.4 
53.3 
17.9 

5.3

2.1




 

Total 198 198.0 198.0 198.0 198.0 

ML estimate  ˆ 0.575758θ =  ˆ 4.050987θ =  ˆ 4.511904θ =  ˆ 4.898958θ =  

2χ   4.64 0.43 0.32 0.29 

d.f.  1 2 2 2 

p-value  0.0312 0.8065 0.8521 0.8650 
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Table 6.2.  Distribution of snowshoe hares captured over 7 days  

No. times hares 
caught 

Observed 
Frequency 

Expected Frequency 

SBPD SBPLD SBPSD SBPAD 

1 
2 
3 
4 
5 

184 
55 
14 
4 
4 

170.6 
72.5 

15.4

2.2

0.3






 

177.3 
62.5 

16.4

3.8

1.0






 

177.5 
62.3 

16.4

3.8

1.0






 

178.8 
62.0 

16.3

3.8

1.1






 

Total 261 261.0 261.0 261.0 261.0 

ML estimate  ˆ 0.425287θ =  ˆ 5.351256θ =  ˆ 5.799735θ =  ˆ 6.131809θ =  

2χ   6.22 1.18 1.11 1.03 

d.f.  1 1 1 1 

p-value  0.0126 0.2773 0.2921 0.3101 

Table 6.3.  Number of counts of pairs of running shoes owned by 60 members of an athletics club, reported by Simonoff (2003, p. 100) 

Number of pairs of 
running shoes 

Observed 
frequency 

Expected Frequency 

SBPD SBPLD SBPSD SBPAD 

1 18 15.0 20.3 20.0 19.8 

2 18 20.8 17.4 17.5 17.5 

3 12 14.4 10.9 11.1 11.2 

4 
5 

7 
5 

6.6

3.2




 
5.9 
5.5 

6.0 
5.4 

6.1 
5.4 

Total 60 60.0 60.0 60.0 60.0 

ML Estimate  ˆ 1.383333θ =  ˆ 1.818978θ =  ˆ 2.208089θ =  ˆ 2.609819θ =  

2χ   1.87 0.64 0.47 0.39 

d.f.  2 3 3 3 

p-value  0.3926 0.8872 0.9254 0.9423 

 

7. Concluding Remarks 
A size-biased Poisson mixture of size-biased Amarendra 

distribution named, “size-biased Poisson-Amarendra 
distribution (SBPAD)” has been proposed by size-biasing 
the Poisson-Amarendra distribution (PAD) of Shanker (2016 
b). Its moments and other structural properties including 
coefficient of variation, skewness, kurtosis, index of 
dispersion, hazard rate and unimodality have been studied. 
The estimation of its parameter has been discussed using 
method of maximum likelihood and that of moments. Three 
examples of real data-sets have been presented to test the 
goodness of fit of SBPAD over the size-biased Poisson 
distribution (SBPD), the size-biased Poisson-Lindley 
distribution (SBPLD) and the size-biased Poisson -Sujatha 
distribution (SBPSD). The fit of SBPAD over SBPD, 
SBPLD, and SBPSD shows that SBPAD can be considered 
as an important distribution for modeling data which 
structurally excludes zero counts. 
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