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Abstract  The terrorism attack became the first security world problem in the 21st century which the most terrorist attacks 

threaten civilians. The aim objective of this article is to develop the self-exciting point process to show that the terrorist 

attacks often follow a general pattern that can be modeled to study the evolution of the terrorism attack by using a statistical 

model especially the Hawkes process. The basic idea of this process is that the some events don’t occur independently; when 

a certain event happens. This model is a unique statistical model in literature which it is a special class of point process where 

the background rate is non-stationary. 
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1. Introduction 

The terrorism became the first security problem in the 

world. Various and different attack method used by the 

terrorism such as, suicide attacks by kamikazes, bombs, cars 

bombs, etc., that their aim is to spread fear, often for the 

religious or for the ideological purposes [1, 4]. So, the goal 

of this article is to create a statistical model to prevent the 

terrorist attacks based on the Self-exciting point process in 

particular the Hawkes process [2]. The using of this process 

for several reason; for example, after each attack, the 

probability of another occurring increased and after reaching 

a certain point, this increase was decreasing gradually. 

Another reason to use the self-exciting process is that the 

correlation are present between nearby events is positive. In 

the 1971s, Professor Alan Hawkes [3] introduced a family of 

probability models for the occurrence of series of events. The 

Hawkes process are a family of point processes. Over the last 

15 years their use has spread too many subjects such as, 

ecology (Whale spotting, spider colonies, invasive banana 

trees) [13], crime prediction (gang fights, car theft,…), 

terrorist acts (Iraq, Indonesia) [7], molecular genetics [3], 

neuroscience; recurrence of cancer tumors, social networks 

(Twitter, Facebook, YouTube, conversation analysis) [6], 

finance (Insurance, Credit Risk, Risk Management) [5]. This 

suggests that the events such as terrorist attacks are not 

isolated events but are related to each other. It further asserts 

that the probability of a similar event occurring immediately 

after decreases as time passes.  
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We organize this article by different section. In section 2, 

we describe the descriptive of the terrorist attacks in the 

world, in section 3, we introduce the point process model, 

and the standard self-exciting point processes. In section 4, 

we show the Hawkes process to modeling the attacks 

terrorism events, then we purpose an inference model to 

estimate the parameter of the Hawkes process based on the 

maximum likelihood estimation (MLE). In section 5, we 

treat a theoretical model to simulate the Hawkes process and 

we apply the self-exciting process to describe the evolution 

of the real data in the world and to predict the possible 

counting attacks terrorism in the future. Finally, we will 

discuss the conclusion for possible directions for future 

work. 

2. Descriptive of the Terrorist Attacks 

The last fifteen years, the terrorist attacks have increased 

from less than 2,000 to nearly 14,000 [8]. As for the number 

of deaths, it was multiplied by nine. We have 58% of terrorist 

attacks committed with bombs and 34% with firearms. The 

remaining 10% of attacks employ other methods. Between 

2000 and 2014, 40% of attacks were committed by 

unidentified groups. The remaining 60% corresponds to a 

small number of organizations: Daech, Boko Haram, the 

Taliban, al-Qaida in Iraq and al-Shabaab are responsible for 

35% of the attacks in the world over the last fifteen years. 

Just between 2013 and 2014, Daesh has implemented 750 

terrorist attacks. A recurring element is the targeting of 

means of transport, especially bus and train (62% of attacks), 

(see Figure 1) [10]. 

In 2014 terrorism impacted more countries than ever 

before. Attacks were recorded in 93 countries, up from 88 in 

2013. This continues the trend from 2011 with more 
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countries experiencing terrorist attacks and deaths each year. 

The flow of foreign fighters into Iraq and Syria continued in 

2014 and 2015 [10]. Between 25,000 and 30,000 foreign 

fighters are estimated to have arrived in Syria and Iraq since 

2011; 7,000 in the first six months of 2015. Europe 

comprises 21 per cent of all foreign fighters, while 50 per 

cent are from neighboring MENA countries. In the year 2015 

the Global Terrorism Index highlights that terrorism 

continues to rise. For example, the total number of deaths 

from terrorism in 2014 reached 32,685, constituting an 80 

per cent increase from 18,111 the previous year. This is the 

highest level ever recorded which occurred in the just five 

countries; Iraq, Nigeria, Afghanistan, Pakistan and Syria, 

while the terrorism is highly concentrated in a small number 

of countries, the number of countries which have had a 

terrorist attack is also increasing (see Figure 2) [10]. 

 

Figure 1.  Concentration and intensity of the terrorist attacks in 2015 in the 

world 

 

Figure 2.  Attacks and deaths by region in 2015 

We see in the figure 2, the Middle-East and North Africa 

(MENA) and Sub-Saharan Africa have the highest deaths in 

2015. The both regions have many more deaths per attack 

than other regions. 

3. Point Process 

The point process is a random collection of events which 

appears in some space and time. The Poisson process is the 

preliminary model of a point process where two consecutive 

events are independent. In other words, a point process is 

classified as a Poisson process if events occurring at two 

different times are statistically independent of one another 

which the characteristics by a single parameter or Poisson 

intensity. Some examples of certain events, incidence of 

disease, occurrences of fires, earthquakes, tsunamis [11], 

[12]. We consider the point process 𝑁 which that takes 

values on {ℕ  ∪ ∞ } and the occurrences arrival times 

𝑡1 < 𝑡2 < ⋯ < 𝑡𝑛  of each attack terrorism events. We say 

that a point process 𝑁 is orderly if for any time 𝑡, 

 

A point process is typically characterized by prescribing 

its conditional intensity 𝜆(𝑡) , which represents the 

infinitesimal rate at which events are expected to occur 

around a particular time 𝑡, given the history of the process 

up to 𝑡, 𝐻𝑡 = {𝑡𝑖 : 𝑡𝑖 < 𝑡} (Ogata, 1988) [14], denotes the 

history of events prior to time 𝑡: 

 

Notice that since the right hand side is a conditional 

expectation, 𝜆(𝑡)  is a random variable. An important 

example of a point process is the Poisson process. 𝑁(𝑡1, 𝑡2) 

represents the number of events occurring between time 𝑡1 

and 𝑡2 . Given disjoint sets  𝑡1, 𝑡2 ,  𝑡2, 𝑡3 , … , (𝑡𝑘−1, 𝑡𝑘)  

where 𝑡1 ≤ 𝑡2 ≤ 𝑡3 ≤ ⋯ ≤ 𝑡𝑘−1 ≤ 𝑡𝑘 , 𝑁 is a Poisson 

process if the finite dimensional distributions 

𝑁 𝑡1, 𝑡2 , 𝑁 𝑡3 , 𝑡4 , … , 𝑁(𝑡𝑘−1, 𝑡𝑘)  each have a Poisson 

distribution and are independent. Notice that a Poisson 

process always has a deterministic conditional intensity 𝜆 𝑡 . 
If the process is stationary then 𝜆 𝑡  is a constant. 

We say that a point process 𝑁  is self-exciting if 

𝐶𝑜𝑣 𝑁 𝑡1, 𝑡2 , 𝑁 𝑡2, 𝑡3  > 0  for any 𝑡1 < 𝑡2 < 𝑡3 . This 

means that if an attacks terrorist event occurs, another event 

becomes more likely to occur locally in time and space. This 

is not the case for a Poisson process which it has independent 

increments so 𝐶𝑜𝑣 𝑁 𝑡1, 𝑡2 , 𝑁 𝑡2, 𝑡3  = 0 . Although 

Poisson processes have many properties which make them 

particularly well suited for special purposes, they cannot 

capture interaction effects between events. So, for this reason 

we investigate in the next section, a specific class of point 

process noted a Hawkes Process. 

4. Hawkes and Self-exciting Point 
Process 

The Hawkes process is a simple point process, whose 

intensity function depends on the entire past history and is 

self-exciting and has the clustering property. The Hawkes 

process originally states that when an event occurs, it will 

increase the chance of occurrence of some future events. 

Over the past few years, Hawkes process models have 

received significant attentions from researchers, especially in 

natural phenomena such as seismology research in terms of 

theoretical and empirical implications. This process can be 



 International Journal of Statistics and Applications 2016, 6(6): 361-367 363 

 

 

represented by the conditional intensity function: 

 

         (1) 

where 𝑍 is the normal counting measure (Hawkes & Oakes, 

1974) [15] and µ > 0 is the baseline intensity or the rate of 

events, 𝑡1 < 𝑡2 < ⋯  denote the points, or event times, of 

the point process, and 𝑔 .  > 0 is the excitation function. 

(Zhuang, Ogata, & Vere-Jones, 2002) [16]. The summation 

describes the self-exciting part of the process with the 

components 𝑘0  and 𝑔 , 𝑡𝑘 < 𝑡  represents the linear 

dependency over the past events. Many choices for the 

triggering density 𝑔 have been used (Hawkes, 1971; Ogata, 

1988) [3]. In the univariate model of the Hawkes process 

there is a response function we use an exponential 

distribution Egesdal et al. (2010) [17] that takes the form of 

the model (1): 

     (2) 

The 𝑤 before the exponential term is the normalization 

constant. In behavioral terms, 𝑘0 corresponds to the strength 

of the drive to seek retribution for a previous attack, and 

𝑤−1 represents the average time until a repeat event occurs. 

The intensity function of the univariate Hawkes process in 

the case of terrorism is usually used to predict the rate of 

attacks. 

The figure 3 indicates that a stationary background rate 𝜇 

is unrealistic for this reason we consider a non-stationary 

background rate 𝜇 Egesdal et al. (2010) [7], Ogata (1998) 

[14]. The simplest choice for a non-stationary 𝜇 is a step 

function parameterized by three values 𝜇1, 𝜇2  and 𝜇3 . So 

we obtain the following model: 

     (3) 

Where . 

We choose 𝑡1 and 𝑡2 based on visual inspection of where 

the largest jumps is occur and we consider the values of 𝜇1, 

𝜇2 and 𝜇3 are held constant while fitting the other model 

parameters. 

In this article the number of the attacks terrorist increase, 

for this we consider another model with a linear rate increase. 

In this case we obtain the following model: 

      (4) 

Where  .   

 

Figure 3.  Hawkes process with an exponential intensity 

For stationary, it is also assumed that  𝑔 𝑡 𝑑𝑡 < 1
∞

0
. By 

the above specification, we note in particular that the 

occurrence of an event will make the intensity process jump 

instantly by the amount  𝑔(0), which implies an increased 

chance of another event occurring in a short time interval 

following the event. This makes the self-exciting process an 

amenable model for recurrent event data with temporal 

clustering of events. In applications, two popular choices of 

the excitation function are the exponential decay function 

𝑔 𝑡 = 𝑎𝑒−𝑏𝑡 , 𝑡 ≥ 0 , with parameters 𝑎, 𝑏 > 0 , and the 

polynomial decay function 𝑔 𝑡 =
𝐾

 𝑡+𝑐 𝑝
 , 𝑡 ≥ 0,  with 

parameters 𝐾, 𝑐 > 0  and 𝑝 > 1. With the corresponding 

constraints on the parameters, these two forms of the 

excitation function are both decreasing. From a practical 

point of view, it seems reasonable to assume that the residual 

excitation effect due to an individual event wears out and 

diminishes toward zero as time elapses. However, more 

specific assumptions, such as the exponential and 

polynomial forms, for the excitation function are not always 

justified.  

The terrorism attack model is a particular type of marked 

Hawkes process for modelling the number and the times of 

any attacks terrorism. We noted by 𝜏𝑖 ∈ [0,∞) the number 

of the attack occurring at time 𝑡𝑖 . The idea behind using the 

following model is that the terrorism attack is reflected in the 

fact that every new attack increases the intensity by 𝛼𝑒𝛽𝜂𝑖 . 
For this reason the models (1), (2) and (3), (4) can be defined 

by: 

𝜆 𝑡 = 𝜇 + 𝑘0  𝑒𝛽𝜂𝑖𝑡𝑘<𝑡 𝑒−𝑤(𝑡−𝑡𝑘)       (5) 

Where 𝐾0. 𝛽, 𝑤 > 0 are parameters, and the exponential 

density distribution is defined by 

𝑓𝑡 𝜂 = 𝛿𝑒−𝛿𝜂 . Equivalently we could define it by its 

conditional intensity function including both marks and 

times: 

𝜆 𝑡, 𝜂 =  𝜇 + 𝑘0  𝑒𝛽𝜂𝑘𝑡𝑘<𝑡 𝑒−𝑤 𝑡−𝑡𝑘  𝛿𝑒−𝛿𝜂    (6) 

To reduce the risk of model misspecification, it is 

desirable to leave the form of the excitation function 

unspecified and estimate it non-parametrically based on the 

observed data. Based on empirical observation there exist 
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different kernel estimation in the literature, the most widely 

used are exponential and power law kernel. In this article we 

use the exponential kernel. There are many methods for 

parametric estimation of the kernel, such as the Maximum 

Likelihood Estimation (Ogata, 1998) [14]. We propose the 

non-parametric estimation model of µ (Silverman, 1986) 

[21]. We use variable bandwidth kernel smoothing to 

construct a smoothed version of the data: 

𝜇 𝑠𝑚 =
1

𝑛
 𝐾(

𝑡 − 𝑡𝑘
𝑕𝑘

)

𝑛

𝑘=1

 

Where 𝐾  
𝑡−𝑡𝑘

𝑕𝑘
 =

1

 2𝜋𝑕𝑘
𝑒
−
 𝑡−𝑡𝑘 

2

2𝑕𝑘
2

 . 

We note by 𝑕𝑘  the maximum of the 𝑘 - 𝑡𝑕 nearest 

neighbor and by 𝑏𝑚𝑖𝑛  the minimum bandwidth. We know 

that the rate 𝜆(𝑡) represent the total of events for this we 

introduce the parameter 𝑝. So we obtain the following model:  

𝜆 𝑡 = 𝑝𝜇𝑠𝑚  𝑡 +  1 − 𝑝 𝑘0  𝑤𝑒−𝑤(𝑡−𝑡𝑘)
𝑡𝑘<𝑡    (7) 

The shape of 𝜇 𝑠𝑚  and 𝜆 (𝑡)  is affected by the choices of 

the 𝑘-𝑡𝑕 nearest neighbor and the bandwidth. To estimate 

the parameters, we use maximum likelihood estimation [19], 

[20]. We obtain for the linear model the log likelihood 

function: 

Log L μc , 𝜇𝑠 , 𝑘0, 𝑤 𝑡1, … . , 𝑡𝑛 

=  log 𝜆(𝑡𝑘) −  𝜆 𝑡 𝑑𝑡.
𝑇

0𝑡𝑘 :1≤𝑘≤𝑛

 

We use the Akaike’s Information Criterion (AIC) to 

compare the models where the 𝐴𝐼𝐶 = 2𝑘 − 2log(𝐿) [18] 

where 𝑘 is the number of parameters in the model and 𝐿 is 

the maximum value of the likelihood function. Egesdal et al. 

(2010) [17] compare a self-exciting model to a stationary 

Poisson process with rate equal to the average number of 

events over the time interval in consideration. In the next 

section we estimate the parameters of the model by the 

likelihood method. 

5. Inference Model 

There exist different method to estimate the parameters in 

a process specified by a conditional intensity function 𝜆𝑡 . We 

apply the maximum likelihood inference or the Bayesian 

inference which we obtain a simplicity expression of the 

process. We consider the observed point 𝑡1 , … . , 𝑡𝑛  on an 

observation interval (0, 𝑇], the likelihood function is given 

by: 

𝐿 =   𝜆 𝑡𝑖 

𝑛

𝑖=1

  exp − 𝜆 𝑠 𝑑𝑠
𝑇

0

  

Given a marked point  𝑡1, 𝜂1 ,  𝑡2, 𝜂2 , … . ,  𝑡𝑛 , 𝜂𝑛 , the 

likelihood function becomes:  

𝐿 =   𝜆 𝑡𝑖 , 𝜂𝑖 

𝑛

𝑖=1

  exp − 𝜆 𝑠 𝑑𝑠
𝑇

0

  

By definition, the likelihood function is the joint density of 

all observed points (𝑡1, … . . , 𝑡𝑛):   

𝐿 = 𝑓 𝑡1 … . 𝑓 𝑡𝑛 (1 − 𝐹 𝑡 ) 

1 − 𝐹(𝑡)  appears since the unobserved next point for 

example 𝑡𝑛+1  must appear after the end of the observation 

interval. We assume that the conditional intensity function 

can be defined by the hazard function:  

𝜆 𝑡 =
𝑓 𝑡 

1 − 𝐹(𝑡)
  

And  

𝑓 𝑡 = 𝜆 𝑡 exp − 𝜆 𝑠 𝑑𝑠
𝑡

𝑡𝑛

  

       𝐹 𝑡 = 1 −  𝜆 𝑡 exp − 𝜆 𝑠 𝑑𝑠
𝑡

𝑡𝑛

   

Where 𝑡𝑛  is the last point before 𝑡. So we replace 𝑓(𝑡) 

and 𝐹 𝑡  in 𝜆(𝑡) we obtain: 

𝐿 =   𝑓 𝑡𝑖 

𝑛

𝑖=1

  
𝑓 𝑇 

𝜆 𝑇 
 

=  𝜆 𝑡𝑖 exp − 𝜆 𝑠 𝑑𝑠)
𝑡𝑖

𝑡𝑖−1

 exp − 𝜆 𝑠 𝑑𝑠)
𝑇

𝑡𝑛

 

𝑛

𝑖=1

 

=   𝜆(𝑡𝑖)

𝑛

𝑖=1

 exp − 𝜆 𝑠 𝑑𝑠)
𝑇

0

  

Where 𝑡0 = 0.  This result for the unmarked case. To 

obtain for the marked case, start by the factorization: 

𝐿 = 𝑓 𝑡1 𝑓 𝜂1 𝑡1 …… . 𝑓 𝑡𝑛 𝑓(𝜂𝑛 |𝑡𝑛)(1 − 𝐹 𝑇 ) 

Same demonstration in the unmarked case, we obtain: 

𝐿 =   𝑓(𝜂|𝑡𝑖)

𝑛

𝑖=1

   𝜆(𝑡𝑖)

𝑛

𝑖=1

 exp − 𝜆 𝑠 𝑑𝑠)
𝑇

0

  

=   𝜆(𝑡𝑖 , 𝜂𝑖)

𝑛

𝑖=1

  exp − 𝜆 𝑠 𝑑𝑠)
𝑇

0

  

Which establishes the result for the marked case. 

Given the occurrence observations 𝑡1, 𝑡2, … , 𝑡𝑛  for an 

interval  0, 𝑇 , (𝑇 > 𝑡𝑛)  the log-likelihood of a point 

process with an intensity function 𝜆 𝑡  given in equation (1):  

𝐿𝑜𝑔 𝑡1, 𝑡2, … , 𝑡𝑛 = − 𝜆 𝑡 𝑑𝑡 
𝑇

0

+  log 𝜆 𝑡  𝑑𝑍(𝑡)
𝑇

0

 

Where 𝜃 = (𝜃1, 𝜃2, … , 𝜃𝑛). This is the familiar expression 

log 𝜆𝑡𝑒−𝜆𝑡  = −𝜆𝑡 + log 𝜆𝑡 , in the case of constant rate. 

The above log-likelihood is defined under the assumption 

that the occurrence observations are observed from time 

𝑡 = 0  to a given time 𝑇 ≥ 𝑡𝑛 . However in most 

identification problems, only 𝑡1, 𝑡2, … 𝑡𝑛   are given and 𝑇 is 

not specified. We assume in this article  𝑇 = 𝑡𝑛  and 

𝑔 𝑡 = 𝛼𝑒−𝛽𝑡 .  So the log -likelihood function for the 

specified intensity function is:  

𝐿𝑜𝑔 𝑡1, . . , 𝑡𝑛 = − [𝜇 +
𝑇

0

 𝛼𝑒−𝛽 𝑡−𝑡𝑘 𝑑𝑍(𝑢)] 𝑑𝑡 
𝑡

−∞
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                                + log(𝜇 +  𝛼𝑒−𝛽𝑡𝑑𝑍(𝑢)) 𝑑𝑡 
𝑡

−∞

𝑇

0

 

Exchanging the variables 𝑢 and 𝑡  in the integrals we 

obtain: 

log 𝐿 𝑡1, … , 𝑡𝑛 =        

−𝜇𝑡𝑛 − [ 𝛼𝑒−𝛽 𝑡−𝑡𝑘 𝑑𝑡]𝑑𝑍 𝑢 
𝑡𝑛

𝑡𝑘

𝑇

0

  

+ log(𝜇 +  𝛼𝑒−𝛽𝑡  𝑑𝑍(𝑢))𝑑𝑡 
𝑡

−∞ 

𝑇

0

 

⇒ log 𝐿 𝑡1, . . , 𝑡𝑛 = 

−𝜇𝑡𝑛 +   
𝛼

𝛽
 𝑒−𝛽 𝑡𝑛−𝑡𝑘 − 1  𝑑𝑍 𝑢 

𝑇

0

 

+ log(𝜇 +  𝛼𝑒−𝛽𝑡𝑑𝑍(𝑢))𝑑𝑡
𝑡

−∞

𝑇

0

 

⇒ log 𝐿 𝑡1, … , 𝑡𝑛 = 

−𝜇𝑡𝑛 +   
𝛼

𝛽
 𝑒−𝛽 𝑡𝑛−𝑡𝑖 − 1  

𝑛

𝑖=1

 

+ log(𝜇 + 𝛼𝐴 𝑖 )

𝑛

𝑖=1

 

Where 𝐴 𝑖 =  𝑒−𝛽(𝑡𝑖−𝑡𝑗 ).𝑡𝑗<𝑡𝑖
 

By using the R software we can simulate the hawkes 

process and the likelihood function in the next section. 

6. Simulation and Application to the 
Real Data 

The aim objective of this section is to verify the results of 

maximum likelihood estimates. The conditional Hazard 

function: 

𝑓 𝑡 𝑡1, … . , 𝑡𝑛 , 𝜃 

1 − 𝐹(𝑡|𝑡1, … , 𝑡𝑘 , 𝜃)
= 𝜆(𝑡|𝑡1, … . , 𝑡𝑘 , 𝜃) 

So, 

log(1 − 𝐹 𝑡 𝑡1, … . , 𝑡𝑘 , 𝜃 

= − 𝜆 𝑡 𝑡1, … , 𝑡𝑘 , 𝜃 𝑑𝑡
𝑢

𝑡𝑘

= − 𝜇 +  𝑔(𝑡 − 𝑡𝑖|𝜃)𝑑𝑡

𝑘

𝑖=1

𝑢

𝑡𝑘

 

We assume the uniform random variable 𝑈 and we obtain: 

log𝑈 +  (𝜇 +  𝑔(𝑡 − 𝑡𝑖|𝜃))𝑑𝑡 = 0

𝑘

𝑖=1

𝑢

𝑡𝑘

 

⇒ log𝑈 + 𝜇 𝑢 − 𝑡𝑘 − 𝛼/𝛽( 𝑒−𝛽(𝑢−𝑡𝑖)

𝑘

𝑖=1

− 𝑒−𝛽(𝑡𝑘−𝑡𝑖)) = 0

𝑘

𝑖=1

 

Consider the expression in the above equation 

𝑌 𝑘 =  𝑒−𝛽(𝑡𝑘−𝑡𝑖)

𝑘

𝑖=1

− 𝑒−𝛽(𝑢−𝑡𝑖)

𝑘

𝑖=1

 

This can be written as 

 𝑒−𝛽 𝑡𝑘−𝑡𝑖 
𝑘

𝑖=1

− 𝑒−𝛽 𝑡𝑘−𝑡𝑖 𝑒−𝛽 𝑢−𝑡𝑘 
𝑘

𝑖=1

 

⇒   1 − 𝑒−𝛽 𝑢−𝑡𝑘   𝑒−𝛽 𝑡𝑘−𝑡𝑖 𝑘
𝑖=1  

⇒ 1 − 𝑒−𝛽 𝑢−𝑡𝑘  (1 + 𝑒−𝛽 𝑡𝑘−𝑡𝑘−1  𝑒−𝛽 𝑡𝑘−1−𝑡𝑖 𝑘−1
𝑖=1  

⇒  𝑌 𝑘 = 𝑆 𝑘  1 − 𝑒−𝛽 𝑢−𝑡𝑘  ,             

With 𝑆 𝑘 = 𝑒−𝛽 𝑡𝑘−𝑡𝑘−1 𝑆 𝑘 − 1 + 1. 

Hence one can solve the following equation: 

log𝑈 + 𝜇 𝑢 − 𝑡𝑘 −
𝛼

𝛽
( 𝑒−𝛽(𝑢−𝑡𝑖)

𝑘

𝑖=1

 

− 𝑒−𝛽(𝑡𝑘−𝑡𝑖)) = 0   

𝑘

𝑖=1

 

And by using the following recursion we obtain: 

log𝑈 + 𝜇 𝑢 − 𝑡𝑘 +
𝛼

𝛽
𝑆 𝑘  1 − 𝑒−𝛽 𝑢−𝑡𝑘  = 0 

Where 𝑆 1 = 1  

And 𝑆 𝑘 = 𝑒−𝛽 𝑡𝑘−𝑡𝑘−1 𝑆 𝑘 − 1 + 1.  

So, based on this recurrence equation we can simulate the 

Hawkes process with parameters  𝛼, 𝛽, 𝜇 = (4, 5, 0.5). 

The originality of the Hawkes process application is 

explain in the rest of section. After originally being applied 

for earthquake prediction it has been also used to anticipate 

flash crashes in finance, epidemic type of behavior in social 

media such as Twitter and YouTube or criminality outbursts 

in big cities. So in this section we apply the Hawkes model to 

the terrorism events. Our empirical analysis relies on count 

data drawn from the Global Terrorism Database (GTD) for 

1970–2015 [10]. We assume the background rate is 

stationary, and we compare that process to a stationary 

Poisson process through the AIC.   

The smoothed background rate model outperforms the 

other models with an AIC value of 801.1. By using the R 

software to apply Maximum Liklehood Estimator to estimate 

the parameters for the smoothed background rate model in 

equation (7), we obtain 𝑘 0 = 1.02 which means that every 

event causes between 1 more event on average, and 𝑤−1 is 

the average time over which we expect an attack event to 

happen following a background event, in our case we have 

𝑤−1 = 17.21  days which signifies we have about 17 days 

to arrive or prepare for another attacks. We have  𝜆 𝑡  𝑑𝑡
𝑇

0
 

is equal to the number of events in the interval  0, 𝑇 , and 

 𝜇  𝑡 𝑑𝑡 = 4638
𝑇

0
 is an estimate for the number of 

background events in the data set which is about 83% of all 

the attacks terrorism in the MENA region.  
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Figure 4.  Simulated trajectory of the Hawkes process 

 

Figure 5.  Estimated intensity function 

 

Figure 6.  Terrorism attacks between 1970 and 2015 

Based on Figure 6, we remark the trend form of the data, 

we remark that the stationary Poisson process is unlikely to 

give rise to our observed sequence of events. Rather use the 

AIC to evaluate the self-exciting model against a 

corresponding non-stationary Poisson model with 

self-excitation removed (𝑘0 = 𝑤 = 0) . We note that the 

“black’ line represents the initial data set and the “red” line 

represents the predictive series which we can say the 

evolution of the terrorism events in the future. By using the 

SEISMIC software and the dataset (GTD) and the R package 

we can predict the attack terrorism which that increases the 

probability that you’ll have another attack which estimate the 

probability of future attacks at different times and in 

different areas. 

7. Conclusions 

This paper presents the self-exciting model for the 

analysis and prediction of future terrorist activity. The 

improvement offered by the self-exciting term provides 

support for the contagion theory and suggests a significant 

short term increase in terrorism risk after an attack. The 

self-exciting hurdle model adheres to the theoretical concept 

for a contagion effect to terrorism as manifested in the 

clustering of data while providing good fit and predictive 

capabilities without relying on exogenous variables. The 

model provides a simple structure and interpretation of the 

parameters useful for understanding the dynamic nature of 

the terrorist activity. This provides an appropriate starting 

point for exploring additional covariate effects, including 

analysis concerning the effectiveness of counterterrorism 

activities, geography, political or economic factors. The 

utility of the models presented here and their ease of 

implementation and interpretation make them a potentially 

useful tool in security related fields. The results show that 

the risk of terrorist activity can vary greatly over short 

periods of time, thus policy responses in terms of resource 

allocation, security and counter-terrorism responses should 

reflect this as well as addressing the more long-term trends 

in risk.  
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