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Abstract  Introduction: The burden of malaria is a major public health concern in Ethiopia. Its dynamics is being 

changed by construction of dams which serve either for hydroelectric or irrigation purpose in the region. This study aimed at 

examining the impact of hydroelectric dam on malaria transmission in southwestern Ethiopia using Spatially Correlated 

Conditional Autoregressive Frailty (CAR) model. Method: A two-year weekly basis longitudinal study was conducted 

among children less than 10 years of age in sixteen villages, in southwest Ethiopia. CAR frailty model that accommodates the 

clustering effect were fitted to the malaria data set. The parameters in the model were estimated under a Bayesian framework 

using Markov Chain Monte Carlo (MCMC) approach. Results: Among 2040 children, 548 (26.9%) of them experienced 

malaria symptom in their blood samples during the study period. The minimum observed time for the first malaria infection 

was 4 days and the maximum was 698 days. The result reveals that the hazard of getting malaria infection is decreased by 5% 

for 1km distance away from the dam (HR=0.95, 95% CI: 0.88-0.99). Children aged > 3 years are more likely experienced 

malaria infection as compared to < 3 years of age. The result also showed that there is a marked clustering (Sigma=0.61 with 

95% CI: 0.38 - 0.95) of villages in the study area. Hence the estimation of parameters with the assumption of neighborhood 

(Spatially Correlated CAR frailty model) was found to be parsimonious. Conclusions: Malaria control intervention program 

should consider the spatial variation of malaria transmission in order to get sustainable and efficient malaria control in the 

study area. 
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1. Introduction 

Malaria kills approximately 655,000 people per year; 91% 

of deaths occur in sub-Saharan Africa, mostly in children 

under five years of age (WHO, 2011). Global climate change 

and its interactive components, such as water availability, 

related vulnerability of natural and socio-economic systems 

and health, affect human wellbeing. If environmental 

conditions changed in a ways that would increase the 

survival time of mosquitoes, then they would be able to 

transmit other species of malaria that were not present in that 

area before (Research Journal of Environmental and Earth 

Sciences, 2010). Simple methods that enable accurate 

forecasting, early warning, and timely case detection in low 

and high transmission areas are needed to enable 

implementation of more effective control measures (WHO, 

2003). Good maps of malaria risk have long been recognized 

as an important tool for malaria control.  The production of   
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such maps relies on modelling to predict the risk of malaria 

for most of the map, with actual observations of malaria 

prevalence usually only known at a limited number of 

specific locations (Tanner et al., 2001). Estimation is 

complicated by the fact that there is often local variation of 

risk that cannot be accounted for by the known co-varieties 

and because data points of measured malaria prevalence are 

not evenly or randomly spread across the area to be mapped 

(ibid). Now a day such a spatial data has become an 

important component of disease investigation (Pfeiffer, 

1996). In fact the analysis becomes complex when the 

amount of information available is increased, but the 

availability of Geographic Information System (GIS) in 

combination with fast and relatively inexpensive computer 

hardware, leaves the scholars with the responsibility of 

making effective use of the information for the right decision. 

On the other hand ecological alterations favouring the spread 

of Mosquito insects facilitate the spread of the infection 

wherever malaria occurs. Man-made ecological 

transformations have occurred at an unprecedented 

magnitude over the past 50 years; prominent among them are 

water resource development projects (Lancy, 2012). The 

development, management and operation of water resources 
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have a history of modifying the frequency and transmission 

dynamics of malaria, but analyses of how changes in the 

environmental risk factors and in the incidence and 

prevalence of malaria are related are sparse (WHO, 2005). In 

general, even though the potential health impacts of large 

dams are known warmly, only small number of systematic 

research were into these impacts and almost no quantitative 

information on the impact of dams specially on malaria case 

rates on communities at different distances from the dam, 

particularly in sub-Saharan Africa. Hence the need for more 

research into the connections between dams and its 

consequence for malaria transmission, whose results can be 

used to assist with health assessment when planning and 

constructing dam, has been highlighted (WHO, 2008; Jobin, 

1999; Sleigh and Jackson, 2001). Distribution (spread) 

modelling that does not include spatial location explicitly, 

assumes that species’ locations are independent in space and 

time. Such an assumption could be violated if a) the 

conditions defining the niche were auto-correlated; or b) 

species’ locations were connected through dispersal or other 

behaviours that lead to spatial patterning such as aggregation 

or regular spacing (Volker et al., 2006). Some studies in 

Ethiopia (Delenasaw et al., 2009; Delenasaw et al., 2013; 

Solomon et al., 2009; Yehenew et al., 2011) tried to 

determine the connections between dams and its 

consequence for malaria transmission, but the spatial 

proximity of study areas (villages) was not considered in the 

analysis. Malaria is a vector born disease (mosquito’s 

possibly flay up to 3 km), hence incorporation of proximity 

of area is vital. In this study, spatially correlated conditional 

autoregressive frailty model were used to asses the 

relationship between different potential covariates (distance 

from the dam, age, house structure, rainfall, 

latitude/longitude) and time to first malaria infection for the 

survival data with random right censoring. 

2. Methods 

2.1. Study Setting 

At the early stage of the study, a baseline survey was 

conducted on the study area (around Gilgel Gibe hydropower 

dam in southwest Ethiopia) with the aim of collecting 

relevant information on individual and household 

characteristics. Information on demographic, environmental 

characteristics of the households, age, sex, number of 

children (who are less than 10 years of age) in each 

household, house proximity to the dam were collected. 

Children’s was followed from July 2008 to June 2010 at 

weekly intervals based on house-to-house visits. Since the 

interest in this study lies in assessing the effect of different 

covariates mainly of distance from dam shore, only time to 

first malaria infection was considered as primary outcome 

variable. Indeed, the percentage of children’s with second or 

more episodes of malaria in the follow-up time are relatively 

small. First malaria infection is malaria caused by any 

Plasmodium that happened at the time of diagnosis at the end 

of each week. The event indicator is defined as σij=I(Tij<Cij) 

where Tij is event time and Cij is censoring time for jth child in 

ith village. 

2.2. Statistical Analysis 

Given the covariate information (independent variable) of 

subject j in villages (cluster) i denoted by Zij and baseline 

hazard h(tij, Zij), the hazard of experiencing malaria enables 

models of the following form. 

0( , ) ( ) exp( )T
ij ij ij ijh t z h t z         (1) 

Where, 0h
 

is the baseline hazard, ijz  is a vector of 

covariates (assume fixed) and β is a vector of fixed effect 

parameters. In the model exp( )
T

ijz  is the term that 

depends on the covariates but not time, and which describes 

the hazard on some level of covariates. In parametric 

survival models the baseline is not more constant. When 

important risk factors go unmodeled, heterogeneity in risk 

propensity is captured through random effects (frailty term). 

A frailty variance parameter distinguishable from zero 

indicates that the strata (villages) do not share a common 

variance and thus exhibit heterogeneity in risk propensity. 
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Where logi ib   is the stratum specific frailty term 

designed to capture differences among the strata. According 

to Li and Ryan (2002), a spatial frailty model has the 

following form. 

0( | , ( )) ( ) exp( ( ))T
ij ij i ij ih t z r p h t z r p    (3) 

Where   is the fixed effect vector and (.)r  is a 

mean-zero stationary Gaussian process with some basic 

properties. Common spatial modelling approach is to assign 

the spatial random effects as an intrinsic CAR prior, which 

usually incorporate information about the adjacency of 

regions rather than any type of continuous distance metric. 

Weight matrix setting 

Let ijW   denote the so-called spatial proximity 

matrix (weight matrix), in our case i = 1,. . . ,16 and j = 

1,. . .,16 for the 16 villages, where ωii = 0 and ωij = 1 if the ith 

and the jth areas are neighbors (denoted i ) and 0 otherwise. 

The conditional expectation and variance of the village effect 

bi = b1, b2, . . . , b16 are: 
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number of neighborhood of village i. b  is the mean of the 

spatial random effects of these neighbours (sometimes set 0), 

the parameter 
2
b  is a conditional variance and its 

magnitude determines the amount of spatial variation. Notice 

that if 
2
b  is ”small” then although the residual is strongly 

dependent on the neighbouring value the overall contribution 

to the residual relative risk is small. Spatial weight matrix 

was set based on the Queen’s method. Unknown parameters 

in the models were estimated under a Bayesian framework 

using Markov Chain Monte Carlo (MCMC) methods via 

WinBUGS (http://www.mrc-bsu.cam.ac.uk/bugs/). In the 

estimation the likelihood of the semi parametric Cox model 

with spatial CAR frailty is proportional to; 
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0
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t

i iH h u du   is the integrated baseline hazard 

While the likelihood for the Weibull model with spatial CAR frailties is proportional to: 

   1

1 1

( , ; , , ) exp( ) exp exp( )
i

ij
nI

T T
ij i ij iij ij

i j

L b t z t z b t z b


     

 

     

DIC (Spiegelhalter et al., 2002), which is based on the posterior distribution of the deviance statistic was used as model 

choice criteria. For implementation of parameter estimation in WinBUGS, Andersen and Gill (1982) extended the frailty 

model to the counting process framework and gave elegant martingale proofs for the asymptotic properties of the associated 

estimators in the models that try to fit models for survival data. 

 

Figure 1.  Kaplan Meier Curve of the study villages 

Table 1.  Posterior summary of cox regression model 

Node Mean Sd MC error 2.50% Median 97.50% 

beta0 6.82100 4.81100 0.48810 1.39000 4.01000 14.71000* 

beta[1] 0.04952 0.02063 6.48E-04 0.00853 0.04962 0.08939* 

beta[2] -0.05652 0.08596 0.00148 -0.22760 -0.05594 0.10860 

beta[3] -0.02455 0.10760 0.00144 -0.23530 -0.02278 0.18300 

beta[4] -0.03882 0.04182 0.00247 -0.11860 -0.03956 0.04406 

beta[5] -0.18480 0.05752 0.00580 -0.28220 -0.17360 -0.08337* 

beta[6] -0.82770 0.48780 0.04946 -1.79200 -0.68060 -0.11900* 

beta7[2] 0.16320 0.10390 0.00280 -0.03820 0.16300 0.36710 

beta7[3] 0.04705 0.15980 0.00304 -0.26330 0.04922 0.35450 

beta[1] = distance; beta[2] = sex(M), beta[3] = Corrugated house; beta[4] = Average rainfall, beta[5] = Longitude, beta [6] 

= Latitude, beta7 = Age group: 2=”3-7”, 3=”≥8” 
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3. Result 

3.1. Descriptive Statistics 

A total of 2040 children under age of 10 years was 

considered in this study, of which 951 (48.09%) children 

were females and 1059 (51.91%) were males. During the 

follow-up period, 548 (26.9%) of them experienced malaria 

at least one episode. The study area has a longitude between 

37.187 - 37.383 degree and latitude between 7.667 - 7.883 

degree. The median age of children in the cohort was five 

years. In this study children’s age at start of the survey was 

categorized in to three as ≤ 3 age, between 3 and 8 age, and ≥ 

8 age. The total number of children’s per village at the start 

of the study was between 123 and 130. The nearest 

children’s household from the dam reservoir shore is 0.005 

Km while the farthest is 9.046km. Figure 1 presents the 

survival probability of children’s in the 16 study villages. 

From the survival probability plot villages with higher 

survival (L14, L2, L3, L5, L1,) founds to North East of the 

dam, while the incidence in these villages are relatively low. 

Hence consideration of children’s residence in the analysis 

might be very important to control confounding. Log rank 

test was employed to check equality of survival probability 

of experiencing malaria among study villages; a significant 

difference survival probability was observed (p-value < 

0.0001). 

3.2. Survival Regression Using Bayesian Method 

We begin by summarizing our results for the cox 

regression model that doesn’t account any spatial variation 

(frailty term) across the villages, then a frailty survival model 

was followed. For the cox regression model a chain of 

10,000 iterations with “burn-in” of 500 iterations starting 

from proper initial values were run and from the posterior 

summary we found some variables are important predictors 

for time to first malaria infection (Table 1). The result 

suggests that association of distance is positive and that of 

age group is negative with time to first malaria infection. 

Small difference in longitude and latitude of children’s 

residence house has significant effect on time to first malaria 

infection. In the summary (Table 1), Monte Carlo standard 

error (MC error) is fairly small almost for all coefficients 

indicating estimates are good. Initial values for β’s were the 

estimates from classical approach using R. 

3.3. Comparison of Models 

The same groups of covariates were used for evaluation of 

the model fit and comparison. Deviance information criteria 

(DIC) value was used to evaluate the model performance for 

our data. For all of the models, we adopt a flat prior for β, and 

a G(α, 1/α) prior for which we make vague by setting α = 0.1. 

Initial values for locality effect bi were set 00s 

(independence). To set prior distributions for the overall 

variance parameter σ2, Gamma distribution with small shape 

and inverse scale parameters of 0.1 and 0.01 respectively 

were used (i.e, mean = 10 and variance =1000). 

Table 2.  DIC of alternative candidate models 

Name Hazard function pD DIC 

No frailty (Cox) 0 ( ) exp( )T
ij ijh t z  8.53 15482.62 

Standard Frailty 0 ( ) exp( )T
i ij ij ih t z b   12.3 15388.7 

CAR Frailty 0 ( ) exp( )T
i ij ij ih t z b   15.58 15296.66 

Weibull CAR 
1( ) exp( )T

ij ij it z b    17.63 15308.25 

DIC: Deviance Information Criteria 

Model with spatially conditional autoregressive random 

effect (CAR frailty) was the best among the four alternative 

models, with smallest DIC value of 15296.66. In this model 

the frailty term for particular village was estimated by 

averaging the neighbourhood village random effect 

(assuming villages are spatially clustered). A simple 1/0 

weighting schemes for CAR model were used in WinBUGS. 

The result of model selection shows that geographic 

variation has impact on time to first malaria infection; it is 

dependent on the low or high incidence of the 

neighbourhood villages. 

Table 3.  Posterior estimates of the CAR frailty model 

 
Node Mean Sd MC error 2.50% Median 97.50% 

Alpha beta0 0.57350 0.99640 0.08568 -1.38500 0.64930 2.15100 

Distance beta[1] -0.04604 0.03931 0.00226 -0.12540 -0.05840 -0.00910* 

Sex(M) beta[2] -0.05264 0.06114 0.00118 -0.17290 -0.05249 0.06510 

Corrugated(yes) beta[3] 0.04088 0.07553 8.33E-04 -0.10950 0.04204 0.18550 

Avrg Rainfall beta[4] -0.02084 0.02845 0.00163 -0.07676 -0.02048 0.03390 

Longitude beta[5] -0.21050 0.01963 0.00168 -0.25250 -0.20750 -0.17600** 

Latitude beta[6] -0.24650 0.21270 0.01843 -0.61400 -0.23840 0.10510 

Age grp:3-7 beta7[2] 0.16040 0.07468 0.00206 0.01824 0.16040 0.30590** 

Age grp: ≥8 beta7[3] 0.03270 0.11170 0.00226 -0.19080 0.03317 0.24590 

SpatFrailyVar Sigma 0.61120 0.14770 0.00398 0.38440 0.59070 0.95200** 
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Table 3 provide 2.5, 50, and 97.5 posterior percentiles for 

the main effects and variance of the random term for CAR 

frailty model. From the result variables household distance 

from the dam shore, child age group at the start of the study 

and small change in longitude of each household have 

significant influence on the survival probability of time to 

first malaria in the study village at α=0.05. The result reveals 

that for every 1km change of distance from dam shore 

decreases the posterior mean hazard rate by a factor of 0.95 

(95% CI: 0.88-0.99), that is, hazard decreases by 4.5% as 

distance increases by 1 km. Considering spatial proximity 

resulted with the fairly good estimate for the effect of 

distance from newly constructed dam, which stay a paradox 

in previous studies (Delenasaw et al., 2009; Delenasaw et al., 

2013; Solomon et al., 2009; Yehenew et al., 2011). The 

parameter sigma was significant indicates there were 

significant clustering of study villages, see Figure 3. Malaria 

is a vector born disease (Anopheles Mosquito can transmit 

malaria flying up to 3 km) and villages that are 

neighbourhoods may exhibit similar infection rate than 

non-neighbourhood villages, so significant malaria 

clustering has been reported in many studies (Vincent et al., 

2014; Majige et al., 2015). Hence, a random spatial effect 

(frailty term) that estimated by averaging neighbourhood 

villages effect seems reasonable. The neighbourhood 

villages were determined by queen contiguity method that 

assumes villages are neighbourhood if villages have at least 

an intersection point.  

 

Figure 2.  Study village’s structure 

In these analysis longitude of household where children’s 

live also considered. The posterior mean hazard rate 

decreases by a factor of 0.81 for a one unit increase in 

longitude. Since the reference group for the age variable is ≤ 

3 ages, we see that older age group have a higher hazard of 

malaria infection relative to children’s of younger age group. 

The malaria risk increases by a factor of 1.17 (95% CI: 

1.02-1.36) for age group 3 − 7 years. The hazard rate 

increases by a factor of 1.03 (95% CI: 0.82-1.28) for age 

group ≥ 8 years. 

A benefit of fitting the spatial CAR structure than the other 

random effect structure model or non-frailty model was seen 

in the reduction of posterior variance of coefficients. Modest 

efficiency was gain when the model specifies better 

covariance structure of its random effects. The prior 

to-posterior learning afforded by Bayes Rule leads to smaller 

posterior variances (which is true in most coefficients above 

when comparing CAR frailty model and non-frailty model 

summary). This was supported by cluster analysis in Figure 3, 

most neighbourhood villages have same malaria risk 

(exhibits similar colour). These maps show clear spatial 

patterns of time to malaria episodes. The clustering was very 

high in the North-East part of the dam (villages like Gelan, 

Gommo, Kobb, Koticha).  

 

 

Figure 3.  Local Ord and Getis’ Gi* statistic mapping summary 

The z-scores < −1.96 and > 1.96 shows significant 

clustering at α = 0.05. The positive large Z-score (dark red 

shaded areas) shows the hot spot villages, in this area high 

number of malaria cases count surrounded by high malaria 

case count and vice versa for negative small Z-score(dark 

blue shaded areas). On the other hand from descriptive 

summary most children’s living around dark red shaded 

areas, north-eastern part of the dam (villages: Togo, Gommo, 

Kobi) showed shorter survival and children’s living around 

dark blue shaded areas, south-eastern part of the dam 

(villages: kara, Bissola, Yasso) shows longer survival. For 

cold spot areas (low number of malaria cases count 

surrounded by low count), most of the villages are relatively 

far from the dam (kara=8.08km, Bissola=2.67km, 
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Yasso=4.13km) relative to hot spot areas. In general the 

result is consistent and the plausibility of CAR frailty model 

is reasonable. Assessment of spatial clustering of survival 

time to infect of first malaria between neighbouring villages 

shows significant clustering (spatial autocorrelation index   

I = 0.06 with P-value < 0.001). 

From the posterior summary of Table 3 parameter sigma 

(sd of CAR frailty term) was significant. This is consistent 

with conclusion from Moran’s index and clustering analysis 

map, Figure 3. As a result modelling approach that assumes 

spatial dependence of study village (CAR frailty model) 

found parsimonious and resulted with smaller DIC value. 

4. Discussion 

This study applied spatially correlated Conditional 

Autoregressive (CAR) Frailty model on two-year 

longitudinal cohort data in order to see the effect of some 

covariates on malaria transmission using a Bayesian 

framework with Markov Chain Monte Carlo (MCMC) 

estimation. We applied this advanced statistical model 

mainly to address the effect of dam on malaria transmission. 

Given that mosquitoes typically breed in stagnant water 

rather than flowing water, it was assumed that water 

reservoirs were more important contributors to malaria than 

flowing rivers. Finding of this study suggested that factors at 

household-level and individual level are important in 

understanding malaria transmission dynamics in the region. 

The time to first malaria infection in children living close to 

the dam shore is shorter than children living far away to the 

dam (HR  decreases by factor 0.95). Based on Bayesian 

analysis result in this study, the malaria risk may be higher in 

children close to the dam; this is consistent with the results 

from several other studies (Lautze et al., 2007; Kibret et al., 

2010). Other small dams constructed for irrigation in 

Ethiopia were also shown to be associated with higher 

malaria incidence (Ghebreyesus et al., 1999; Kibret et al., 

2009). However, the result is not consistent with other 

studies conducted using same dataset (Delenasaw et al., 

2009; Delenasaw et al., 2013; Solomon et al., 2009; 

Yehenew et al., 2011), and this is not surprising, since in this 

study we applied another prudent model CAR frailty to see 

the effect of covariates on time to first malaria. The fact that 

CAR frailty obeys the spatial version of the Markov property, 

that is, it assumes that state of a particular area is influence 

by its neighbors (and not neighbors of neighbours), and this 

assumption in malaria transmission is feasible since malaria 

is a vector born disease. Previous studies (Kibret et al., 2015)  

conducted in area near to the dam with unstable malaria 

transmission indicated that malaria prevalence in villages 

located < 3 km from the dams was 2.3 − 19.9 times higher 

than in villages located > 3 km from the dams. Recent 

studies also indicated that climate change will likely push the 

altitude limits of unstable malaria towards the highlands of 

East Africa (Kristan et al., 2008; Caminadea et al., 2014). 

The increase in household longitude leads a decrease in 

malaria hazard (HR=0.81; 95% CI: 0.78 - 0.84). Among 

other factors considered in the analysis; the malaria risk was 

higher among older children (HR=1.17 for age group 3-7; 

HR=1.03 for age group ≥ 8). This could be because the older 

children spend outdoors in the evening when mosquitoes bite 

become higher or the greater use of anti-malarial drugs in 

early childhood (Trape, 1987). A similar study in Gabon 

provided contradicted result that lower malaria prevalence in 

children less than six months (3.7%) than in children at the 

age of 47 months (47.5%) (Issifou et al., 2007). No 

difference was observed in malaria incidence between boys 

and girls. In epidemic-prone areas in which malaria risk can 

be highly focal, aiming control strategies at areas of highest 

risk can potentially increase the programme’s effectiveness 

(Carter et al., 2000). Therefore, future studies are warranted 

in the spatial identification of malaria at household level in 

the region to identify the finer-geographical hot spot of 

malaria. As this study reveals spatial clustering of malaria 

infection in villages of study area generally, it may help the 

targeted malaria control and treatment interventions to high 

risk villages which lead to the reduction of malaria infection 

in the study area. 

For this study we used secondary data collected with the 

overall aim of determining malaria incidence and patterns of 

its transmission among children’s living close to the dam. 

Hence, possible analysis like given the first symptom within 

a cluster of villages, what’s infection situation for the rest 

population or population before dam is constructed couldn’t 

done. If data on “reference population” will be collected, 

better analysis can be done.  

5. Conclusions 

Based on a two-year longitudinal cohort data in this study, 

CAR frailty model found parsimonious among alternative 

models. This approach suggested that children living in close 

proximity to the reservoir created by the newly constructed 

Gilgel-Gibe dam are at a greater risk of malaria infection 

than children living further away. In order to maximize the 

economic benefits generated by Gilgel-Gibe hydroelectric 

dam, strategic malaria control programs could be 

implemented in more effective way. The paper provides a 

rationale for future Bayesian statistical modelling 

approaches for clustered data.  
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Annex 1: Posterior Density for the Best Model 

 

beta[1] chains 1:2 sample: 9000

   -0.2    -0.1     0.0

    0.0

    5.0

   10.0

   15.0

beta[2] chains 1:2 sample: 9000

   -0.4    -0.2     0.0
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beta[3] chains 1:2 sample: 9000

   -0.4    -0.2     0.0     0.2
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    4.0

    6.0

beta[4] chains 1:2 sample: 9000

   -0.2    -0.1     0.0
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   10.0

   15.0

 

beta[5] chains 1:2 sample: 9000

   -0.3   -0.25    -0.2
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   20.0
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beta7[2] chains 1:2 sample: 9000

   -0.2     0.0     0.2     0.4
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beta7[3] chains 1:2 sample: 9000

   -0.5   -0.25     0.0    0.25
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    4.0

 

sigma chains 1:2 sample: 9000
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    1.0
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    3.0

    4.0

 

Annex 2: History of Iteration 

 

beta[1] chains 1:2

iteration

1 2000 4000

   -6.0

   -4.0

   -2.0

    0.0

    2.0

 

beta[2] chains 1:2

iteration

1 2000 4000

   -2.0

   -1.5

   -1.0

   -0.5

    0.0

    0.5
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beta[3] chains 1:2

iteration

1 2000 4000

   -1.5

   -1.0

   -0.5

    0.0

    0.5

 

beta[4] chains 1:2

iteration

1 2000 4000

   -0.6

   -0.4

   -0.2

5.55112E-17

    0.2

 

beta[5] chains 1:2

iteration

1 2000 4000

   -0.3

   -0.2

   -0.1

2.77556E-17

    0.1

 

beta7[2] chains 1:2

iteration

1 2000 4000

   -0.5

  -0.25

    0.0

   0.25

    0.5

 

beta7[3] chains 1:2

iteration

1 2000 4000

   -0.5

    0.0

    0.5

    1.0

    1.5

 

sigma chains 1:2

iteration

1 2000 4000

    0.0

    5.0

   10.0

   15.0

   20.0

   25.0
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