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Abstract  The presence of non-optimal design points in an experimental design measure greatly affects the convergence 
of a search algorithm to a desired optimum. Filtering and reconstruction is presented as a viable procedure for sequentially 
locating D-optimal design measures. The method effectively improves experimental design in the search for an optimal 
design measure. While the procedure is identical to the Wynn’s sequential algorithm for constructing D-optimal designs, 
filtering and reconstruction addresses situations where outlying non-optimal design points had been admitted into the design 
possibly either by the creation of a poor initial design or by its influence on the next design point(s). By the method, outlying 
non-optimal design points are removed and the design reconstructed, thus resulting in a significant improvement on the 
determinant value of information matrix. Approximate solution has been obtained in the construction of D-optimal design 
measure for a two-dimensional non-interaction polynomial model defined on an irregular continuous design whose boundary 
is quadrilateral with vertices (2.2), (-1,1), (1,-1) and (-1,-1). Furthermore, bounds have been established for the determinant 
value of information matrix for each sequentially generated design. The bounds reveal that the D-optimal measure generated 
by the search procedure is very close to the true unknown D-optimal design measure. 
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1. Introduction  
The consideration for construction of optimal design 

measures has gained top interests among researchers since 
from early works of Wynn (1970), Mitchell and Miller 
(1970), Fedorov (1972), Mitchell (1974), etc. In all practical 
terms, an optimal design enhances efficiency. Choosing an 
optimal experimental design for a full parameter regression, 
defined on a regular geometric area, has been given much 
attention. However difficulty arises with complexity of 
model or the design region or both. Sometimes it maybe 
needful to construct optimal designs for models that exist 
with improper polynomial regression functions and which 
may be defined on non-regular geometric areas. For 
whatever settings, the need for optimal designs cannot be 
played down. A documentary of the usefulness of optimum 
experimental design has been given by Atkinson (1996). 
Two very important and frequently used methods of 
constructing optimal designs are the sequential and exchange 
methods. Each of these methods has been in one or more of 
the early works mentioned above. Fundamental among them 
is the generation of D-optimal design measures. By 
definition, a design measure is a probability measure ξ 
defined on the design space 𝑋𝑋� that is a closed compact set in  
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a Euclidean space of a particular dimension. Moreover, ξ is a 
member of the set D, of all measures defined on the Borel 
Field B containing all one-point sets such that 

∫𝑋𝑋�ξ (𝑑𝑑𝑑𝑑) = 1. 
If 𝑓𝑓1 , 𝑓𝑓2, … , 𝑓𝑓𝑘𝑘  are 𝑘𝑘  linearly independent functions 

defined on the design region 𝑋𝑋� , at each point 𝑥𝑥  in 𝑋𝑋� , a 
random variable 𝐸𝐸(𝑌𝑌𝑥𝑥) is defined and is such that 𝐸𝐸(𝑌𝑌𝑥𝑥) =
 𝜃𝜃′𝑓𝑓(𝑥𝑥), where 𝑓𝑓(𝑥𝑥) represents the kx1 column vector of 
functions 𝑓𝑓𝑖𝑖  evaluated at 𝑥𝑥 and 𝜃𝜃represents the kx1 column 
vector of unknown estimable parameters.  

For the measure ξ on 𝑋𝑋� 
𝑚𝑚𝑖𝑖𝑖𝑖 (ξ) = ∫𝑋𝑋�𝑓𝑓𝑖𝑖(𝑥𝑥)𝑓𝑓𝑗𝑗 (𝑥𝑥)ξ(𝑑𝑑𝑑𝑑). 

Letting 𝑀𝑀( ξ) be the kxk information matrix whose 
(𝑖𝑖𝑖𝑖)𝑡𝑡ℎ entry is 𝑚𝑚𝑖𝑖𝑖𝑖 (ξ), a discrete design measure may be 
formed by attaching a mass of 1

𝑁𝑁
 to each point of the discrete 

design such that  
𝑋𝑋𝑁𝑁
′ 𝑋𝑋𝑁𝑁
𝑁𝑁

  =  𝑀𝑀(𝜉𝜉𝑁𝑁). 

By discrete design measure, we refer to a design 
comprising of N points 𝑥𝑥1 , 𝑥𝑥2  , … , 𝑥𝑥𝑁𝑁  in 𝑋𝑋� , not 
necessarily distinct. 

A design measure 𝜉𝜉∗is said to be D-optimal if  
det{𝑀𝑀(𝜉𝜉∗)} = 𝑚𝑚𝑚𝑚𝑚𝑚𝜉𝜉  det{𝑀𝑀(𝜉𝜉)} ;  ξ∈D 

According to Kiefer and Wolfowitz (1960)  
det{𝑀𝑀(𝜉𝜉∗)} = 𝑚𝑚𝑚𝑚𝑚𝑚𝜉𝜉  det{𝑀𝑀(𝜉𝜉)} ;  ξ∈D 
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is equivalent to 
𝑚𝑚𝑚𝑚𝑚𝑚𝜉𝜉  𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥 det (𝑥𝑥, 𝜉𝜉) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥 det(𝑥𝑥, 𝜉𝜉∗) ; ξ∈D , 𝑥𝑥 ∈ 𝑋𝑋�  

= k 
where k is the number of model parameters. 

Wynn (1970) presented an algorithm for locating 
D-optimal design measure. The sequential algorithm of 
Wynn constructs, as described by Labadi (2013), a 
converging sequence of discrete (exact) designs. Wynn’s 
algorithm is a procedure that could help in overcoming 
difficulties that may arise when the model or the design 
space is sufficiently complicated such as could prevent an 
immediate evaluation of an optimal design. The Wynn’s 
procedure simply sequentially adds a point of maximum 
variance of prediction to a given initial design. The process is 
continued till the design is brought closer to an optimal 
measure. The initial design point is admissible in the sense 
that the associated information matrix is nonsingular. 
Successive addition of design points to the initial design 
generates a sequence of designs which turn to the D-optimal 
design measure in the limit. Wynn’s method is a one point at 
a time method. A particular illustration was made using a 
two-dimensional non-interactive first-order polynomial 
model defined on an irregular design space whose boundary 
is quadrilateral with vertices (2.2), (-1,1), (1,-1) and (-1,-1). 
Since it is possible to have more than one point with 
maximum variance of prediction, there is a choice of an 
alternative point which maximizes the variance function. 
Under such settings, the particular sequence of designs 
generated will not be unique. 

Tsay (1976) gave a general procedure for the sequential 
construction of D-optimal designs, of which Wynn’s 
procedure is a special case. Robertazzi and Schwartz (1989) 
presented an accelerated sequential algorithm for producing 
D-optimal designs. The algorithm has a useful advantage 
when there is no prior information concerning the structure 
of the optimal design. An illustration using two dimensional 
regression function defined on a regular unit square was 
considered as well as an illustration using three dimensional 
regression function defined on a regular unit cube. Due to the 
likely existence of design locations at the interior of the 
design space, accelerated sequential method uses grid search 
having discrete grid approximations of a continuous space. 
In both illustrations, the number of function evaluations was 
greatly reduced. Hardin and Sloane (1993) presented a super 
algorithm which finds optimal or near optimal designs for a 
wide range of low order response surface problems involving 
large several variables of either the continuous or discrete 
types or both.  

Boon (2007) explored several techniques that could be 
used to numerically search for exact D-optimal designs. In 
his paper, several optimization algorithms for generating 
exact D-optimal design for any regression model were 
compared. Harman and Benková (2014) considered 
approximate D-optimal designs on varying experimental 
situations. Iwundu and Albert-Udochukwuka (2014) 

presented an efficient algorithm for constructing N-point 
D-optimal exact designs on regular as well as irregular 
design regions.  

Removing non-optimal support points in D-optimal 
design algorithms has been considered an effective way of 
speeding up algorithms for D-optimal design measures. 
Pronzota (2003) established a bound which helps to 
eliminate points from the design space during the search for a 
D-optimal design. Any point not satisfying the bound is 
removed from the design space and thus not considered for 
further investigation. Harman and Pronzota (2007) offered 
an improvement on the Pronzota (2003) lower bound on the 
maximum variance of prediction for an optimal point in the 
search for D-optimal design.  

Modifications of the very early algorithms continue to 
feature in current research works. Very recently, Al Labadi 
and Wang (2010) considered a two points at a time 
modification for the Wynn’s sequential algorithm for 
constructing D-optimal design. The modified algorithm adds 
to an initial design two points that have the same maximum 
variance of prediction. From the illustrative example of Al 
Labadi and Wang (2010) the modification achieved a 
reduction in the computational steps required to reach the 
D-optimal design by the Wynn’s algorithm roughly by 
one-half. It is obvious that the modification could address the 
non-uniqueness of the Wynn’s generated D-optimal 
sequence in the presence of only two maximum variance of 
prediction at each iteration. However, when there is no equal 
maximum variance of prediction, users of Al Labadi and 
Wang’s algorithm simply would return to the Wynn’s 
one-at-a-time sequential algorithm. Al Labadi (2013) 
considered the modification of the sequential algorithm and 
the exchange algorithm due to Fedorov (1972) by 
respectively, adding or exchanging two or more points at 
each iterative step of the original algorithm. 

In this work a refinement in the construction of D-optimal 
design using the Wynn’s basic sequential procedure is 
presented. It can be observed from the Wynn’s algorithm that 
in constructing D-optimal design, close attention should be 
paid to the variance of prediction as the determinant is not 
monotonically increasing at every phase or vicinity of the 
search. This point is worthy of note to avoid the error of 
reporting a false optimum when an improvement is not seen 
as reflected by the determinant value of information matrix 
at a current iteration. Understanding that D-optimality is 
achieved at the point where the variance of prediction 
approximately equals the number of model parameters is a 
more helpful rule of thumb for convergence to optimality. 
The attention however, is the construction of a D-optimal 
design measure for the two-dimensional no-interaction five 
parameter polynomial model 

𝐸𝐸(𝑌𝑌𝑥𝑥) =  𝜃𝜃0 + 𝜃𝜃1𝑥𝑥1 + 𝜃𝜃2𝑥𝑥2 + 𝜃𝜃11𝑥𝑥1
2 + 𝜃𝜃22𝑥𝑥2

2 

defined on an irregular and continuous space. Specifically, 
the design region is the irregular quadrilateral defined in 
Wynn (1970) and having a continuum of support points. 

 



302 Mary Paschal Iwundu:  Design Filtering and Reconstruction: A Procedure  
for Sequentially Locating D-Optimal Design Measures 

2. Methodology 
As there is no information on the likely structure of the 

optimal design, discrete grid approximations to the 
continuous space shall be employed and search for the 
D-optimal design measure shall be within the discretized 
design space. The grid formations are as uniformly as 
possible, however due to the irregular nature of the design 
region, there are some grids that are not uniformly 
equi-spaced. The fundamental sequential search algorithm 
shall be based on the algorithm due to Wynn (1970). The 
search shall commence with an initial design whose design 
points need not necessarily be optimal points. The only 
requirement is that the initial design point be admissible in 
the sense that the associated information matrix of the design 
is nonsingular.   

It is clear that with the Wynn’s algorithm, having an initial 
design with non-optimal points would slow down the process 
for arriving at the optimal solution. To overcome this 
limitation, design filtering and reconstruction is proposed at 
some point in the sequence when cycles of optimal points are 
formed and it becomes clear which point(s) in the initial 
design are non-optimal points. By the filtering and 
reconstruction procedure, non-optimal points (unwanted and 
outlying points) are removed from the sequence of designs 
formed at earlier iterations and a replacement with optimal 
points made. The filtering and reconstruction procedure is 
supported by the method of experimental design 
reconstruction which according to Goupy (1996) is the most 
efficient way of detecting an outlier.  

The new procedure centers around handling non-optimal 
design points that were introduced possibly either by the 
creation of a poor initial design or by its influence on the next 
design point(s) added to the initial or existing design. As will 
be seen in section 3, removal of non-optimal design points 

will significantly improve the value of determent of 
information matrix at a next iteration. Moreover, the 
sequence will be certain to converge to the required 
D-optimal (or near) optimal design measure. Bounds shall be 
established for the determinant value of information matrix 
for each sequentially generated design. 

3. Numerical Illustration 
To obtain a D-optimal design measure for the 

two-dimensional non-interaction polynomial model 
𝐸𝐸(𝑌𝑌𝑥𝑥) =  𝜃𝜃0 + 𝜃𝜃1𝑥𝑥1 + 𝜃𝜃2𝑥𝑥2 + 𝜃𝜃11𝑥𝑥1

2 + 𝜃𝜃22𝑥𝑥2
2 

defined on the irregular continuous design space in Figure 
1,whose boundary is quadrilateral with vertices (2.2), (-1,1), 
(1,-1) and (-1,-1), we discretize the region and obtain the 
candidate set 

C = {(-1,1), (-1, 1
2 ), (-1,0), (-1, - 1

2 ), (-1,-1), (- 1
2 , 1.17), 

(- 1
2 , 1), (- 1

2 , 1
2 ), (- 1

2 , 0), (- 1
2 , - 1

2 ), (-1
2 ,-1), (0,1.33), 

(0,1), (0, 1
2 ), (0,0), (0, - 1

2 ), (0,-1), ( 1
2 , 11

2 ), ( 1
2 , 1), ( 1

2 , 
1
2 ),( 1

2 , 0), ( 1
2 , - 1

2 ), ( 1
2 , -1), (1,1.67), (1,11

2 ), (1,1), (1, 1
2 ), 

(1,0), (1,- 1
2 ), (1, -1), (11

2 , 1.82), (11
2 ,11

2 ), (11
2 ,1), (11

2 , 1
2 ), 

(1.33 , 0), (1.17,- 1
2 ), (2 , 2), (1.82,11

2 ), (1.67 , 1)}. 
The candidate set thus defines 𝑁𝑁� = 39 design points to be 

considered in the search for the D-optimal discrete design 
measure.  

The initial design is  

𝜉𝜉5
(0) = 

⎝

⎜
⎛
−1  1
−1 −1
 0  0

 1 −1
11

2 1.82⎠

⎟
⎞

 

 
 
 

   (2,2) 

(-1,1)    

(-1,-1)  (1,-1)  
 

Figure 1.  Quadrilateral with vertices (2.2), (-1,1), (1,-1) and (-1,-1)  

 



 International Journal of Statistics and Applications 2016, 6(5): 300-308 303 
 

The generated sequence starting from the initial design 
yields the statistics in Table 1. The sequence is obtained by 
adding to the initial design the point of maximum variance of 
prediction. It is very clearly obvious that the sequence cycles 
around some design points of which the initial design points 
(0,0) and (11

2, 1.82) are not a part. Thus for N=29 the initial 
design is filtered and reconstructed by replacing the design 
points (0,0) and (11

2, 1.82) with ( 2,2) and (11
2, 1

2). This greatly 
improved the determinant value from the supposed 0.7463 
(without filtering and reconstruction) to 0.8407. There is also 
a replacement of the point (1.67, 1) with (-1, 1) at N=30. The 
point (1.67, 1) came into the design from the influence of 
poorly selected initial design. This replacement again 
allowed a maximal improvement in the determinant value of 
information matrix from the supposed 0.8414 to 0.8678. The 
MATLAB Version 2007b was employed in the generation of 
the sequence of the designs and the outputs are presented in 
Appendix A for N = 5, 6 and 7 only for space convenience. 

Table 1.  The generated sequence of D-optimal discrete exact designs  

Design size Design points 
added 

Point of 
maximum 
variance of 
prediction 

Determinant of 
information 

matrix 

5 𝜉𝜉5
(0) 461.9177 0.0058 

6 1.67, 1 11.8344 0.2169 

7 2, 2 13.0825 0.2983 

8 1
2 ,11

2 7.6342 0.4389 

9 11
2 , 1

2 6.0904 0.4760 

10 -1, 1
2 6.6836 0.4712 

11 -1, -1 7.1765 0.4882 

12 2, 2 7.4134 0.5221 

13 1
2 ,11

2 7.2944 0.5660 

14 1
2 ,-1 6.3668 0.6100 

15 11
2 , 1

2 5.8724 0.6285 

16 2, 2 5.8424 0.6334 

17 -1, 1 6.0738 0.6386 

18 1
2 ,11

2 6.1291 0.6513 

19 -1, -1 6.1091 0.6662 

20 1, -1 6.0096 0.6813 

21 11
2 , 1

2 5.8884 0.6942 

22 2, 2 5.6872 0.7044 

23 1
2 ,11

2 5.5208 0.7098 

24 1
2 ,-1 5.6647 0.7115 

25 -1, 1
2 5.6494 0.7170 

26 11
2 , 1

2 5.7496 0.7225 

27 -1, -1 5.8661 0.7306 

28 2, 2 5.5875 0.7414 

29 1
2 ,11

2 5.3852 0.8407 

30 1
2 ,-1 5.4158 0.8678 

31 11
2 , 1

2 5.4524 0.8696 

32 1
2 ,11

2 5.3977 0.8724 

33 -1, -1 5.4029 0.8742 

34 2, 2 5.1671 0.8762 

35 11
2 , 1

2 5.2141 0.8732 

36 -1, 1 5.2928 0.8715 

37 1
2 ,11

2 5.3101 0.8716 

38 1
2 ,-1 5.3363 0.8723 

39 2, 2 5.3433 0.8736 

40 -1, -1 5.2421 0.8752 

41 11
2 , 1

2 5.1631 0.8750 

42 1
2 ,11

2 5.2725 0.8733 

4. Discussion  
A refinement has been provided for a more effective use of 

the Wynn’s sequential algorithm in the construction of 
D-optimal design measure. The refinement addresses 
situations where non-optimal design points have been 
introduced into the search at an early stage of 
experimentation. The non-optimal design points may have 
been introduced possibly either by the creation of a poor 
initial design or by its influence on the next design point(s) 
added to the initial or existing design. Experimental designs 
in the presence of one or more non-optimal design points do 
not allow maximal possible improvement in the determinant 
value of information matrix at any iteration. Such 
non-optimal design points certainly do not reflect similar 
characteristics of the other points and hence are treated as 
unwanted or outlying design points of which Pronzota (2003) 
suggests should be removed from the design space and not 
considered for further experimentation. 

The filtering and reconstruction procedure allows a 
maximal improvement in the determinant value of 
information matrix. This is not surprising because an 
experimental design with non-optimal point(s) offers low 
determinant value of information matrix. By having points 
with similar characteristics in the design should yield a 
maximal improvement in the determinant value of 
information matrix. 

For the construction of D-optimal design measure for the 
two-dimensional no-interaction five parameter polynomial 
model defined on an irregular and continuous space, the 
algorithm converged at the design measure, 𝜉𝜉34

∗  where the 
maximum variance of prediction was closest to the number 
of model parameters. There was no noticeable improvement 
in the determinant value of information matrix nor in the 
maximum variance of prediction two steps after N=34. The 
convergence to the D-optimal design measure was certain as 
N increased. Wynn’s mathematical justification supports this. 
Bounds for the determinants of information matrices 
associated with each design at each iterative step have been 
computed and are presented in Table 2. The bounds as 
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established by Wynn (1970) are given by  
𝐴𝐴𝑁𝑁 ≤ det{𝑀𝑀(𝜉𝜉∗)}  ≤  𝐵𝐵𝑁𝑁 

where 

𝐴𝐴𝑁𝑁 =  det{𝑀𝑀(𝜉𝜉𝑁𝑁)} �
𝑑̅𝑑(𝜉𝜉𝑁𝑁)
𝑘𝑘

�
𝑘𝑘

�
𝑘𝑘 − 1

𝑑̅𝑑(𝜉𝜉𝑁𝑁) − 1
�
𝑘𝑘−1

 

𝐵𝐵𝑁𝑁 =  det {𝑀𝑀(𝜉𝜉𝑁𝑁)}exp {𝑑̅𝑑(𝜉𝜉𝑁𝑁) − 𝑘𝑘} 
Here 𝑑̅𝑑(𝜉𝜉𝑁𝑁)  represents the maximum variance of 

prediction using the design measure, 𝜉𝜉𝑁𝑁 . The bounds show 
how close the search is to the optimum design at any stage.  

Table 2.  Bounds for the determinants of information matrices 

Design size Design points added Determinant of 
information matrix 𝑨𝑨𝑵𝑵 𝑩𝑩𝑵𝑵 

5 𝜉𝜉5
(0) 0.0058 0.2214 1.5859x10196 

6 1.67, 1 0.2169 0.0095 201.5588 

7 2, 2 0.2983 0.4394 965.6915 

8 1
2 ,11

2 0.4389 0.4813 8.2542 

9 11
2 , 1

2 0.4760 0.4867 1.4163 

10 -1, 1
2 0.4712 0.4933 2.5374 

11 -1, -1 0.4882 0.5231 4.3037 

12 2, 2 0.5221 0.5661 5.8328 

13 1
2 ,11

2 0.5660 0.6100 5.6139 

14 1
2 ,-1 0.6100 0.6302 2.3929 

15 11
2 , 1

2 0.6285 0.6380 1.5038 

16 2, 2 0.6334 0.6424 1.4707 

17 -1, 1 0.6386 0.6525 1.8688 

18 1
2 ,11

2 0.6513 0.6668 2.0144 

19 -1, -1 0.6662 0.6816 2.0199 

20 1, -1 0.6813 0.6946 1.8698 

21 11
2 , 1

2 0.6942 0.7050 1.6878 

22 2, 2 0.7044 0.71129 1.2672 

23 1
2 ,11

2 0.7098 0.7140 1.1949 

24 1
2 ,-1 0.7115 0.7180 1.3831 

25 -1, 1
2 0.7170 0.7233 1.3726 

26 11
2 , 1

2 0.7225 0.7308 1.5289 

27 -1, -1 0.7306 0.7415 1.7371 

28 2, 2 0.7414 0.7468 1.3341 

29 1
2 ,11

2 0.8407 0.8435 1.2358 

30 1
2 ,-1 0.8678 0.8711 1.3152 

31 11
2 , 1

2 0.8696 0.8735 1.3671 

32 1
2 ,11

2 0.8724 0.8755 1.2985 

33 -1, -1 0.8742 0.8774 1.3079 

34 2, 2 0.8762 0.8768 1.0356 

35 11
2 , 1

2 0.8732 0.8741 1.0817 

36 -1, 1 0.8715 0.8732 1.1680 

37 1
2 ,11

2 0.8716 0.8735 1.1885 

38 1
2 ,-1 0.8723 0.8745 1.2210 

39 2, 2 0.8736 0.8759 1.2314 

40 -1, -1 0.8752 0.8764 1.1149 

41 11
2 , 1

2 0.8750 0.8756 1.0300 

42 1
2 ,11

2 0.8733 0.8748 1.1469 
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From Table 2, the bounds  0.8768 ≤ det{𝑀𝑀(𝜉𝜉∗)}  ≤  1.0356 associated with the design 𝜉𝜉34  whose determinant value of 
information matrix is 0.8762, shows that 𝜉𝜉34  is very close to the true optimum design. The maximum determinant value of 
information matrix in the sequence generated is also associated with the design, 𝜉𝜉34 . Furthermore, this design has a 
maximum variance of prediction approximately equal to k, the number of model parameters. For eight experimental runs 
after N=34 no significant improvement was seen in the search. On the basis of the grid search with the 39 grid points, 𝜉𝜉34  is 
thus reported as approximately D-optimal. The design measure is as in Figure 2. The associated information matrix is 

 
 
𝑀𝑀(𝜉𝜉34)=    1.0000    0.5735    0.5882    1.6397    1.6618 
   0.5735    1.6397    1.0147    2.0404    1.7647 
   0.5882    1.0147    1.6618    1.8015    2.0662 
   1.6397    2.0404    1.8015    4.5570    3.8235 
   1.6618    1.7647    2.0662    3.8235    4.5846 

 
 

The weights associated with the D-optimal points are 
distributed as in Table 3. It is possible that having more grid 
points could yield a better approximation to the true 
unknown D-optimal design measure whose determinant 
value of information matrix would more satisfactorily meet 
the bounds provided by Wynn. 
 

𝜉𝜉34  =        
 

-1 
-1 
2 
1 
1.5 
-1 
2 
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Figure 2.  39 point approximately D-optimal design measure 

Table 3.  Weights for the 34 point D-optimal design measure  

Design point Weight 

-1, 1 3
34
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5. Conclusions 
A refinement in the construction of D-optimal designs 

using the Wynn’s basic sequential procedure has been 
presented. The refinement considers filtering and 
reconstruction as a viable procedure for sequentially locating 
D-optimal design measures. The method effectively 
improves experimental design in the search for an optimal 
design measure. While the procedure is identical to the 
Wynn’s sequential algorithm for constructing D-optimal 
designs, filtering and reconstruction addresses situations 
where outlying non-optimal design points had been admitted 
into the design possibly either by the creation of a poor initial 
design or by its influence on the next design point(s). By the 
method, outlying non-optimal design points are removed and 
the design reconstructed, thus resulting in a significant 
improvement on the determinant value of information 
matrix.  

In particular, an approximate solution has been obtained in 
the construction of D-optimal design measure for a 
two-dimensional non-interaction polynomial model defined 
on an irregular continuous design whose boundary is 
quadrilateral with vertices (2.2), (-1,1), (1,-1) and (-1,-1). 
Furthermore, bounds have been established for the 
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determinant value of information matrix for each 
sequentially generated design. The bounds reveal that the 
D-optimal measure generated by the search procedure is very 
close to the true unknown D-optimal design measure. 

Although D-optimality criterion is determinant-based, it is 
important to pay close attention to the variance of prediction 
when constructing D-optimal designs. This is because the 
determinant of information matrix may not monotonically 
increase at every phase or vicinity of the search. Since 
D-optimality is achieved at the point where the variance of 
prediction approximately equals the number of model 
parameters, paying close attention to the variance of 
prediction becomes a helpful rule of thumb for convergence 
to optimality.  

APPENDIX A 
MATLAB OUTPUT_ Design Filtering and 
Reconstruction Starting design 
 
N=5 
>> det((A'*A)/5)= 0.0058 
>> B*(5*inv(A'*A))*B' = 5.0000 
>> C*(5*inv(A'*A))*C'=43.3011 
>> D*(5*inv(A'*A))*D'=61.7426 
>> E*(5*inv(A'*A))*E'=30.2587 
>> F*(5*inv(A'*A))*F'=5.0000 
>> G*(5*inv(A'*A))*G'=69.1991 
>> H*(5*inv(A'*A))*H'=33.8518 
>> I*(5*inv(A'*A))*I' 
    3.5937 
>> J*(5*inv(A'*A))*J' 
3.7380 
>> K*(5*inv(A'*A))*K' 
    4.2187 
>> L*(5*inv(A'*A))*L' 
   61.1866 
>> M*(5*inv(A'*A))*M' 
  169.1710 
>> N*(5*inv(A'*A))*N' 
   59.3537 
>> O*(5*inv(A'*A))*O' 
    9.9851 
>> P*(5*inv(A'*A))*P' 
    5.0000 
>> Q*(5*inv(A'*A))*Q' 
   14.3325 
>> R*(5*inv(A'*A))*R' 
   94.1334 
>> S*(5*inv(A'*A))*S' 
  181.8960 
>> T*(5*inv(A'*A))*T' 
   24.4992 
>> U*(5*inv(A'*A))*U' 
    5.4687 
>> V*(5*inv(A'*A))*V' 

    8.5222 
>> W*(5*inv(A'*A))*W' 
    3.5937 
>> X*(5*inv(A'*A))*X' 
   46.8340 
>> Y*(5*inv(A'*A))*Y' 
   92.1282 
>> Z*(5*inv(A'*A))*Z' 
   34.0297 
>> (ZA)*(5*inv(A'*A))*(ZA)' 
   15.0000 
>> (ZB)*(5*inv(A'*A))*(ZB)' 
   75.7564 
>> (ZC)*(5*inv(A'*A))*(ZC)' 
  100.0163 
>> (ZD)*(5*inv(A'*A))*(ZD)' 
   57.7140 
>> (ZE)*(5*inv(A'*A))*(ZE)' 
    5.0000 
>> (ZF)*(5*inv(A'*A))*(ZF)' 
    5.0000 
>> (ZG)*(5*inv(A'*A))*(ZG)' 
   54.2187 
>> (ZH)*(5*inv(A'*A))*(ZH)' 
  259.2856 
>> (ZI)*(5*inv(A'*A))*(ZI)' 
  449.2774 
>> (ZJ)*(5*inv(A'*A))*(ZJ)' 
  313.6530 
>> (ZK)*(5*inv(A'*A))*(ZK)' 
  127.2938 
>> (ZL)*(5*inv(A'*A))*(ZL)' 
  155.0000 
>> (ZM)*(5*inv(A'*A))*(ZM)' 
  320.8080 
>> (ZN)*(5*inv(A'*A))*(ZN)' 
  461.9177 
 
N=6 
>> det((A'*A)/6) 
    0.2169 
>> B*(6*inv(A'*A))*B' 
    4.1808 
>> C*(6*inv(A'*A))*C' 
    4.4356 
>> D*(6*inv(A'*A))*D' 
    4.4858 
>> E*(6*inv(A'*A))*E' 
    3.8654 
>> F*(6*inv(A'*A))*F' 
    4.9040 
>> G*(6*inv(A'*A))*G' 
    6.1498 
>> H*(6*inv(A'*A))*H' 
    5.2170 
>> I*(6*inv(A'*A))*I' 
    4.1484 
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>> J*(6*inv(A'*A))*J' 
    3.3957 
>> K*(6*inv(A'*A))*K' 
    2.4931 
>> L*(6*inv(A'*A))*L' 
    3.7699 
>> M*(6*inv(A'*A))*M' 
   10.2186 
>> N*(6*inv(A'*A))*N' 
    7.5252 
>> O*(6*inv(A'*A))*O' 
    6.0477 
>> P*(6*inv(A'*A))*P' 
    5.0259 
>> Q*(6*inv(A'*A))*Q' 
    3.9939 
>> R*(6*inv(A'*A))*R' 
    5.2811 
>> S*(6*inv(A'*A))*S' 
   11.3405 
>> T*(6*inv(A'*A))*T' 
    6.8927 
>> U*(6*inv(A'*A))*U' 
    5.9208 
>> V*(6*inv(A'*A))*V' 
    5.1636 
>> W*(6*inv(A'*A))*W' 
    4.1551 
>> X*(6*inv(A'*A))*X' 
    5.2247 
>> Y*(6*inv(A'*A))*Y' 
    8.7227 
>> Z*(6*inv(A'*A))*Z' 
    6.2603 
>> (ZA)*(6*inv(A'*A))*(ZA)' 
    3.8544 
>> (ZB)*(6*inv(A'*A))*(ZB)' 
    4.3026 
>> (ZC)*(6*inv(A'*A))*(ZC)' 
    4.3436 
>> (ZD)*(6*inv(A'*A))*(ZD)' 
    3.5114 
>> (ZE)*(6*inv(A'*A))*(ZE)' 
    4.1357 
>> (ZF)*(6*inv(A'*A))*(ZF)' 
    5.8178 
>> (ZG)*(6*inv(A'*A))*(ZG)' 
    2.7613 
>> (ZH)*(6*inv(A'*A))*(ZH)' 
    3.6925 
>> (ZI)*(6*inv(A'*A))*(ZI)' 
  6.4753 
>> (ZJ)*(6*inv(A'*A))*(ZJ)' 
    5.6474 
>> (ZK)*(6*inv(A'*A))*(ZK)' 
    3.9087 
>> (ZL)*(6*inv(A'*A))*(ZL)' 

   11.8344 
>> (ZM)*(6*inv(A'*A))*(ZM)' 
    5.7864 
>> (ZN)*(6*inv(A'*A))*(ZN)' 
    5.9357 
 
N=7 
>> det((A'*A)/7) 
    0.2983 
>> B*(7*inv(A'*A))*B' 
    4.8750 
>> C*(7*inv(A'*A))*C' 
    5.1277 
>> D*(7*inv(A'*A))*D' 
    5.1769 
>> E*(7*inv(A'*A))*E' 
    4.5095 
>> F*(7*inv(A'*A))*F' 
    5.5055 
>> G*(7*inv(A'*A))*G' 
    6.9058 
>> H*(7*inv(A'*A))*H' 
    5.6426 
>> I*(7*inv(A'*A))*I' 
    3.9665 
>> J*(7*inv(A'*A))*J' 
    3.0496 
>> K*(7*inv(A'*A))*K' 
    2.3789 
>> L*(7*inv(A'*A))*L' 
    4.3343 
>> M*(7*inv(A'*A))*M' 
   11.4717 
>> N*(7*inv(A'*A))*N' 
    7.8120 
>> O*(7*inv(A'*A))*O' 
    5.4885 
>> P*(7*inv(A'*A))*P' 
    4.2445 
>> Q*(7*inv(A'*A))*Q' 
    3.5671 
>> R*(7*inv(A'*A))*R' 
    5.8361 
>> S*(7*inv(A'*A))*S' 
   13.0825 
>> T*(7*inv(A'*A))*T' 
    7.2298 
>> U*(7*inv(A'*A))*U' 
    5.5405 
>> V*(7*inv(A'*A))*V' 
    4.6086 
>> W*(7*inv(A'*A))*W' 
    3.9211 
>> X*(7*inv(A'*A))*X' 
    5.8578 
>> Y*(7*inv(A'*A))*Y' 
   10.0678 
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>> Z*(7*inv(A'*A))*Z' 
    7.2941 
>> (ZA)*(7*inv(A'*A))*(ZA)' 
    4.3218 
>> (ZB)*(7*inv(A'*A))*(ZB)' 
    4.5483 
>> (ZC)*(7*inv(A'*A))*(ZC)' 
    4.5675 
>> (ZD)*(7*inv(A'*A))*(ZD)' 
    3.8664 
>> (ZE)*(7*inv(A'*A))*(ZE)' 
    4.8250 
>> (ZF)*(7*inv(A'*A))*(ZF)' 
    4.7119 
>> (ZG)*(7*inv(A'*A))*(ZG)' 
    2.2603 
>> (ZH)*(7*inv(A'*A))*(ZH)' 
    4.0923 
>> (ZI)*(7*inv(A'*A))*(ZI)' 
    7.5160 
>> (ZJ)*(7*inv(A'*A))*(ZJ)' 
    6.5600 
>> (ZK)*(7*inv(A'*A))*(ZK)' 
    4.5097 
>> (ZL)*(7*inv(A'*A))*(ZL)' 
    4.6450 
>> (ZM)*(7*inv(A'*A))*(ZM)' 
    3.6701 
>> (ZN)*(7*inv(A'*A))*(ZN)' 
    6.1930 
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