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Abstract  The Weibull and related models have been used in many applications for solving a variety of problems from 
many disciplines. Here we introduce a new family of distributions, namely Weibull-truncated negative binomial distribution 
(WTNB) and study some properties of it. Exponential-truncated negative binomial (ETNB) and Marshall-Olkin Weibull 
(MOW) distribution are special cases of this distribution. We have analyzed a real data set of serum creatinine values and 
found that this new distribution is a good fit to model the data, compared to Weibull, Gamma, Exponentiated Weibull, ETNB 
and MOW models. 
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1. Introduction 
The Weibull distribution is a very popular distribution for 

modeling lifetime data and for modeling phenomenon with 
monotone failure rates. The distribution is named after 
Waloddi Weibull who was the first to promote the usefulness 
of this to model the breaking strength of materials (Weibull, 
1939). A similar model was proposed earlier by Rosin and 
Rammler (1933) in the context of modeling the variability in 
the diameter of powder particles being greater than a specific 
size. The earlier known publication dealing with the Weibull 
distribution is a work by Fisher and Tippet (1928) where this 
distribution is obtained as the limiting distribution of the 
smallest extremes in a sample. Gumbel (1958) refers to the 
Weibull distribution as the third asymptotic distribution of 
the smallest extremes. The Weibull, and related models have 
been used in many applications, and for solving a variety of 
problems from many disciplines. Jayakumar and Girish 
(2015) studied some generalizations of Weibull distribution 
and related time series models. 

Marshall and Olkin (1997) proposed a new method of 
generating a family of distributions by introducing an 
additional parameter. Many authors have studied properties 
of various univariate distributions belonging to the family of 
Marshall-Olkin distributions, see, Alice and Jose (2003, 
2005), Ghitany et al. (2005, 2007) and Jayakumar and 
Thomas (2008). 

A generalization of the Marshall-Olkin distributions was  
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introduced by Nadarajah et al. (2013) as follows: Let 
𝑋𝑋1,𝑋𝑋2, …  be a sequence of independent and identically 
distributed random variables with survival function 𝐹𝐹�(𝑥𝑥). 
Le 𝑁𝑁 be a truncated negative binomial random variable 
with parameters 𝛼𝛼 ∈ (0,1) and 𝜃𝜃 > 0, that is,  

𝑃𝑃(𝑁𝑁 = 𝑛𝑛) =  𝛼𝛼𝜃𝜃

1−𝛼𝛼𝜃𝜃
�𝜃𝜃 + 𝑛𝑛 − 1

𝜃𝜃 − 1 � (1 − 𝛼𝛼)𝑛𝑛 , 𝑛𝑛 = 1,2, … . 

Consider  𝑈𝑈𝑁𝑁 = min(𝑋𝑋1,𝑋𝑋2 , … ,𝑋𝑋𝑁𝑁).  
Then 𝑃𝑃(𝑈𝑈𝑁𝑁 > 𝑥𝑥) =  𝐺̅𝐺(𝑥𝑥;𝛼𝛼,𝜃𝜃) 

=
𝛼𝛼𝜃𝜃

1 − 𝛼𝛼𝜃𝜃
��𝜃𝜃 + 𝑛𝑛 − 1

𝜃𝜃 − 1 � �(1 − 𝛼𝛼)𝐹𝐹�(𝑥𝑥)�𝑛𝑛
∞

𝑛𝑛=1

 

= 𝛼𝛼𝜃𝜃

1−𝛼𝛼𝜃𝜃
��𝐹𝐹(𝑥𝑥) + 𝛼𝛼𝐹𝐹�(𝑥𝑥)�−𝜃𝜃 − 1�           (1.1) 

Similarly, if 𝛼𝛼 > 1  and 𝑁𝑁  is a truncated negative   
binomial random variable with parameters 𝛼𝛼−1 and 𝜃𝜃 > 0, 
then 𝑉𝑉𝑁𝑁 = max(𝑋𝑋1,𝑋𝑋2 , … ,𝑋𝑋𝑁𝑁)  also has the survival 
function given in (1.1). Here note that in (1.1), if 𝛼𝛼 → 1, 
then 𝐺̅𝐺(𝑥𝑥;𝛼𝛼,𝜃𝜃) → 𝐹𝐹�(𝑥𝑥). If 𝜃𝜃 = 1, then this family reduces 
to the family of Marshall – Olkin distributions. Thus the 
family of distributions described in (1.1) is a generalization 
of the family of Marshall-Olkin distributions. 

This family can be interpreted as follows. Suppose the 
failure times of a device are observed. Every time a failure 
occurs the device is repaired to resume function. Suppose 
also that the device is deemed no longer useable when a 
failure occurs that exceeds a certain level of severity. Let 
𝑋𝑋1,𝑋𝑋2, …  denote the failure times and 𝑁𝑁  denote the 
number of failures. Then 𝑈𝑈𝑁𝑁 will represent the time to the 
first failure of the device and 𝑉𝑉𝑁𝑁 will represent the life 
time of the device. Thus this family can be used to model 
both the time to the first failure and the life time. 

The probability density function of (1.1) is 
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𝑔𝑔(𝑥𝑥;𝛼𝛼,𝜃𝜃) =  𝜃𝜃𝛼𝛼𝜃𝜃 (1−𝛼𝛼)𝑓𝑓(𝑥𝑥)

�1−𝛼𝛼𝜃𝜃��𝐹𝐹(𝑥𝑥)+𝛼𝛼𝐹𝐹�(𝑥𝑥)�𝜃𝜃+1     (1.2) 

The hazard rate function is given by 

ℎ(𝑥𝑥;𝛼𝛼, 𝜃𝜃) =  𝜃𝜃(1−𝛼𝛼)𝐹𝐹�(𝑥𝑥)ℎ𝐹𝐹(𝑥𝑥)

�𝐹𝐹(𝑥𝑥)+ 𝛼𝛼𝐹𝐹�(𝑥𝑥)��1−�𝐹𝐹(𝑥𝑥)+𝛼𝛼𝐹𝐹�(𝑥𝑥)�𝜃𝜃 �
    (1.3) 

where ℎ𝐹𝐹(𝑥𝑥) = 𝑓𝑓(𝑥𝑥)
𝐹𝐹�(𝑥𝑥)

 is the hazard rate corresponding to F. 

Nadarajah et al. (2013) introduced and studied a new 
family of distribution as exponential-truncated negative 
binomial distribution with parameters 𝛼𝛼,𝜃𝜃 and 𝜆𝜆  by 
substituting 𝐹𝐹�(𝑥𝑥) =  𝑒𝑒−𝜆𝜆𝜆𝜆 , 𝜆𝜆 > 0, 𝑥𝑥 > 0  in the survival 
function (1.1). 

That is, 

𝐺̅𝐺(𝑥𝑥;𝛼𝛼,𝜃𝜃, 𝜆𝜆) = 𝛼𝛼𝜃𝜃

1−𝛼𝛼𝜃𝜃
��1 − 𝑒𝑒−𝜆𝜆𝜆𝜆 + 𝛼𝛼𝑒𝑒−𝜆𝜆𝜆𝜆 �−𝜃𝜃 − 1�   (1.4) 

for 𝛼𝛼 > 0, 𝜃𝜃 > 0, 𝜆𝜆 > 0 and 𝑥𝑥 > 0.  
The paper is organized as follows. In section 2, we 

propose a new family of distributions, namely 
Weibull-truncated negative binomial distribution (WTNB). 
We study some properties of WTNB, such as the behavior 
of hazard rate, moments, Shannon and Renyi entropies and 
distributions of order statistics. Also the maximum 
likelihood method of estimation is used to obtain the 
estimates of parameters of WTNB. In section 3, we analyze 
a real data set of serum creatinine (mg.dL) values and found 
that WTNB is the most appropriate model for the data. The 
performance of the WTNB is compared to the well known 
models such as Weibull, Gamma, exponentiated Weibull, 
ETNB and Marshall-Olkin Weibull using AIC, BIC, K-S 
statistic and P-values.  

2. Weibull-Truncated Negative 
Binomial Distribution 

We propose a new family of distribution named as 
Weibull-truncated negative binomial (WTNB) distribution 
with parameters  𝛼𝛼 > 0 ,  𝜃𝜃 > 0 ,  𝑐𝑐 > 0  and 𝑥𝑥 > 0  by 
substituting 𝐹𝐹�(𝑥𝑥) =  𝑒𝑒−𝑥𝑥𝑐𝑐 , 𝑐𝑐 > 0, 𝑥𝑥 > 0  in the survival 
function (1.1). Then, 

 𝐺̅𝐺(𝑥𝑥;𝛼𝛼,𝜃𝜃, 𝑐𝑐) = 𝛼𝛼𝜃𝜃

1−𝛼𝛼𝜃𝜃
��1 − 𝑒𝑒−𝑥𝑥𝑐𝑐 + 𝛼𝛼𝑒𝑒−𝑥𝑥𝑐𝑐�

−𝜃𝜃
− 1�  (2.1) 

The probability density function of this distribution is 

 𝑔𝑔(𝑥𝑥;𝛼𝛼,𝜃𝜃, 𝑐𝑐) = (1−𝛼𝛼)𝜃𝜃𝜃𝜃 𝜃𝜃𝑐𝑐𝑥𝑥𝑐𝑐−1𝑒𝑒−𝑥𝑥
𝑐𝑐

�1−𝛼𝛼𝜃𝜃��1−𝑒𝑒−𝑥𝑥𝑐𝑐+𝛼𝛼𝑒𝑒−𝑥𝑥𝑐𝑐 �
𝜃𝜃+1   (2.2) 

The hazard rate function is given by 

ℎ(𝑥𝑥;𝛼𝛼, 𝜃𝜃, 𝑐𝑐) = (1−𝛼𝛼)𝜃𝜃𝜃𝜃𝑥𝑥𝑐𝑐−1𝑒𝑒−𝑥𝑥
𝑐𝑐

�1−𝑒𝑒−𝑥𝑥𝑐𝑐+𝛼𝛼𝑒𝑒−𝑥𝑥𝑐𝑐 �[1− �1−𝑒𝑒−𝑥𝑥𝑐𝑐+𝛼𝛼𝑒𝑒−𝑥𝑥𝑐𝑐 �
𝜃𝜃

]
 (2.3) 

The shape of density and hazard rate functions are shown 
in the following figures. 

The cumulative probabilities at different choices of 
parameters are computed by using MATHCAD software and 
the results are shown in Table 2.1. 

Some distributions arise as special cases of the 
WTNB(𝛼𝛼,𝜃𝜃, 𝑐𝑐) 
Case I : For 𝑐𝑐 = 1, 

 𝐺̅𝐺(𝑥𝑥;𝛼𝛼,𝜃𝜃) = 𝛼𝛼𝜃𝜃

1−𝛼𝛼𝜃𝜃
�(1 − 𝑒𝑒−𝑥𝑥 + 𝛼𝛼𝑒𝑒−𝑥𝑥)−𝜃𝜃 − 1�   (2.4) 

This is the survival function of two parameter 
Exponential-truncated negative binomial distribution. 
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Figure 2.1.  Probability density function of WTNB distribution 
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Figure 2.2.  Hazard rate function of WTNB distribution 

Table 2.1.  Cumulative Probabilities of WTNB distribution 

 
X 

𝜃𝜃 = 1, 
𝛼𝛼 = 0.5, 
𝑐𝑐 = 0.5 

𝜃𝜃 = 0.5, 
𝛼𝛼 = 0.5, 
𝑐𝑐 = 0.5 

𝜃𝜃 = 1.5, 
𝛼𝛼 = 0.5, 
𝑐𝑐 = 0.5 

𝜃𝜃 = 2, 
𝛼𝛼 = 0.5, 
𝑐𝑐 = 0.5 

0 0.775 0.996 0.805 0.833 
1 0.862 0.997 0.883 0.901 
2 0.903 0.997 0.918 0.932 

3 0.927 0.997 0.939 0.95 
4 0.944 0.997 0.953 0.961 
5 0.955 0.998 0.963 0.969 

6 0.963 0.998 0.97 0.975 
7 0.97 0.998 0.975 0.979 
8 0.974 0.998 0.979 0.983 

9 0.978 0.998 0.982 0.985 
10 0.982 0.999 0.985 0.988 
11 0.984 0.999 0.987 0.989 

12 0.986 0.999 0.989 0.991 
13 0.988 0.999 0.99 0.992 
14 0.989 0.999 0.991 0.993 

15 0.991 0.999 0.992 0.994 
16 0.992 0.999 0.993 0.995 
17 0.993 0.999 0.994 0.995 

18 0.994 0.999 0.995 0.996 
19 0.994 0.999 0.995 0.996 
20 0.995 0.999 0.996 0.997 

21 0.995 0.999 0.996 0.997 
22 0.996 0.999 0.997 0.997 
23 0.996 0.999 0.997 0.998 

24 0.997 0.999 0.997 0.998 
25 0.997 1 0.997 0.998 
26 0.997 1 0.998 0.998 

27 0.997 1 0.998 0.998 
28 0.998 1 0.998 0.998 

29 0.998 1 0.998 0.999 
30 0.998 1 0.998 0.999 
31 0.998 1 0.999 0.999 

32 0.998 1 0.999 0.999 
33 0.999 1 0.999 0.999 

 
Case II: For 𝜃𝜃 = 1, 

 𝐺̅𝐺(𝑥𝑥,𝛼𝛼, 𝑐𝑐) = 𝛼𝛼  𝑒𝑒−𝑥𝑥
𝑐𝑐

1−(1−𝛼𝛼)𝑒𝑒−𝑥𝑥𝑐𝑐
           (2.5) 

This is the survival function of Marshall-Olkin extended 
Weibull distribution with parameters 𝛼𝛼 and 𝑐𝑐. 
Case III: For 𝜃𝜃 = 1, 𝛼𝛼 = 1 

 𝐺̅𝐺(𝑥𝑥, 𝑐𝑐) = 𝑒𝑒−𝑥𝑥𝑐𝑐                (2.6) 
This is the survival function of one parameter Weibull 

distribution. 
Case IV: For 𝜃𝜃 = 1, 𝛼𝛼 = 2 

  𝐺̅𝐺(𝑥𝑥, 𝑐𝑐) = 2
1+𝑒𝑒𝑥𝑥𝑐𝑐

             (2.7) 

This is the survival function of the generalized half 
logistic distribution. 
Case V: When 𝛼𝛼 → 1, WTNB(𝛼𝛼,𝜃𝜃, 𝑐𝑐) reduces to the one 
parameter Weibull distribution. 

A random sample from WTNB(𝛼𝛼,𝜃𝜃, 𝑐𝑐) distribution can 
be simulated as  

𝑋𝑋 =  �− ln �1−𝛼𝛼�𝛼𝛼𝜃𝜃+𝑌𝑌�1−𝛼𝛼𝜃𝜃��
−1
𝜃𝜃

1−𝛼𝛼
��

1
𝑐𝑐

 for 𝑌𝑌~𝑈𝑈(0,1).  (2.8) 
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2.1. Moments 
Suppose that X has the WTNB(𝛼𝛼,𝜃𝜃, 𝑐𝑐) distribution. The nth moment can be written as 

 𝐸𝐸(𝑋𝑋𝑛𝑛) =  (1−𝛼𝛼)𝜃𝜃𝛼𝛼𝜃𝜃𝑐𝑐
(1−𝛼𝛼𝜃𝜃 ) ∫ 𝑥𝑥𝑛𝑛+𝑐𝑐−1𝑒𝑒−𝑥𝑥

𝑐𝑐

[1−(1−𝛼𝛼)𝑒𝑒−𝑥𝑥𝑐𝑐 ]𝜃𝜃+1 𝑑𝑑𝑑𝑑
∞

0                        (2.9) 

Taking 𝑢𝑢 = 𝑒𝑒−𝑥𝑥𝑐𝑐 , (2.9) reduces to 

 𝐸𝐸(𝑋𝑋𝑛𝑛) =  (1−𝛼𝛼)𝜃𝜃𝛼𝛼𝜃𝜃

(1−𝛼𝛼𝜃𝜃 ) ∫ (−log (𝑢𝑢)) 
𝑛𝑛
𝑐𝑐

[1−(1−𝛼𝛼)𝑢𝑢]𝜃𝜃+1 𝑑𝑑𝑑𝑑
1

0                          (2.10) 

If |1 − 𝛼𝛼| < 1, then by the series expansion 
(1 − 𝑥𝑥)−𝑚𝑚 = ∑ �𝑚𝑚 + 𝑘𝑘 − 1

𝑚𝑚 − 1 � 𝑥𝑥𝑘𝑘∞
𝑘𝑘=0 , equation (2.10) can be written as 

𝐸𝐸(𝑋𝑋𝑛𝑛) =  
(1 − 𝛼𝛼)𝜃𝜃𝛼𝛼𝜃𝜃

(1 − 𝛼𝛼𝜃𝜃)
��𝜃𝜃 + 𝑘𝑘

𝜃𝜃 � (1 − 𝛼𝛼)𝑘𝑘
∞

𝑘𝑘=0

�𝑢𝑢𝑘𝑘(− log𝑢𝑢)
𝑛𝑛
𝑐𝑐 𝑑𝑑𝑑𝑑

1

0

 

where ∫ 𝑢𝑢𝑘𝑘(− log𝑢𝑢)
𝑛𝑛
𝑐𝑐 𝑑𝑑𝑑𝑑1

0 =  
�𝑛𝑛𝑐𝑐 ��

𝑛𝑛
𝑐𝑐−1�… �𝑛𝑛𝑐𝑐−(𝑛𝑛−1)�

(𝑘𝑘+1)𝑛𝑛+1  

Therefore, 

       𝐸𝐸(𝑋𝑋𝑛𝑛) =  
(1−𝛼𝛼)𝜃𝜃𝛼𝛼𝜃𝜃�𝑛𝑛𝑐𝑐 ��

𝑛𝑛
𝑐𝑐−1�… �𝑛𝑛𝑐𝑐−(𝑛𝑛−1)�

(1−𝛼𝛼𝜃𝜃 )
∑ �𝜃𝜃 + 𝑘𝑘

𝜃𝜃 � (1−𝛼𝛼)𝑘𝑘

(𝑘𝑘+1)𝑛𝑛+1
∞
𝑘𝑘=0 .               (2.11) 

If |1 − 𝛼𝛼| < 𝛼𝛼, then we have 

𝐸𝐸(𝑋𝑋𝑛𝑛) =  (1−𝛼𝛼)𝜃𝜃
(1−𝛼𝛼𝜃𝜃 )𝛼𝛼 ∫

(− log (1−𝑢𝑢)) 
𝑛𝑛
𝑐𝑐

[1+�1−𝛼𝛼
𝛼𝛼 �𝑢𝑢]𝜃𝜃+1

𝑑𝑑𝑑𝑑1
0                               (2.12) 

Taking 𝑢𝑢 = 1 − 𝑣𝑣 in equation (2.12) and using equation (2.6.5.3) of Prudnikov et al. (1986), we have 

𝐸𝐸(𝑋𝑋𝑛𝑛) =  
(1 − 𝛼𝛼)𝜃𝜃

(1 − 𝛼𝛼𝜃𝜃)𝛼𝛼
�

(− log 𝑣𝑣) 
𝑛𝑛
𝑐𝑐

[1 + �1 − 𝛼𝛼
𝛼𝛼 � (1 − 𝑣𝑣)]𝜃𝜃+1

𝑑𝑑𝑑𝑑
1

0

 

=  
(1 − 𝛼𝛼)𝜃𝜃

(1 − 𝛼𝛼𝜃𝜃)𝛼𝛼
�(− log 𝑣𝑣)

𝑛𝑛
𝑐𝑐  

1

0

 

=  𝜃𝜃
1−𝛼𝛼𝜃𝜃

 ∑ �𝜃𝜃 + 𝑘𝑘
𝜃𝜃 � (−1)𝑘𝑘 �1−𝛼𝛼

𝛼𝛼
�
𝑘𝑘+1

∫ (− log𝑣𝑣)
𝑛𝑛
𝑐𝑐 (1 − 𝑣𝑣)𝑘𝑘1

0 𝑑𝑑𝑑𝑑 ∞
𝑘𝑘=0  

�(−1)𝑘𝑘 �𝜃𝜃 + 𝑘𝑘
𝜃𝜃 � �

1 − 𝛼𝛼
𝛼𝛼

�
𝑘𝑘

(1 − 𝑣𝑣)𝑘𝑘  
∞

𝑘𝑘=0

𝑑𝑑𝑑𝑑 

=
𝜃𝜃�𝑛𝑛𝑐𝑐 ��

𝑛𝑛
𝑐𝑐−1�… �𝑛𝑛𝑐𝑐−(𝑛𝑛−1)�

1−𝛼𝛼𝜃𝜃
∑ �𝜃𝜃 + 𝑘𝑘

𝜃𝜃 � (−1)𝑘𝑘 �1−𝛼𝛼
𝛼𝛼
�
𝑘𝑘+1

∑
(−1)𝑗𝑗(𝑘𝑘+1−𝑗𝑗)𝑗𝑗

𝑗𝑗!(𝑗𝑗+1)
𝑛𝑛
𝑐𝑐+1

𝑘𝑘
𝑗𝑗=0

∞
𝑘𝑘=0           (2.13) 

2.2. Shannon Entropy 
Entropy is a measure of variation or uncertainty. The Renyi entropy of a random variable with probability density function 

𝑔𝑔(. ) is defined as  

 𝐼𝐼𝑅𝑅(𝛾𝛾) =  1
1−𝛾𝛾

log∫ 𝑔𝑔𝛾𝛾(𝑥𝑥) 𝑑𝑑𝑑𝑑∞
0 , 𝛾𝛾 > 0, 𝛾𝛾 ≠ 1.                     (2.14) 

The Renyi entropy of WTNB(𝛼𝛼,𝜃𝜃, 𝑐𝑐) is  

𝐼𝐼𝑅𝑅(𝛾𝛾) =  
1

1 − 𝛾𝛾
log� �

(1 − 𝛼𝛼)𝜃𝜃𝛼𝛼𝜃𝜃𝑐𝑐𝑥𝑥𝑐𝑐−1𝑒𝑒−𝑥𝑥𝑐𝑐

(1 − 𝛼𝛼𝜃𝜃)(1 − (1 − 𝛼𝛼)𝑒𝑒−𝑥𝑥𝑐𝑐)𝜃𝜃+1�
𝛾𝛾

𝑑𝑑𝑑𝑑
∞

0
 

Letting 𝑢𝑢 = 𝑒𝑒−𝑥𝑥𝑐𝑐 , we have 

𝐼𝐼𝑅𝑅(𝛾𝛾) =  1
1−𝛾𝛾

log ��(1−𝛼𝛼)𝜃𝜃𝛼𝛼𝜃𝜃𝑐𝑐
�1−𝛼𝛼𝜃𝜃�

�
𝛾𝛾
∫ (− log 𝑢𝑢) 𝛾𝛾�1−1

𝑐𝑐�𝑢𝑢𝛾𝛾

�1−(1−𝛼𝛼)𝑒𝑒−𝑥𝑥𝑐𝑐 �
𝛾𝛾(𝜃𝜃+1)  𝑑𝑑𝑑𝑑 1

0 �                  (2.15) 

The Shannon entropy is given by 
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𝐸𝐸[− log𝑔𝑔(𝑋𝑋)] = log � 1−𝛼𝛼𝜃𝜃

(1−𝛼𝛼)𝜃𝜃𝛼𝛼𝜃𝜃𝑐𝑐
� − (𝑐𝑐 − 1)𝐸𝐸(log𝑋𝑋) + 𝐸𝐸(𝑋𝑋𝑐𝑐) + (𝜃𝜃 + 1) 𝐸𝐸�log�1 − (1 − 𝛼𝛼)𝑒𝑒−𝑋𝑋𝑐𝑐��    (2.16) 

2.3. Order Statistics 
Let 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛  are independent random variables having the WTNB (𝛼𝛼,𝜃𝜃, 𝑐𝑐) distribution. Let 𝑋𝑋𝑖𝑖:𝑛𝑛  denote the ith order 

statistic. The probability density function of 𝑋𝑋𝑖𝑖:𝑛𝑛  is  

𝑔𝑔𝑖𝑖:𝑛𝑛(𝑥𝑥;𝛼𝛼,𝜃𝜃, 𝑐𝑐) =  
𝑛𝑛!

(𝑖𝑖 − 1)! (𝑛𝑛 − 𝑖𝑖)!
 𝑔𝑔(𝑥𝑥;𝛼𝛼,𝜃𝜃, 𝑐𝑐) 𝐺𝐺𝑖𝑖−1(𝑥𝑥;𝛼𝛼,𝜃𝜃, 𝑐𝑐)𝐺̅𝐺𝑛𝑛−𝑖𝑖(𝑥𝑥;𝛼𝛼,𝜃𝜃, 𝑐𝑐) 

=  (−1)𝑛𝑛−𝑖𝑖𝑛𝑛 !(1−𝛼𝛼)𝜃𝜃𝛼𝛼𝜃𝜃 (𝑛𝑛+1−𝑖𝑖)𝑐𝑐 .𝑥𝑥𝑐𝑐−1𝑒𝑒−𝑥𝑥𝑐𝑐

(𝑖𝑖−1)!(𝑛𝑛−𝑖𝑖)!�1−𝛼𝛼𝜃𝜃�𝑛𝑛 �1−(1−𝛼𝛼)𝑒𝑒−𝑥𝑥𝑐𝑐 �
𝜃𝜃+1  �1 − 𝛼𝛼𝜃𝜃

�1−(1−𝛼𝛼)𝑒𝑒−𝑥𝑥𝑐𝑐 �
𝜃𝜃�
𝑖𝑖−1

�1 −  1

�1−(1−𝛼𝛼)𝑒𝑒−𝑥𝑥𝑐𝑐 �
𝜃𝜃�
𝑛𝑛−𝑖𝑖

.   (2.17) 

Using the binomial series expansion, the probability density function can be written as 

𝑔𝑔𝑖𝑖:𝑛𝑛(𝑥𝑥;𝛼𝛼,𝜃𝜃, 𝑐𝑐) =  
(−1)𝑛𝑛−𝑖𝑖𝑛𝑛!  𝛼𝛼𝜃𝜃(𝑛𝑛−𝑖𝑖)

(𝑖𝑖 − 1)! (𝑛𝑛 − 𝑖𝑖)! (1 − 𝛼𝛼𝜃𝜃)𝑛𝑛 ���𝑖𝑖 − 1
𝑘𝑘 �

𝑛𝑛−𝑖𝑖

𝑙𝑙=0

𝑖𝑖−1

𝑘𝑘=0

 �𝑛𝑛 − 𝑖𝑖
𝑙𝑙 �

(−1)𝑘𝑘+𝑙𝑙�1 − 𝛼𝛼𝜃𝜃(𝑘𝑘+𝑙𝑙+1)�
𝛼𝛼𝜃𝜃𝜃𝜃 (𝑘𝑘 + 𝑙𝑙 + 1)  

  𝑔𝑔(𝑥𝑥;𝛼𝛼,𝜃𝜃(𝑘𝑘 + 𝑙𝑙 + 1), 𝑐𝑐).                                                   (2.18) 
This shows that 𝑋𝑋𝑖𝑖:𝑛𝑛  is a finite mixture of WTNB random variables. 

2.4. Estimation 

For a given sample(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛), the log-likelihood function is given by 

log 𝐿𝐿(𝛼𝛼,𝜃𝜃, 𝑐𝑐) = 𝑛𝑛 log �(1−𝛼𝛼)𝜃𝜃𝛼𝛼𝜃𝜃 𝑐𝑐
1−𝛼𝛼𝜃𝜃

� + (𝑐𝑐 − 1)∑ log 𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖=1 − ∑ 𝑥𝑥𝑖𝑖𝑐𝑐𝑛𝑛

𝑖𝑖=1 − (𝜃𝜃 + 1)∑ log�1 − (1 − 𝛼𝛼)𝑒𝑒−𝑥𝑥𝑖𝑖
𝑐𝑐
�𝑛𝑛

𝑖𝑖=1     (2.19) 

The partial derivatives of the log-likelihood function with respect to the parameters are 

𝜕𝜕 log 𝐿𝐿
𝜕𝜕𝜕𝜕

= 𝑛𝑛�−1+(1−𝜃𝜃)𝛼𝛼𝜃𝜃+𝜃𝜃𝛼𝛼𝜃𝜃−1�
(1−𝛼𝛼)�1−𝛼𝛼𝜃𝜃�

+ 𝑛𝑛𝑛𝑛
𝛼𝛼

 −(𝜃𝜃 + 1)∑ 𝑒𝑒−𝑥𝑥𝑖𝑖
𝑐𝑐

1−(1−𝛼𝛼)𝑒𝑒−𝑥𝑥𝑖𝑖
𝑐𝑐

𝑛𝑛
𝑖𝑖=1                  (2.20) 

 𝜕𝜕 log 𝐿𝐿
𝜕𝜕𝜕𝜕

= 𝑛𝑛 log 𝛼𝛼
1−𝛼𝛼𝜃𝜃

+ 𝑛𝑛
𝜃𝜃
− ∑ log�1 − (1 − 𝛼𝛼)𝑒𝑒−𝑥𝑥𝑖𝑖

𝑐𝑐
�𝑛𝑛

𝑖𝑖=1                        (2.21) 

𝜕𝜕 log 𝐿𝐿
𝜕𝜕𝜕𝜕

= 𝑛𝑛
𝑐𝑐

+ ∑ log 𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖=1 − ∑ 𝑥𝑥𝑖𝑖𝑐𝑐 log 𝑥𝑥𝑖𝑖𝑛𝑛

𝑖𝑖=1  −(𝜃𝜃 + 1)(1 − 𝛼𝛼)∑ 𝑥𝑥𝑖𝑖
𝑐𝑐 log 𝑥𝑥𝑖𝑖𝑒𝑒

−𝑥𝑥𝑖𝑖
𝑐𝑐

1−(1−𝛼𝛼)𝑒𝑒−𝑥𝑥𝑖𝑖
𝑐𝑐

𝑛𝑛
𝑖𝑖=1            (2.22) 

 
Equating these partial derivatives equal to zero and 

solving these equations numerically, we get the maximum 
likelihood estimates of 𝛼𝛼,𝜃𝜃 and 𝑐𝑐. 

3. Application 
In this section, we analyze a real data set and found that 

WTNB distribution gives the best fit for the data. We 
consider a real data set of serum creatinine (mg/dL) value of 
300 samples reported on February 2nd, 2016 at the 
Biochemistry Laboratory of Govt. Medical College, Calicut, 
Kerala. The data are follows: 

0.83 1.05 1.37 1.11 0.26 0.39 0.30 0.66 0.65 0.74 0.71 
0.64 1.06 0.38 0.88 0.82 0.68 1.51 0.68 1.33 1.05 0.53 1.15 
0.77 0.86 1.03 1.21 1.22 1.69 1.70 1.02 0.17 0.79 0.34 0.40 
0.60 0.69 0.63 0.76 0.49 0.55 1.42 0.62 0.42 0.50 0.72 0.43 
0.46 0.88 1.35 0.48 1.43 0.57 0.58 0.39 0.99 0.85 1.00 0.85 
0.73 0.66 0.81 0.43 0.47 0.24 0.46 0.27 1.32 0.42 1.13 0.51 
0.59 0.72 1.29 0.58 0.35 0.80 0.93 1.13 0.90 0.67 0.98 0.73 
0.35 0.89 1.12 1.35 0.94 0.33 0.59 0.43 1.29 1.14 0.77 0.68 
0.38 0.73 0.48 0.33 1.03 0.68 0.47 0.61 0.84 1.00 0.71 1.15 
0.58 0.70 0.28 0.23 0.85 0.96 1.02 0.36 0.73 0.53 0.75 0.71 
0.62 0.71 0.69 1.25 1.09 0.44 0.86 0.67 0.81 1.30 0.60 0.56 

1.02 0.53 0.27 1.64 0.64 0.47 1.29 0.57 0.94 0.36 1.16 1.12 
1.07 0.75 1.13 1.34 0.43 1.09 0.79 1.58 0.56 0.83 0.99 1.05 
1.04 0.57 1.22 0.52 1.25 0.57 0.75 1.03 0.58 1.87 0.65 1.50 
0.57 0.16 1.27 0.81 0.64 1.33 0.94 1.44 0.83 1.02 0.82 1.27 
0.83 1.07 0.78 0.41 0.66 1.08 0.21 0.33 0.54 0.55 0.67 1.16 
0.93 0.81 0.49 0.68 0.49 0.79 1.26 0.58 0.43 0.88 0.51 1.58 
0.71 1.04 0.91 0.73 0.89 0.57 1.04 0.65 0.31 0.72 0.92 0.72 
0.53 0.92 0.54 1.08 1.20 0.37 0.88 1.33 0.56 1.15 0.71 0.39 
0.87 0.17 0.68 0.77 0.66 0.47 0.51 0.41 0.38 0.73 0.26 0.82 
0.84 0.85 0.40 1.05 0.35 0.69 0.71 1.14 0.79 0.94 0.53 0.34 
1.19 1.25 0.26 0.79 0.96 0.43 0.46 0.52 0.84 0.19 0.64 0.96 
0.97 0.72 1.62 1.12 1.11 0.77 0.79 0.63 0.49 1.04 1.42 0.79 
0.78 0.75 0.97 0.72 1.02 0.45 0.56 1.30 0.50 0.56 1.14 0.94 
1.37 1.39 1.07 1.02 0.99 0.76 1.43 0.33 1.32 0.78 1.44 0.51 
0.77  

Creatine is a chemical made by the body and is used to 
supply energy mainly to muscle. Serum creatinine is a 
chemical waste product of creatine. Creatinine is removed 
from the body entirely by the kidneys. If kidney function is 
not normal, the creatinine level will increase. The normal 
range of creatinine is about 0.7 to 1.3 mg/dL. 

The descriptive measures of the 300 samples are as 
follows: 
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Initially a histogram of the data is plotted and a normal 
curve is embedded in it and we observe that normal 

distribution is not suitable to model the data since the data is 
highly positively skewed. 

Table 3.1.  Descriptive statistics of Creatinine (mg/dL) 

Mean Median SD Skewness Kurtosis Min Max 

0.798 0.755 0.337 0.476 -0.221 0.16 1.87 

 

 

Figure 3.1.  Empirical structure of the serum creatinine data 

The P-P plot and Q-Q plot of the creatinine data is as follows 
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Figure 3.2.  P-P plot and Q-Q plot of the serum creatinine data 

Since the data shows a positively skewed nature, the symmetrical distributions will not be a suitable choice. So we fitted 
the data using WTNB with three parameters and compared with the well known distributions like Weibull, Gamma, 
Exponentiated Weibull, Marshall-Olkin Weibull and ETNB. For comparing the goodness of fit of the model we used the 
information criteria, Akaike Information Criterion (AIC = -2 log L+2k), Bayesian Information Criterion (BIC = -2log L+k log 
n) and the Kolmogorov-Smirnov statistic, where k is the number of unknown parameters, log L is the log-likelihood function 
value and n is the sample size. The results are presented in Table 3.2. 

Table 3.2.  Parameter estimates and goodness of fit statistics for various models fitted to the serum creatinine data 

Distribution Parameters AIC BIC K-S P value 
Weibull 

𝑓𝑓(𝑥𝑥; 𝜆𝜆, 𝑐𝑐) = 𝑐𝑐𝜆𝜆𝑐𝑐𝑥𝑥𝑐𝑐−1𝑒𝑒−(𝜆𝜆𝜆𝜆 )𝑐𝑐 ,   𝜆𝜆, 𝑐𝑐 > 0. 
𝜆̂𝜆 =1.11, 
𝑐̂𝑐 =2.55. 

183.8 184.7 0.0457 0.558 

Gamma 

𝑓𝑓(𝑥𝑥;𝛽𝛽, 𝜆𝜆) =
𝜆𝜆𝛽𝛽

Γ(𝛽𝛽) 𝑥𝑥
𝛽𝛽−1𝑒𝑒−𝜆𝜆𝜆𝜆 ,   𝛽𝛽, 𝜆𝜆 > 0. 

𝛽̂𝛽 =5.22, 
𝜆̂𝜆 =6.54. 

184.3 185.3 0.0432 0.6287 

Exponentiated Weibull 

𝑓𝑓(𝑥𝑥; 𝜆𝜆,𝜃𝜃, 𝑐𝑐) = 𝑐𝑐𝜆𝜆𝑐𝑐𝜃𝜃𝑥𝑥𝑐𝑐−1𝑒𝑒−(𝜆𝜆𝜆𝜆 )𝑐𝑐 �1 − 𝑒𝑒−(𝜆𝜆𝜆𝜆 )𝑐𝑐 �
𝜃𝜃−1

, 
𝜆𝜆,𝜃𝜃, 𝑐𝑐 > 0. 

𝜆̂𝜆 =1.36, 
𝜃𝜃� =1.66, 
𝑐̂𝑐 =1.95. 

183.1 184.6 0.0393 0.7428 

ETNB 

𝑓𝑓(𝑥𝑥;𝛼𝛼,𝜃𝜃, 𝜆𝜆) =
(1 − 𝛼𝛼)𝜃𝜃𝛼𝛼𝜃𝜃𝜆𝜆𝑒𝑒−𝜆𝜆𝜆𝜆

(1 − 𝛼𝛼𝜃𝜃)(1 − (1 − 𝛼𝛼)𝑒𝑒−𝜆𝜆𝜆𝜆 )𝜃𝜃+1  , 

𝛼𝛼,𝜃𝜃, 𝜆𝜆 > 0 

𝛼𝛼� =2.53, 
𝜃𝜃� =7.71, 
𝜆̂𝜆 =3.73. 

191.4 192.8 0.0482 0.4877 

Marshall-Olkin Weibull 

𝑓𝑓(𝑥𝑥;𝛼𝛼, 𝜆𝜆, 𝑐𝑐) =
𝛼𝛼𝛼𝛼𝜆𝜆𝑐𝑐𝑥𝑥𝑐𝑐−1𝑒𝑒−(𝜆𝜆𝜆𝜆 )𝑐𝑐

[1 − (1 − 𝛼𝛼)𝑒𝑒−(𝜆𝜆𝜆𝜆 )𝑐𝑐 ]2  , 

𝛼𝛼, 𝑐𝑐, 𝜆𝜆 > 0 

𝛼𝛼�=0.39, 
𝜆̂𝜆=0.91, 
𝑐̂𝑐=3.06. 

183.6 185.1 0.0358 0.8364 

WTNB 

𝑓𝑓(𝑥𝑥;𝛼𝛼,𝜃𝜃, 𝑐𝑐) =
(1 − 𝛼𝛼)𝜃𝜃𝛼𝛼𝜃𝜃𝑐𝑐 𝑥𝑥𝑐𝑐−1𝑒𝑒−𝑥𝑥𝑐𝑐

(1 − 𝛼𝛼𝜃𝜃)(1 − (1 − 𝛼𝛼)𝑒𝑒−𝑥𝑥𝑐𝑐)𝜃𝜃+1, 

𝛼𝛼,𝜃𝜃, 𝑐𝑐 > 0 

𝛼𝛼� =0.51, 
𝜃𝜃� =0.52,               
𝑐̂𝑐 =2.84. 

182.9 184.3 0.0338 0.8832 

From the above Table 3.2., we can see that the WTNB distribution is the suitable model for the given data. The probability 
plots for the fitted models are presented in figure 3.3. 
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Figure 3.3.  Fitted probability density function for the serum creatinine (mg/dL) data 
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We have used the nlm function of R software to compare 
the empirical distribution and the theoretical distribution of 
all the six distributions mentioned above. From the results 
out of the six fitted models, WTNB is closer to the empirical 
distribution of the serum creatinine data. The following 
figure shows the closeness of the distribution functions.   

 

 

Figure 3.4.  WTNB distribution function and empirical distribution 

4. Conclusions 
In the present paper, we have studied a new family of 

distributions, namely Weibull truncated negative binomial 
distributions. Some properties of this distribution such as 
hazard rate, moments, Shannon and Renyi entropies, 
distributions of order statistics are studied. This distribution 
is found to be the most appropriate model to fit the serum 
creatinine data compared to the Weibull, Gamma, 
Exponentiated Weibull, ETNB and MOW models. We hope 
that the new family will attract wider application in life time 
modeling.  
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