
International Journal of Statistics and Applications 2016, 6(3): 96-104 

DOI: 10.5923/j.statistics.20160603.02 

 

Higher Dimensional Linear Models: An Application to 

Shrimp Effort in the Gulf of Mexico (Years 2007-2014) 

Morteza Marzjarani 

NOAA, National Marine Fisheries Service, Southeast Fisheries Science Center, Galveston Laboratory, Galveston, USA 

 

Abstract  The issue of handling categorical along with continuous variables in linear models is always interesting and at 

the same time challenging. In this paper, a general linear model is extended to include both categorical and continuous 

predictors. Second order terms including interactions of categorical and continuous variables are discussed. Relations are 

defined, which map categorical variables onto continuous ones. A special case of such relation is where the levels of 

categorical variables are nested within the continuous variables hereafter called a “nested” model. The resulting models are 

then applied to estimate shrimp effort in the Gulf of Mexico for the years 2007 through 2014. A comparison of the results 

from each of the models is presented in the paper.  
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1. Introduction 

In building a model for a given data set(s), it is always 

interesting and sometimes necessary to include the impact of 

interactions between or among predictors in the model. 

Adding such interaction terms to a model can significantly 

increase the understanding of the relationships among the 

variables in the model and create more hypotheses, which 

can be tested. Analyzing interactions or more generally, 

relationships among continuous predictors, is a 

straightforward issue, but the problem becomes much more 

complex when categorical predictors are added to the 

models.  

Review of current literature on this issue shows that such 

relationships have been studied up to the analysis of variance 

and measuring interactions through some contrasts. However, 

the issue of estimation or prediction in such cases has yet to 

be fully addressed in the literature. The interaction between 

categorical and continuous variables is somewhat easy to 

handle so long as the categorical variables are binary or in a 

not too favorable way, the continuous variables can also be 

converted to binary categorical variables. Based on my 

review of the literature, none of the papers related to this 

topic have been published in the peer reviewed literature. See 

Benoit (2010), Templin (no date) for example. In this paper, 

I propose to convert the categorical variables to proper 

dummy codes, test interactions in the usual way, and use  

the results to estimate/predict the response variable. I also   
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propose to set up relations (functions as special cases) which 

map categorical variables onto continuous variables or 

predictors. A special case of such relation is the simple 

mapping of the categorical variables onto the continuous 

ones known as “nested” models.  

For the purpose of fishery management, the Gulf of 

Mexico (GOM) region is divided into twelve SEDAR1 zones 

(Figure 1a) and twenty-one statistical subareas (Figure 1b). 

Each SEDAR zone consists of a two-digit number, the first 

digit stands for "area", a number between 1 and 4 inclusive, 

and the next for "depth", a number between 1 and 3 

inclusive.  

The data files for this study, primarily consisted of three 

files (Analyst, AllocZoneLands, and Vessel) for each year. 

In the following, each file is described briefly.  

1.1. Definition and Composition of Data Files 

1.1.1. Analyst File (years 2007-2014) 

The analyst file is the legacy name of the analyst final 

table in the Gulf Shrimp System (GSS). This table contains 

the state trip ticket and port agent interview data for the Gulf 

of Mexico shrimp fishery. The GSS began in the late 1950s 

and contains shrimp landings (pounds) caught in the US Gulf 

of Mexico. There are several fields in this file. Some fields of 

interest to this study were: USCG vessel number (vessel), 

port (port), catch unload date (edate), statistical subarea, 

depth fathom zone, catch weight (pounds), and price per 

pound (priceppnd). After all the necessary corrections in the 

data sets collected from dealers and port agents are made, the 

Analyst file is generated via software owned by the National 

Marine Fisheries Service (NMFS). 
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1.1.2. AllocZoneLands file (years 2007-2014) 

The AllocZoneLands file is generated by the electronic 

logbook (ELB) analysis software. This file is the final output 

where landings reported in the GSS are matched to fishing 

effort reported by the ELB. The file contains an instrument 

identifier, the end date of the trip (edate), with pounds (lands), 

and effort (towdays-days fished) placed in per zone (a 

four-digit number where the first two digits are statistical 

subarea and the next two digits are depth fathom zone). 

1.1.3. Vessel File 

The vessel file is a combination of the ELB assignment 

data table and vessel characteristics data from the United 

States Coast Guard data tables. The assignments table 

contains the instrument device identifier (ELB) and the 

USCG documentation number (vessel). This is joined to the 

USCG data to provide additional information like 

horsepower and vessel length (length). 

 

 

Figure 1a.  Southeast Data Assessment Review (SEDAR) zones and statistical subarea and depth fathom zones in the Gulf of Mexico 

 

Figure 1b.  The Gulf of Mexico is divided into twenty-one statistical subareas (1-21) as shown 
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2. Method 

In order to develop a model for the shrimp effort 

estimation several steps had to be taken. The first step was to 

convert each Analyst file (2007 through 2014) into a new file 

called “Trips” based on the vessel id number, edate, and port. 

In addition, the weighted average price per pound (hereafter 

called wavgppnd) was computed and assigned as the price 

per pound for the corresponding trips in the Trips files. A 

non-monotone imputation method (Rosenbaum and Rubin, 

1983), Rubin (1987), Schafer (1997), and Yuan (2011) was 

used to fill in a few missing price per pound or pounds in the 

corresponding fields. In this paper, I identified two patterns: 

Monotone and Non-monotone (Arbitrary). A data set is said 

to be in monotone pattern if a triangle consisting of cells with 

missing value can be formed in the lower right corner (Figure 

2a). In other words, if in the i-th row, Yj is missing, all 

subsequent values must also be missing. An arbitrary 

(non-monotone) pattern does not follow any specific missing 

pattern (Figure 2b). It was important to recognize the missing 

patterns before imputation. 

 

Figure 2a.  A monotone pattern 

 

Figure 2b.  An arbitrary pattern 

Next, the resulting individual Trips file was merged to 

create a large file (hereafter called AllTrips) with 435,094 

records or trips, then merged with the individual 

AllocZoneLands files creating another large file hereafter 

AllocZoneLandsAll file with 65,530 records. The following 

step was to match the three data files AllTrips, 

AllocZoneLandsAll, and Vessel based on the common fields 

listed in Table 1 to create a file called “Match” with 61,232 

records each consisting of 18 variables. 

Table 1.  Common fields used in creating the Match file 

Files Common field 

Analyst (Trips), Vessel 

Analyst (Trips), AllocZoneLands 

Analyst (Trips), AllocZoneLands 

AllocZoneLands, Vessel 

vessel 

port of landing 

edate of landing 

box 

Since area and depth were considered as two independent 

variables to be included in the model, the zone field (see 

AlloczoneLands file) in the newly created Match file was 

split into two fields: statistical subarea (a number between 1 

and 21) and depth fathom zone (a number between 1 and 12). 

By using the conversion given in Figure 3, these two fields 

were then converted to area (a number between 1 and 4) and 

depth (a number between 1 and 3) representing the levels of 

the two categorical variables area and depth in the Match file 

respectively.  

 

Statistical subarea area Fathom zone depth depth 

 

1 − 9
10 − 12
13 − 17
18 − 21

            

1
2
3
4

         
1 − 2
3 − 6
7 − 12

             
1
2
3

  

Figure 3.  Conversion of statistical subareas (1 through 21) and depth 

fathom zones (1 through 12) into area (1 through 4) and depth (1 through 3) 

respectively 

Similarly, the calendar year was also placed into a 

three-level categorical variable, trimester (January-April, 

May-August, and September-December). The Match file 

then was run through the statistical models described below 

and parameters of the models were estimated.  

To estimate fishing effort (towdays), the Analyst files 

again were converted to trips using a similar approach 

deployed earlier but adding the SEDAR zone as another 

factor marking the end of a trip. Also, this field was split into 

area and depth for the two categorical variables area and 

depth included in each model. Since the vessel length was 

included as a continuous variable in the model, there was a 

need for adding this field to the Trips file. Several sources 

including the Vessel file (s) and the United States Coast 

Guard site were used to fill this field. A monotone 

imputation method (Rosenbaum and Rubin, 1983), Rubin 

(1987), Schafer (1997), and Yuan (2011) was deployed to fill 

the remaining missing vessel lengths. Finally, the resulting 

file with 147,037 records or trips was used to estimate effort 

generated by each model. 

2.1. The Model 

The purpose of this study was to extend a general linear 

model to include higher order terms. I began with a model 

consisting of first order terms of all continuous and 

categorical variables and the second terms of continuous 

variables as follows:  

yijk= µ +  𝛼𝑖 i xik +  𝛽𝑗𝑖 ij xik xjk +εijk, 

 i=1, 2,…m, j=1,2,…n, k=1,2,…p,  (2.1) 

In this model, μ is the overall mean, εijk is an iid 

(independently identically distributed) normally distributed 

random variable with mean 0 and standard deviation σ2 (that 

is, a homoscedastic model).  𝛼𝑖 i xik , and   𝛽𝑗𝑖 ij xik xjk 

represent the first and second order terms of continuous 
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variables length, lnlbs (natural logarithm of variable pound), 

and wavgppnd. Model (2.1) was written again below but this 

time the second terms were extended to include the 

categorical variables area, depth, trimester, year and their 

interactions. 

yijk= µ +  𝛼𝑖 i xik +  𝛽𝑗𝑖 ij xik xjk +εijk, 

i=1, 2, …, m, j=1, 2, …, n, k=1, 2, …, p,  (2.2) 

In the next step, the model was further developed to 

include relations among continuous and categorical variables. 

In general, a relation can be defined on two or more variables. 

Such a relation can be deployed as many-to-many, 

one-to-many, or many-to-one (function). 

yijk= µ +  𝛼𝑖 i xik+  𝛽𝑗𝑖 ij xik xjk + 𝛾𝑞 q Rq +εijk, 

q=1,2,3, i=1, 2, …, m, j=1, 2, …, n, k=1, 2, …, p.  (2.3) 

where Rq: A R+∪{0}, R+ is the set of positive real numbers, 

and A is a set consisting of some categorical variables. Each 

term in the sum  𝛾𝑞 qRq is a relation along with its 

corresponding unknown parameter, which is to be estimate. 

More precisely, here  

R1 : {area, depth, trimester}{length}  

R2 : {area, depth, trimester}{lnlbs} 

R3 : {area, depth, trimester}{wavgppnd}   (2.4) 

Each of these relations can take different forms. Defining 

such relation depends on the knowledge of the experimenter, 

but the more challenging part is the implementation of it. 

Even a slightly wrong implementation or a slightly improper 

relation would result in a totally different estimate for the 

response variable. Out of numerous possibilities for a 

many-to-one relation, one is of special interest where levels 

of the categorical variables are nested within each 

continuous variable, hereafter called Model (2.3) (to keep the 

model numbers in sequence). Figure 4 demonstrates a very 

simple case of a relation known as nested (or hierarchical) 

model where categorical variables are nested within 

continuous variables. 

 

 

 

 

Figure 4.  Categorical variables are nested within continuous variables 

Nesting of categorical variables within another categorical 

variable are discussed in the literature (Kriwoluzky and 

Stoltenberg, 2015), (Jung et al., 2008), (Yan et al., 2012). It 

should be mentioned that the definition of nested model used 

here is a bit more general than that used in these references. 

In this paper, a categorical variable is said to be nested within 

another variable (continuous or categorical) if its levels are 

mapped onto the second variable via a mathematical relation. 

The normality assumption of the error term was 

approximately satisfied (76%, 96%, and 99% for 1-sigma, 

2-sigma, and 3-sigma respectively). In order to test and 

select the significant parameters listed in models (2.1) 

through (2.3) two different and independent approaches were 

deployed. 

2.1.1. Approach 1 

In this approach, the usual method of testing the 

hypotheses 

    H0:  αi=0      vs    Ha: Not H0, i=1, 2, …, m 

    H0:  βj=0      vs    Ha: Not H0, j= 1, 2, …, n 

H0: γq=0       vs    Ha: Not H0 , q=1, 2, 3  (2.5) 

was used, parameters were tested and significant ones 

(p-value < 0.05) were included in the models. Due to a large 

number of significant parameters, the list was not included in 

this research. 

2.1.2. Approach 2 

In this totally independent and different approach, a 

selection method hereafter called “Selection” with backward 

elimination was used to choose a proper model with the 

commonly used significant levels 0.15 and 0.08 for entering 

into or removing predictors from the model respectively 

using either the optimum value for Adj. R-Sq or Mallows' Cp, 

Mallows (1973) and Gilmour (1996) for the selection of the 

model. In this paper, I deployed the commonly used form of 

Adj. R-Sq appearing in most introductory books in statistics. 

The Mallows’ Cp is an alternative criterion for selecting a 

model and it is defined as: 

Cp= SSEp / MSEfull - (n-2p)   (2.6) 

where SSEp is the error sum of squares with p predictors in 

the model, n is the sample size, and MSEfull is the error mean 

square for the full model. The Selection method stops when 

Cp is small or it is close (preferably less than or equal to) the 

number of parameters in the model. There are several other 

criteria one can use to select a model. As mentioned above, 

in this research, two of these criteria, Adj. R-Sq and Mallows’ 

Cp were used. 

3. Analysis/Results 

In this study, the relation was assumed to follow Figure (4), 

that is, a hierarchical model. After applying the models (2.1) 

through (2.3) the following results were obtained. Due to a 

very large number of significant parameters especially in 
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cases of models (2.2) and (2.3), these parameters were not 

listed in this research. Tables 2 through 5 display the shrimp 

efforts produced by models (2.1) through (2.3) by area along 

with some statistics of interest per year for areas 1, 2, 3, and 4 

(see Method section). In these tables, the “Total effort” 

column refers to the total days fished per year. 

To avoid redundancy, Approach 1 was selected and efforts 

generated by the models in the approach were categorized by 

area. Considering each area individually, in areas 1, 2, and 3, 

year was significant, but model was not. In area 4 neither 

year nor model was significant. 

Intuitively, since area 3 generally generated higher effort, 

one can conclude that the four areas should show a 

significant difference. Analysis showed that in fact areas 1 

through 4 were statistically different, but no significant 

differences were observed among years. A multiple 

comparison method was used to determine which pair (s) of 

effort means was (were) causing the impact of area to be 

significant. Out of few multiple comparison methods, 

Fisher’s Least Significant Difference, LSD, Hayter (1986) 

and Tukey’s Studentized Range test or known as HSD 

(Honestly Significant Difference), Tukey (1949) were 

deployed here.  

Tukey’s HSD=tuk,α/2  𝑀𝑆𝐸/(
1

𝑛1
+

1

𝑛2
)     (2.8) 

where tuk,α/2 is from Tukey’s studentized table based on α 

(significance level), n1 and n2 are the mean sample sizes, and 

MSE is the pooled variance (see an introductory book in 

statistics for definition). Tukey’s HSD is very similar to 

Fisher’s LSD except the values of tuk have been computed to 

take into account all the inter-dependencies of the different 

comparisons. Analysis showed that based on the calculated 

Tukey’s HSD=5,853.6, 3,989.6, and 3,018.4 or Fisher’s 

LSD= 4,367.4, 2,976.7, and 2,252 with α=0.05 for efforts 

generated by models (2.1) through (2.3) respectively, three 

distinct categories A, B, and C were recognized. Area 3 and 

area 4 were placed in two distinct categories A and B, and 

areas 1 and 2 were placed in the last category C. That is, there 

was no significant difference between the mean efforts in 

areas 1 and 2, but area 3 and area 4 were statistically different 

from each other and from areas 1 and 2.  

Table 6 shows the efforts produced by model (2.1) through 

(2.3) for both Approach 1 and Approach 2. There is no 

significant difference among the models in this table 

(p-value>0.05). 

 

 

Table 2.  Shrimp effort generated by Models (2.1) through (2.3) in Approach 1 for years 2007 through 2014 in area 1 in the Gulf of Mexico 

   Model(2.1)    Model(2.2)   

Year 
No. 

Obs. 

Total 

effort 
Mean 

Std 

Dev 

95% Conf. 

interval 

Total 

effort 
Mean 

Std 

Dev 

95% Conf. 

interval 

2007 

2008 

2009 

2010 

2011 

2012 

2013 

2014 

Total 

2,546 

2,335 

3,178 

2,580 

2,633 

2,332 

1,615 

1,771 

18,990 

4,633 

4,320 

6,091 

6,102 

5,106 

4,540 

2,865 

4,605 

38,990 

1.82 

1.85 

1.92 

2.37 

1.94 

1.95 

1.77 

2.60 

2.01 

2.09 

2.56 

2.88 

3.26 

3.02 

3.10 

2.99 

3.93 

2.99 

(1.74, 1.90) 

(1.75, 1.95) 

(1.82, 2.02) 

(2.24, 2.49) 

(1.82, 2.05) 

(1.82, 2.07) 

(1.63, 1.92) 

(2,42, 2.78) 

(1.97, 2.06) 

4,865 

4,394 

6,397 

6,334 

4,769 

5,433 

2,410 

3,815 

38,415 

1.91 

1.88 

2.01 

2.45 

1.81 

2.33 

1.49 

2.15 

2.02 

2.36 

2.75 

3.01 

3.57 

2.98 

4.02 

2.37 

3.28 

3.11 

(1.82, 2.00) 

(1.77, 1.99) 

(1.91, 2.12) 

(2.32, 2.59) 

(1.70, 1.92) 

(2.17, 2.49) 

(1.38, 1.61) 

(2.00, 2.31) 

(1.98, 2.07) 

Table 2- continued.  Shrimp effort generated by Models (2.1) through (2.3) in Approach 1 for years 2007 through 2014 in area 1 in the Gulf of Mexico 

   Model(2.3)   

Year 
No. 

Obs. 

Total 

effort 
Mean 

Std 

Dev 

95% Conf. 

interval 

2007 

2008 

2009 

2010 

2011 

2012 

2013 

2014 

Total 

2,546 

2,335 

3,178 

2,580 

2,633 

2,332 

1,615 

1,771 

18,990 

4,336 

4,338 

6,519 

5,792 

4,752 

4,228 

2,775 

3,876 

36,616 

1.70 

1.86 

2.05 

2.25 

1.80 

1.81 

1.72 

2.19 

1.93 

2.26 

2.94 

4.26 

3.30 

3.10 

3.24 

3.81 

3.83 

3.40 

(1.65,1.79) 

(1.74, 1.98) 

(1.90, 2.20) 

(2.12, 2.37) 

(1.69, 1.92) 

(1.68, 1.94) 

(1.53, 1.90) 

(2.01, 2.37) 

(1.88, 1.98) 
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Table 3.  Shrimp effort generated by Models (2.1) through (2.3) in Approach 1 for years 2007 through 2014 in area 2 in the Gulf of Mexico 

   Model(2.1)    Model(2.2)   

Year 
No. 

Obs. 

Total 

effort 
Mean 

Std 

Dev 

95% Conf. 

interval 

Total 

effort 
Mean 

Std 

Dev 

95% Conf. 

interval 

2007 

2008 

2009 

2010 

2011 

2012 

2013 

2014 

Total 

2,892 

2,201 

2,049 

828 

1,539 

2,132 

2,041 

2,008 

15,690 

7,260 

6,430 

6,927 

2,635 

5,157 

6,222 

6,300 

6,870 

47,802 

2.51 

2.92 

3.38 

3.18 

3.35 

2.92 

3.09 

3.42 

3.05 

3.16 

9.01 

4.26 

3.81 

4.87 

3.18 

3.95 

4.11 

4.93 

(2.40, 2.63) 

(2.54, 3.30) 

(3.20, 3.57) 

(2.92, 3.44) 

(3.11, 3.59) 

(2.78, 3.05) 

(2.92, 3.26) 

(3.24, 3.60) 

(2.97, 3.12) 

8,291 

7,499 

7,753 

1,962 

5,376 

6,619 

4,871 

5,022 

47,393 

2.87 

3.41 

3.78 

2.37 

3.49 

3.10 

2.39 

2.50 

3.02 

3.66 

16.61 

4.85 

2.91 

5.79 

3.44 

2.49 

2.75 

7.19 

(2.73, 3.00) 

(2.71, 4.10) 

(3.57, 3.99) 

(2.17, 2.57) 

(3.21, 3.78) 

(2.96, 3.25) 

(2.28,2.49) 

(2.38, 2.62) 

(2.91, 3.13) 

Table 3- continued.  Shrimp effort generated by Models (2.1) through (2.3) in Approach 1 for years 2007 through 2014 in area 2 in the Gulf of Mexico 

   Model(2.3)   

Year 
No. 

Obs. 

Total 

effort 
Mean 

Std 

Dev 

95% Conf. 

interval 

2007 

2008 

2009 

2010 

2011 

2012 

2013 

2014 

Total 

2,892 

2,201 

2,049 

828 

1,539 

2,132 

2,041 

2,008 

15,690 

6,861 

5,755 

6,832 

2,411 

4,524 

6,173 

5,447 

5,708 

43,713 

2.37 

2.61 

3.33 

2.91 

2.94 

2.90 

2.67 

2.84 

2.79 

3.04 

6.98 

4.39 

3.85 

3.66 

3.27 

3.47 

3.75 

4.25 

(2.26, 2.48) 

(2.32, 2.91) 

(3.14, 3.52) 

(2.65, 3.17) 

(2.76, 3.12) 

(2.76, 3.03) 

(2.52, 2.82) 

(2.68, 3.01) 

(2.72, 2.85) 

Table 4.  Shrimp effort generated by Models (2.1) through (2.3) in Approach 1 for years 2007 through 2014 in area 3 in the Gulf of Mexico 

   Model(2.1)    Model(2.2)   

Year No. Obs. Total effort Mean Std Dev 
95% Conf. 

interval 
Total effort Mean Std Dev 

95% Conf. 

interval 

2007 

2008 

2009 

2010 

2011 

2012 

2013 

2014 

Total 

11,167 

8,050 

9,252 

7,526 

7,830 

9,176 

9,085 

7,158 

69,244 

36,018 

26,913 

33,873 

28,381 

29,049 

35,966 

34,142 

31,670 

256,012 

3.23 

3.34 

3.66 

3.77 

3.71 

3.92 

3.76 

4.42 

3.70 

4.09 

4.78 

4.83 

4.51 

4.72 

5.11 

4.81 

5.34 

4.77 

(3.15, 3.30) 

(3.24, 3.45) 

(3.56, 3.76) 

(3.66, 3.87) 

(3.61, 3.81) 

(3.82, 4.02) 

(3.66, 3.86) 

(4.30, 4.55) 

(3.66, 3.73) 

39,425 

28,433 

33,934 

29,274 

28,261 

35,276 

26,680 

26,961 

248,242 

3.53 

3.53 

3.67 

3.89 

3.61 

3.84 

2.94 

3.77 

3.59 

4.56 

5.26 

4.86 

5.08 

4.78 

4.97 

3.04 

4.15 

4.63 

(3.45, 3.62) 

(3.42, 3.65) 

(3.57, 3.77) 

(3.77, 4.00) 

(3.50, 3.72) 

(3.79, 3.95) 

(2.87, 3.00) 

(3.67, 3.86) 

(3.55, 3.62) 

Table 4- continued.  Shrimp effort generated by Models (2.1) through (2.3) in Approach 1 for years 2007 through 2014 in area 3 in the Gulf of Mexico 

   Model(2.3)   

Year 
No. 

Obs. 

Total 

effort 
Mean 

Std 

Dev 

95% Conf. 

interval 

2007 

2008 

2009 

2010 

2011 

2012 

2013 

2014 

Total 

11,167 

8,050 

9,252 

7,526 

7,830 

9,176 

9,085 

7,158 

69,244 

38,069 

28,820 

36,171 

29,624 

29,292 

37,665 

34,063 

32,684 

266,391 

3.41 

3.58 

3.91 

3.94 

3.74 

4.10 

3.75 

4.57 

3.84 

4.91 

5.55 

5.67 

5.15 

5.31 

6.29 

5.40 

5.97 

5.54 

(3.32, 3.50) 

(3.46, 5.63) 

(3.79,4.03) 

(3.82, 4.05) 

(3.62, 3.86) 

(3.98, 4.23) 

(3.64, 3.86) 

(4.43, 4.70) 

(3.81, 3.89) 
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Table 5.  Shrimp effort generated by Models (2.1) through (2.3) in Approach 1 for years 2007 through 2014 in area 4 in the Gulf of Mexico 

   Model(2.1)    Model(2.2)   

Year No. Obs. Total effort Mean Std Dev 
95% Conf. 

interval 
Total effort Mean Std Dev 

95% Conf. 

interval 

2007 

2008 

2009 

2010 

2011 

2012 

2013 

2014 

Total 

6,667 

5,777 

5,871 

5,234 

4,891 

5,000 

5,056 

4,617 

43,113 

18,060 

16,880 

20.175 

15,525 

19,175 

17,122 

21,288 

23,215 

151,439 

2.71 

2.92 

3.44 

2.97 

3.92 

3.42 

4.21 

5.03 

3.51 

2.92 

3.31 

4.18 

3.44 

4.45 

4.30 

5.09 

5.67 

4.24 

(2.64, 2.78) 

(2.84, 3.01) 

(3.33, 3.54) 

(2.87, 3.06) 

(3.80, 4.05) 

(3.31, 3.54) 

(4.07, 4.35) 

(4.86, 5.19) 

(3.47, 3.55) 

16,691 

17,207 

19,353 

16,657 

19,436 

17,841 

23,817 

13,276 

144,278 

2.50 

2.98 

3.30 

3.18 

3.97 

3.57 

4.71 

2.88 

3.35 

2.80 

3.47 

4.03 

3.93 

4.81 

4.66 

4.99 

3.01 

4.05 

(2.44, 2.57) 

(2.89, 3.07) 

(3.19, 3.40) 

(3.08, 3.29) 

(3.34, 4.11) 

(3.44, 3.70) 

(4.57, 4.85) 

(2.79, 2.96) 

(3.31, 3.38) 

Table 5- continued.  Shrimp effort generated by Models (2.1) through (2.3) in Approach 1 for years 2007 through 2014 in area 4 in the Gulf of Mexico 

   Model(2.3)   

Year 
No. 

Obs. 

Total 

effort 
Mean 

Std 

Dev 

95% Conf. 

interval 

2007 

2008 

2009 

2010 

2011 

2012 

2013 

2014 

Total 

6,667 

5,777 

5,871 

5,234 

4,891 

5,000 

5,056 

4,617 

43,113 

15,432 

14,610 

17,405 

14,012 

16,678 

15,221 

18,055 

20,021 

131,435 

2.31 

2.53 

2.96 

2.68 

3.41 

3.04 

3.57 

4.34 

3.05 

2.82 

3.32 

3.83 

3.51 

4.06 

4.61 

4.90 

4.84 

4.03 

(2.25, 2.38) 

(2.44, 2.61) 

(2.87, 3.06) 

(2.58, 2.77) 

(3.29, 3.52) 

(2.92, 3.17) 

(3.44, 3.71) 

(4.20, 4.48) 

(3.01, 3.09) 

Table 6.  Number of trips and effort generated per year for models (2.1) through (2.3) within approach 

  Approach 1    Approach 2  

  Model (2.1) Model (2.2) Model (2.3) Model (2.1) Model (2.2) Model (2.3) 

Year No. of trips       

2007 

2008 

2009 

2010 

2011 

2012 

2013 

2014 

Total 

Mean 

23,272 

18,363 

20,350 

16,168 

16,893 

18,640 

17,797 

15,554 

147,037 

 

65,972 

54,542 

67,067 

52,643 

58,488 

63,851 

64,595 

66,361 

493,519 

61,690 

69,271 

57,532 

67,437 

54,227 

57,842 

65,169 

57,777 

49,074 

478,329 

59,791 

64,701 

53,523 

66,927 

51,840 

55,246 

63,288 

60,341 

62,289 

478,155 

59,769 

63,145 

51,864 

64,710 

50,463 

55,432 

60,738 

60,471 

60,464 

467,287 

58,411 

69,301 

56,087 

67,938 

54,365 

58,788 

65,357 

50,386 

56,963 

479,187 

59,898 

62,394 

51,040 

64,036 

50,287 

54,145 

60,570 

60,668 

58,938 

462,077 

57,760 

Table 7 displays the adjusted R-Sq, CP, the number of parameters and also the number of significant parameters left in the 

model. 

Table 7.  Adj. R-Sq, Cp, and number of parameters for models (2.1) through (2.3) within Approach1 and Approach 2 (including levels of categorical 
variables in Approach 1 with the last level of each as reference) 

  Approach 1   Approach 2  

 Model (2.1) Model (2.2) Model (2.3) Model (2.1) Model (2.2) Model (2.3) 

Adj. R-Sq 

Cp 

No. of sig. parameters in 

the model 

Total No. of parameters in 

the model 

0.8295 

-------- 

 

18 

 

24 

0.8387 

-------- 

 

84 

 

110 

0.8366 

-------- 

 

98 

 

125 

0.8387 

17.21956 

 

18 

 

--------- 

0.8387 

82.51035 

 

84 

 

---------- 

0.8366 

121.31675 

 

121 

 

---------- 
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In Approach 2, the selection process stopped revising the 

model when the optimum value for the R-Sq was reached or 

when the CP was close to the number of parameters in the 

model. 

4. Discussion 

The goal of this research was to develop a more complex 

model by including higher order terms such as interactions 

for the shrimp effort estimation in the Gulf of Mexico. Three 

possibilities for the model were considered along with two 

different approaches. At the first attempt, in the second 

approach, year was included in the relations along with area, 

depth and trimester. While attempting to estimate the effort, 

the file became large (over 800 parameters in the model). 

Subsequently, year was removed from the relations, but still 

was implemented as a categorical variable in the all models. 

The standard deviation in area 2, year 2008, was unusually 

large. Further review showed that there was a record in the 

raw Analyst file with 1,397,516 pounds of shrimp reported. 

Although very high, considering the other related fields in 

this file, this number seemed reasonable. The most likely 

possibility is that, this could have been the result of putting 

several records together and reporting it as one record. 

Fortunately, this record did not contribute to the Match file, 

and therefore, the parameter estimates were not affected by 

this record. A part of Table 3 was reproduced after removing 

this record completely (Table 8). This resulted in a reduction 

of 722 towdays. 

Table 8.  Reproduced: Shrimp effort generated by Models (2.1) through 
(2.3) in Approach 1 for years 2007 through 2014 in Statistical Area 2 in the 
Gulf of Mexico after removing the record reported with high pounds 

   Model (2.2)   

Year 
No. 

Obs. 

Total 

effort 
Mean 

Std 

Dev 

95% Conf. 

interval 

2007 

2008 

2009 

2010 

2011 

2012 

2013 

2014 

Total 

2,892 

2,200 

2,049 

828 

1,539 

2,132 

2,041 

2,008 

15,690 

8,291 

6,737 

7,753 

1,962 

5,376 

6,619 

4,871 

5,022 

46,631 

2.87 

3.06 

3.78 

2.37 

3.49 

3.10 

2.39 

2.50 

3.02 

3.66 

3.96 

4.85 

2.91 

5.79 

3.44 

2.49 

2.75 

7.19 

(2.73, 3.00) 

(2.90, 3.23) 

(3.57, 3.99) 

(2.17, 2.57) 

(3.21, 3.78) 

(2.96, 3.25) 

(2.28,2.49) 

(2.38, 2.62) 

(2.91, 3.13) 

Alternatively, the value in this field was assumed missing 

and an MCMC imputation method (Yuan, 2011) was used 

and the hypothetically missing value was estimated at 

4,551.87 resulting in the reduction of 463 towdays.  

Not surprisingly, using the optimum value for either Adj. 

R-Sq or Cp to select the model produced the same results. 

Generally, one of selection criteria, Adj. R-Sq or Cp (or 

others) is sufficient for selecting a model. 

As table 6 shows, the mean efforts generated by Approach 

1 and Approach 2 are relatively close (the range is 3,930). 

Also, according to Table 7 Adj. R-Sq values for Models (2.2), 

and (2.3) under Approach 1 and all models under Approach 2 

were virtually the same. One interpretation of these could be 

the fact that the models were selected properly and any of 

these models could be used as a candidate for the effort 

estimation at this time.   

5. Conclusions 

In this research several models and methods were 

deployed and efforts were estimated. Even though models 

and methods were completely independent of each other, the 

results were within a striking distance, which could be 

interpreted as the proper selection of the models. A method 

for prediction or estimation of the response variable in the 

presence of categorical variables was proposed. In addition, 

a general linear model was extended to include a relation (s), 

which could be implemented in special cases such as nested 

models. It is very important to make sure that the relations 

among independent variables are defined and implemented 

correctly. Familiarity with mathematical relations, modeling, 

and the data set(s) are essential to the accuracy of both 

definition and implementation of such relations. Definition 

of nested models appearing in literature was extended to 

include the mapping of categorical variables onto the 

continuous or categorical variables. The findings in this 

research will provide methods for estimation/prediction in 

linear models in the presence of both continuous and 

categorical variables and will provide a more general and 

flexible method for dealing with relations (interaction as a 

special case) among such predictors. 

 
1The term SEDAR stands for South East Data, 

Assessment, and Review is the cooperative process 

established in 2002 by which stock assessment projects are 

conducted in NOAA Fisheries' Southeast Region. SEDAR 

was initiated to improve planning and coordination of stock 

assessment activities and to improve the quality and 

reliability of assessments (http://sedarweb.org). 

The views expressed in this article are the author's own 

and do not necessarily represent those of NOAA or its 

affiliates. 
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