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Abstract  Research has shown that prevalence of childhood stunting in Namibia is currently about 24% [6]. However, 
there has not been in-depth statistical modelling of childhood stunting done in Namibia. The main objective of this study was 
to fit a Bayesian additive quantile regression model with structured spatial effects for severe childhood stunting in Namibia. 
The 2013 Namibia Demographic and Health Survey (DHS) data was used in this study. Statistical inference used in this study 
was fully Bayesian using R-INLA package. Significant determinants of severe childhood stunting ranged from 
socio-demographic factors to child and maternal factors. In particular, we found that severely stunted children were those 
belonging to male headed households, dwelling in rural residences, whose mothers had low education, with frequent 
exposure to diarrhoea, with HIV+ status, and belonging to poor households, Furthermore, child age and duration of 
breastfeeding had significant nonlinear effects on severe childhood stunting. We also observed significant positive structured 
spatial effects on severe childhood stunting only in Ohangwena, Kavango, Hardap, and the Karas regions. We recommend 
that childhood malnutrition policy makers should consider timely interventions based on risk factors as identified in this 
paper including spatial targets of interventions. We further recommend that maternity leave be extended to six months to 
allow optimal breastfeeding especially to mothers with busy work schedule. 

Keywords  Bayesian inference, Spatial quantile regression, INLA approach, ICAR models, Severe childhood stunting 

 

1. Introduction 
Childhood undernutrition has severe adverse growth 

effects on a child. An undernourished child is more likely to 
be sick and die [1]. In sub-Sahara Africa, this problem often 
leads to more than 30% of deaths in children below five 
years annually [2]. Undernutrition is also a strong indicator 
of retarded growth [3], impaired cognitive and behaviour 
development [5], poor school performance, and lower 
working capacity [4]. If not corrected, it can slow down 
economic growth and increase poverty levels. Furthermore, 
it can prevent a nation from meeting its full potential through 
loss in productivity, cognitive capacity and increased cost in 
health care [5]. The indicators of undernutrition are stunting, 
wasting and underweight. 

The reduction of childhood malnutrition is the United 
Nations Millennium Development Goal (MDG) number 1 [2, 
4], which aims at halving the proportion of children suffering 
from hunger by 2015. In addition, it has direct impact on the 
MDG number 4 which aims at reducing the under-five 
mortality rate by two-thirds by 2015 [2, 4]. In order to attain 
both MDG1 and MDG4, various malnutrition intervention 
projects have ever been launched in Namibia since 2007. 
However, no appropriate  in-depth  evaluation  has been  

 
* Corresponding author: 
omtambo@gmail.com (Owen P. L. Mtambo) 
Published online at http://journal.sapub.org/statistics 
Copyright © 2016 Scientific & Academic Publishing. All Rights Reserved 

made to statistically understand the socio-demographic 
determinants and spatial variation of severe childhood 
malnutrition in Namibia. Research has shown that the 
prevalence of childhood stunting in Namibia is currently 
about 24% [6]. The main aim of this study was to assess 
socio-demographic determinants and geographical variation 
of severe childhood stunting prevalence in Namibia using 
spatial quantile regression models. 

Spatial models have previously been used to analyse 
childhood stunting in most sub-Sahara African countries 
other than Namibia [8, 9]. Unfortunately, these have 
emphasized on modelling mean regression instead of 
quantile regression. Modelling malnutrition using quantile 
regression is more appropriate than using mean regression 
with extensive literature examples [10, 12, 19, 25-30], in that 
it provides flexibility to analyse the determinants of 
malnutrition corresponding to quantiles of interest either in 
the lower tail (say 5% or 10%), upper tail (say 90% or 95%) 
or even median (50%) of the distribution rather than only 
analysing the determinants of mean distribution. When 
modelling malnutrition, it makes more sense to model severe 
responses rather mean responses [10, 12, 19, 25-30]. For 
instance, it is more sensible to model severe stunting or 
severe overweight/obesity than to model mean stunting or 
mean overweight/obesity which corresponds to the lower 
and upper tails of the distribution of the same anthropometric 
measure.  

There are two standard approaches for assessing 
childhood nutritional status; using standard deviations (SDs) 
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or using percentiles of an international reference median. In 
this paper, we used the SDs of the height-for-age Z-scores 
(HAZ) adjusted for an international age-specific reference 
median based on the new 2006 World Health organisation 
(WHO) guidelines for assessing childhood stunting in 
Namibia [7]. An international reference is useful since the 
growth in height and weight of well fed, healthy children 
under 5 years of age from different ethnic backgrounds and 
different continents is reasonably similar. In April 2006, the 
World Health Organization released new global child growth 
standards for infants and children up to the age of 5 years. 
These new standards were developed in accordance with the 
idea that children, born in any region of the world and given 
an optimum start in life, all have the potential to grow and 
develop to within the same range of height and weight for 
age. The new WHO child growth standards, which will be 
used worldwide, provide a common basis for the analysis of 
growth data [7]. The Z-score system expresses 
anthropometric values as several standard deviations (SDs) 
below or above the reference mean or median value. Since 
the Z-score scale is linear, summary statistics such as means, 
SDs and standard errors can be computed from Z-score 
values. Z-score summary statistics are also helpful for 
grouping growth data by age and sex. The summary statistics 
can be compared with the reference, which has an expected 
mean Z-score of 0 and a SD of 1 for all normalized growth 
indices [7]. 

In this study, severe childhood stunting was of primary 
interest and for this reason, the tau parameter was fixed at 
0.18 (𝜏𝜏 = 0.18) which corresponded to a HAZ = –3 (the 
cut-point for severe childhood stunting according to WHO 
standards) [7]. If we were only interested in moderate 
childhood stunting, we would simply fix the tau parameter at 
0.26 (𝜏𝜏 = 0.26) which corresponded to a HAZ = –2 (the 
cut-point for moderate childhood stunting according to 
WHO standards) [7]. 

Moreover, spatial regression is most appropriate for 
modelling malnutrition in that it takes into account the 
spatially correlated (area-specific) effects onto malnutrition 
response variable. The main purpose of this study was to fit a 
modern spatial quantile model that would better explain 
variability in severe childhood stunting, at a relatively small 
area level, in Namibia. 

2. Materials and Methods 
This section summarises the conceptual framework of the 

Bayesian structured additive quantile regression models, the 
data sources, and data analysis procedures used in this study.  

2.1. Quantile Regression Model 

In general, quantile regression is about describing 
conditional quantiles of the response variable in terms of 
covariates instead of the mean. The general additive 
conditional quantile model is given by 

 𝑄𝑄𝑌𝑌𝑖𝑖|𝑥𝑥𝑖𝑖 , 𝑧𝑧𝑖𝑖 (𝜏𝜏|𝒙𝒙𝒊𝒊,  𝒛𝒛𝒊𝒊) = 𝜂𝜂𝜏𝜏𝑖𝑖 = 𝒙𝒙𝒊𝒊𝑇𝑇𝜷𝜷𝝉𝝉 + ∑ 𝑔𝑔𝜏𝜏𝑗𝑗 � 𝑧𝑧𝑖𝑖𝑖𝑖 �
𝑞𝑞
𝑗𝑗=1   (1) 

where 𝑄𝑄𝒀𝒀𝒊𝒊|𝒙𝒙𝒊𝒊, 𝒛𝒛𝒊𝒊(𝜏𝜏|𝒙𝒙𝒊𝒊,  𝒛𝒛𝒊𝒊)  is the conditional 𝜏𝜏𝑡𝑡ℎ  quantile 
response given 𝒙𝒙𝒊𝒊  and  𝒛𝒛𝒊𝒊  , 𝜂𝜂𝜏𝜏𝑖𝑖  is the semi-parametric 
predictor, 𝜏𝜏𝜏𝜏(0,1) is the 𝜏𝜏𝑡𝑡ℎ  quantile of the response e.g. 
𝜏𝜏 = 0.5  for the median response regression, 𝒙𝒙𝒊𝒊 =
�𝑥𝑥𝑖𝑖1, 𝑥𝑥12,⋯ , 𝑥𝑥𝑖𝑖𝑖𝑖 �

𝑇𝑇
 is the vector of 𝑝𝑝 categorical covariates 

(assumed to have fixed effects) for each individual 𝑖𝑖 , 
 𝒛𝒛𝒊𝒊 = �𝑧𝑧𝑖𝑖1, 𝑧𝑧12,⋯ , 𝑧𝑧𝑖𝑖𝑖𝑖 �

𝑇𝑇
 is the vector of 𝑞𝑞  metric/spatial 

covariates, 𝜷𝜷𝜏𝜏 = �𝛽𝛽𝜏𝜏1, 𝛽𝛽𝜏𝜏2,⋯ , 𝛽𝛽𝜏𝜏𝜏𝜏 �
𝑇𝑇

 is the vector of 𝑝𝑝 
coefficients for categorical covariates at a given 𝜏𝜏 , 
𝒈𝒈𝜏𝜏 = �𝑔𝑔𝜏𝜏1, 𝑔𝑔𝜏𝜏2,⋯ , 𝑔𝑔𝜏𝜏𝜏𝜏 �

𝑇𝑇
 is the vector of 𝑞𝑞  smoothing 

functions for metric/spatial covariates at a given 𝜏𝜏 [10, 11, 
and 26]. It is worthy to note that quantile regression 
duplicates the roles of quartile, quintile, decile, and 
percentile regressions. This is achieved by selecting 
appropriate values of 𝜏𝜏  in the conditional quantile 
regression model where τϵ(0,1). 

The two unknowns, 𝜷𝜷𝜏𝜏  and 𝒈𝒈𝜏𝜏  are estimated via the 
minimization rule given by 

 ∑ 𝜌𝜌𝜏𝜏�𝜂𝜂𝜏𝜏𝑖𝑖� + 𝜆𝜆0‖𝜷𝜷𝜏𝜏‖1 + ∑ 𝜆𝜆𝑗𝑗⋁ �∇𝑔𝑔𝜏𝜏𝑗𝑗 �
𝑞𝑞
𝑗𝑗=1(𝜷𝜷𝜏𝜏 , 𝒈𝒈𝜏𝜏) 

𝑚𝑚𝑚𝑚𝑚𝑚       (2) 

where 𝜌𝜌𝜏𝜏  is the check function (appropriate loss function) 
evaluated at a given 𝜏𝜏 , 𝜆𝜆0  is the zeroth (initial) tuning 
parameter for controlling the smoothness of the estimated 
function, 𝜆𝜆𝑗𝑗  is the 𝑗𝑗𝑡𝑡ℎ  tuning parameter for controlling the 
smoothness of the estimated function, ‖𝜷𝜷𝜏𝜏‖1 = ∑ �𝜷𝜷𝜏𝜏𝒌𝒌�

𝐾𝐾
𝑘𝑘=1  

and ⋁�∇𝑔𝑔𝜏𝜏𝑗𝑗 � denotes the total variation of the derivative on 
the gradient of the function gτj  [10]. 

Bayesian inference requires likelihood. We need an 
assumption on data distribution for Bayesian quantile 
inference because the classical quantile regression has no 
such restriction. A possible parametric link between the 
minimization problem and the maximum likelihood theory is 
the asymmetric Laplace density (ALD). This skewed 
distribution is defined in [12, 13, 26]. 

2.2. Prior Distributions 
In fully Bayesian framework, all unknown functions 

{𝑔𝑔}′𝑠𝑠 for both metric and spatial covariates, all parameters 
{𝛽𝛽}′𝑠𝑠 for categorical covariates, and all variance parameters 
{𝜎𝜎2}′𝑠𝑠 are considered as random variables and have to be 
supplemented by appropriate prior distributions. 

In this research, the following prior distributions were 
supplemented. To facilitate description of our method, we 
will suppress the subscription 𝜏𝜏 of regression effects in the 
following: The priors for unknown functions 𝑓𝑓𝑘𝑘(∙), 𝑘𝑘 =
1,⋯ , 𝑛𝑛𝑓𝑓 , do belong to the class of Gaussian Markov random 
fields (GMRF), whose specific forms actually depend on 
covariate types and also on the  prior beliefs about the 
smoothness of 𝑓𝑓𝑘𝑘 . Although only GMRF is used in this study, 
there exist some other options like Bayesian P-splines [15]. 

Let 𝒇𝒇 = (𝑓𝑓(𝑢𝑢1), 𝑓𝑓(𝑢𝑢2),⋯ , 𝑓𝑓(𝑢𝑢𝑛𝑛))𝑇𝑇 , a random vector of 
the response at 𝑢𝑢𝑖𝑖, 𝑖𝑖 = 1,2,⋯ , 𝑛𝑛. We say 𝒇𝒇 is a GMRF with 
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mean 𝝁𝝁 and precision (the inverse covariance) matrix 𝛿𝛿𝑸𝑸 if 
and only if it has density of form 

𝜋𝜋(𝒇𝒇|𝛿𝛿) ∝ 𝛿𝛿
𝑛𝑛−𝑚𝑚

2 exp�− 𝛿𝛿
2

(𝒇𝒇 − 𝝁𝝁)𝑇𝑇𝑸𝑸(𝒇𝒇 − 𝝁𝝁)�⁡ (3) 

where 𝑸𝑸 is a semi-definite matrix of constants with rank 
𝑛𝑛 −𝑚𝑚 (𝑚𝑚 ≥ 0). The properties of a particular GMRF are all 
reflected through matrix  𝑸𝑸 . For instance, the Markov 
properties of GMRFs totally depend on the various sparse 
structures that the matrix 𝑸𝑸 may have. In this paper we use 
two kinds of GMRFs: second order random walk (RW2) 
models [16] for metric covariates and intrinsic conditional 
autoregressive (ICAR) models [17] for spatial covariates. 
These two GMRFs share equation 3 but with different 
structures of 𝑸𝑸. 

For metric covariates, let 𝑢𝑢1 < 𝑢𝑢2 < ⋯ < 𝑢𝑢𝑛𝑛  be the set 
of continuous locations and 𝑧𝑧𝑖𝑖 = 𝑓𝑓(𝑢𝑢𝑖𝑖)  be the function 
evaluations at 𝑢𝑢𝑖𝑖,  for  𝑖𝑖 = 1,2,⋯ , 𝑛𝑛 . Then construction of 
RW2 model is based on a discretely observed continuous 
time process 𝑧𝑧(𝑢𝑢) that is a realization of an 𝑚𝑚 −  1 fold 
integrated Wiener process given by 

𝑧𝑧(𝑢𝑢) = ∫ (𝑢𝑢−ℎ)𝑚𝑚−1

𝑚𝑚−1
𝑢𝑢

0 d𝑊𝑊(ℎ)         (4) 

where 𝑊𝑊(ℎ) is a standard Wiener process.  
For spatial covariates, letting 𝑛𝑛𝑖𝑖  denote the number of 

neighbours of site 𝑢𝑢𝑖𝑖 , we assume the following spatial 
smoothness prior for the function evaluations 

𝑓𝑓(𝑢𝑢𝑖𝑖)|{𝑓𝑓(𝑢𝑢𝑗𝑗 ) 𝑗𝑗 ≠ 𝑖𝑖}, 𝛿𝛿~𝑁𝑁 � 1
𝑛𝑛𝑖𝑖
∑ 𝑓𝑓�𝑢𝑢𝑗𝑗 �, 1

𝑛𝑛𝑖𝑖𝛿𝛿𝑗𝑗 :𝑗𝑗~𝑖𝑖 �   (5) 

where 𝑗𝑗~𝑖𝑖 denotes that site 𝑢𝑢𝑖𝑖  and 𝑢𝑢𝑗𝑗  are neighbors. Thus 
the conditional mean of 𝑓𝑓(𝑢𝑢𝑖𝑖) is an un-weighted average of 
evaluations of neighbouring sites. 

For the fixed effect parameters {𝛽𝛽𝑗𝑗 }′𝑠𝑠, we shall assume 
independent diffuse priors 𝜋𝜋(𝛽𝛽𝑗𝑗 ) ∝ constant or a weakly 
informative Gaussian 𝜷𝜷~𝑁𝑁(𝟎𝟎, 𝜙𝜙−1𝑰𝑰)  with small 
precision  𝜙𝜙  on the identity matrix 𝑰𝑰 . If 𝜷𝜷  is a 
high-dimensional vector, one may consider using Bayesian 
regularization priors developed in [19], where conditionally 
Gaussian priors are assigned with suitable hyper prior 
assumptions on the variances inducing the desired shrinkage 
and sparseness on coefficient estimates. 

2.3. Posterior Inference 

The well-known method for estimating Bayesian posterior 
marginal distribution is Markov Chain and Monte Carlo 
(MCMC). The alternative method is Integrated Nested 
Laplace Approximations (INLA) [24]. In this study, INLA 
method was used because it is generally faster and the 
solution converges quickly than MCMC for quantile models 
[20, 24].  

2.4. Data Sources 

For applications of the methodology, we considered the 
2013 Namibia Demographic and Health Survey (NDHS) 
data. A multistage clustered sampling technique was used to 
interview a representative sample of more than 2900 eligible 
women of reproductive age between 15 and 49 years. The 

anthropometric assessment of themselves and their children 
that were born within the previous 5 years preceding the 
survey date was administered. The data set contains 
information on family planning, maternal and child health, 
child survival, HIV/AIDS, educational attainment, and other 
household composition and characteristics. 

The primary outcome in this study was the severe 
childhood (under 5 years) stunting in Namibia. It was 
assessed by using the adjusted childhood height for age 
Z-score (HAZ) as a continuous response variable with 
 𝜏𝜏 = 0.18 which corresponded to a HAZ < –3 (the cut-point 
for severe childhood stunting according to WHO standards). 
The following bio-demographic and socioeconomic 
covariates of childhood overweight were assessed in this 
study: Categorical covariates included sex of household head, 
type of residence, mother’s education, current mother 
working status, vitamin A supplementation, vaccination 
coverage, source of drinking water, type of toilet facility, 
child HIV status, exclusive breastfeeding, presence of 
diarrhoea, and household wealth index. Metric covariates 
included child’s age in months, mother’s body mass index, 
and duration of breastfeeding in months. The only spatial 
covariate was regions of Namibia. 

2.5. Data Analysis 

Firstly, we started with exploratory data analysis where 
basic descriptive analyses such as cross tabulations for all 
categorical covariates against severe childhood stunting 
indicator variable were done. The categorized adjusted 
severe childhood stunting with two categories, severely 
stunted (HAZ < –3) and not severely stunted (HAZ ≥ –3), 
was used as a severe childhood stunting indicator variable in 
this phase. The descriptive statistics (counts, proportions, 
and chi-square p-values) of all cross tabulations were 
summarized in Table 1. All covariates of interest were 
considered in subsequent Bayesian quantile models. 

Finally, we fitted various quantile models from which we 
identified one parsimonious model as the best fitting quantile 
model using the Deviance Information Criterion (DIC). The 
DIC is given by 𝐷𝐷𝐷𝐷𝐷𝐷 = 𝐷𝐷 + 2𝑝𝑝  where 𝐷𝐷  stands for 
“Deviance evaluated at the posterior mean” and 𝑝𝑝 stands for 
“effective number of parameters”. The rule of thumb is that 
the smaller DIC values correspond to better model fit. In 
particular, if model A has smaller DIC (by at least 10 units) 
than DIC for model B, then model A is more adequate than 
model B. The statistical inference was fully Bayesian using 
the INLA approach implemented in R with reference to 
examples cited in [20]. 

3. Results 
3.1. Exploratory Analysis 

Table 1 shows the summary of all cross tabulations of 
severe childhood stunting by observed categorical covariates. 
The sex of household head, type of residence, mother’s 

 



84 Owen P. L. Mtambo et al.:  Analysis of Severe Childhood Stunting in Namibia  
 

education, vitamin A supplementation, vaccination coverage, 
source of drinking water, child HIV status, exclusive 
breastfeeding, presence of diarrhoea, and household wealth 
index were all observed significantly associated with severe 
childhood stunting at 5% level. We observed that severely 
stunted were the children with male household head, rural 
residence, less educated mother, no vitamin A 
supplementation, inadequate vaccination coverage, poor 
source of drinking water, positive HIV status, non-exclusive 
breastfeeding, frequent exposure to diarrhoea, and poorer 
household wealth index. 

Table 1.  Childhood categorical covariates 

Variable Category 
Severely 
stunted 

children (%) 

Pearson 
chi-square 

p-value 

Household 
head’s sex 

Male 162 (55.64%) 
0.033* 

Female 203 (44.4%) 

Type of 
residence 

Rural 237 (64.9%) 
0.006* 

Urban 128 (35.1%) 

Mother’s 
education 

None 131 (35.7%) 

0.025* 
Primary 130 (35.7%) 

Secondary 26 (7.1%) 

Higher 52 (14.3%) 

Mother’s 
working status 

Yes 81 (22.2%) 
0.352 

No 284 (77.8%) 

Vitamin A 
Yes 323 (88.5%) 

0.027* 
No 42 (11.5%) 

Vaccination 
coverage 

Incomplete 301 (82.5%) 
0.147 

Full 64 (17.5%) 

Diarrhoea 
Yes 284 (77.8%) 

0.114 
No 81 (22.2%) 

Toilet Facility 
Improved 363 (99.5%) 

0.987 
Not improved 2 (0.5%) 

Breastfeeding 
Exclusive 54 (14.8%) 

0.000** 
Not exclusive 311 (85.2%) 

Drinking water 
Improved 3 (0.8%) 

0.138 
Not improved 362 (99.2%) 

Child HIV 
status 

HIV+ 324 (88.8%) 
0.026* 

HIV- 41 (21.2%) 

Household 
wealth index 

Poorest 228 (62.5%) 

0.001** 

Poor 46 (12.6%) 

Middle 45 (12.3%) 

Rich 10 (2.7%) 

Richest 36 (9.9%) 

3.2. Bayesian Additive Quantile Modelling 

All covariates of interest were considered in subsequent 
in-depth models. Several different Bayesian additive 

quantile models were fitted and their DICs were used to 
determine the best fitting model at 18th quantile level. 

3.2.1. Model Selection 

Table 2 displays the summary of DICs for all the models 
that were fitted. Comparing the DICs in the Table 2, it was 
observed that model with only structured random spatial 
effects (model 3) showed a smaller DIC (2421.24) than all 
models without spatial effects (models 1 and 2) which 
revealed that the final best fitting quantile model should 
include the structured random spatial effects. Finally, we 
observed that model 5 showed smallest DIC value (2343.07) 
with all fitted covariates being significant. We, therefore, 
considered it to be the best fitting spatial quantile regression 
model for severe childhood stunting in Namibia. 

Table 2.  Comparing DICs for Bayesian regression models 

Model Covariates D p DIC 

1 All Fixed Only 2432.16 12.79 2457.74 

2 All Nonlinear Only 2518.23 16.86 2551.95 

3 Spatial Only 2413.14 4.05 2421.24 

4 Spatial + All Nonlinear 
+ All Fixed (Full model) 2425.17 31.93 2489.03 

5 

Spatial + All Nonlinear 
+ Fixed (After removing 
all non-significant 
covariates) 

2286.51 28.28 2343.07 

Using the best fitting model 5, we analysed and assessed 
the fixed effects, nonlinear effects, and structured spatial 
effects as follows. 

3.2.2. Fixed Effects 

A summary of fixed effects on adjusted childhood height 
for age is shown in Table 3. Male household head showed 
significant negative effect on adjusted childhood height for 
age. In other words, severe childhood stunting was more 
attributable to children belonging to male headed households 
than those belonging to female headed households in 
Namibia. This observation was considered significant at   
95% credible intervals simply because the interval for male 
household head was (-11.39, -10.85) which did not include 
zero. The rest of the table was interpreted in the same way. 

In summary, considering 95% credible intervals, we found 
that the fixed effects of male household head, rural residence, 
less educated mother, diarrhoea, HIV+ child, and lower 
household wealth had significant negative relationship with 
adjusted childhood height for age (i.e. significant positive 
relationship with severe childhood stunting) whereas more 
educated mother, vitamin A supplementation, adequate 
vaccination coverage, exclusive breastfeeding, improved 
source of drinking water, and highest household wealth had 
significant positive relationship with adjusted childhood 
height for age (i.e. significant negative relationship with 
severe childhood stunting) in Namibia. 
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Table 3.  Fixed effects on adjusted childhood height for age 

Variable Posterior 
mean 

Posterior 
standard 
deviation 

95% Credible 
interval 

(Intercept) -37.11 0.17 -37.46, -36.78 

Male household head -11.12 0.14 -11.39, -10.85 

Rural residence -18.41 0.15 -18.71, -18.11 

Primary -31.25 0.19 -31.63, -30.88 

Secondary -8.61 0.16 -8.93, -8.29 

Higher 27.88 0.44 27.02, 28.76 

Diarrhoea -7.77 0.21 -8.19, -7.36 

Vitamin A 27.13 0.14 26.85, 27.41 

HIV+ child -24.33 0.30 -24.94, -23.76 

Full vaccination 4.26 0.21 3.85, 4.68 

Exclusive 
breastfeeding 4.78 0.18 4.43, 5.14 

Improved water 37.32 0.17 36.98, 37.66 

Poor household -13.99 0.19 -14.36, -13.62 

Rich household -14.53 0.21 -14.95, -14.11 

Richer household -0.87 0.21 -1.27, -0.47 

Richest household 28.04 0.26 27.53, 28.54 

3.2.3. Nonlinear Effects 

Figure 1 shows the summary of observed nonlinear effects. 
Top plot shows the effects of child age on adjusted childhood 
height for age while bottom plot shows the effects of 
duration of breastfeeding on adjusted childhood height for 
age. 

In general, we found that the nonlinear effects of child age 
on adjusted childhood height for age generally followed a 
U-shape relationship. We observed that adjusted childhood 
height for age rapidly decreases for the first 28 months and 
thereafter steadily increases. In particular, the adjusted 
childhood height for age is critically lower for children with 
ages between 18 and 36 months. 

We observed that the nonlinear effects of duration of 
breastfeeding on adjusted childhood height for age also 
generally followed an inverse U-shape relationship. In 
particular, the adjusted childhood height for age is critically 
lower for children with too short breastfeeding durations 
(less than 12 months) and longer breastfeeding durations 
(more than 18 months). 

3.2.4. Structured Spatial Effects 

Figure 2 presents the posterior means of structured spatial 
effects on adjusted childhood height for age and their 
significance at 95% nominal level. Top map shows the 
distribution of posterior means for structured spatial effects 
on adjusted childhood height for age. The colours ranged 
from light green to dark red such that extreme light green and 
extreme dark red colours respectively corresponded to 
extreme positive and extreme negative structured spatial 
effects on adjusted childhood height for age.    

Bottom map displays the distribution of significant 
observed structured spatial effects on adjusted childhood 
height for age. Only three colours were used for 
discriminating significance of the observed effects. Firstly, 
green colour (1) corresponded to significant positive 
structured spatial effects on adjusted childhood height for 
age. Secondly, red colour (-1) corresponded to significant 
negative structured spatial effects on adjusted childhood 
height for age. Lastly, yellow colour (0) corresponded to 
non-significant structured spatial effects on adjusted 
childhood height for age. 

 

Figure 1.  Nonlinear effects on adjusted childhood height for age: age of 
child (top); duration of breastfeeding (bottom) 
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Figure 2.  Structured spatial effects on adjusted childhood height for age: 
posterior means (top); significance at 95% nominal level (bottom) 

We observed that only Ohangwena, Kavango, Hardap, 
and Karas regions depicted significant negative structured 
spatial effects on adjusted childhood height for age 
(significant positive structured spatial effects on severe 
childhood stunting) at 95% nominal level. The rest of the 
regions depicted significant positive spatial effects on 
adjusted childhood height for age (significant negative 
structured spatial effects on severe childhood stunting) at  
95% nominal level. 

4. Discussion 
In this study, the fully Bayesian structured additive 

quantile regression models were fitted for childhood 
overweight using R-INLA. The primary aim of this study 
was to fit a spatial quantile regression model which is more 
appropriate than mean regression model when modelling 
nutritional status. Only severe childhood stunting was 
assessed because it is currently the most prevalent 
undernutrition status among children under-five in Namibia. 

The inference used in this study was fully Bayesian. The 
posterior marginal distributions were estimated using 
R-INLA package in R 3.1.1. The INLA approach was chosen 
because it is generally faster than MCMC approach for 
quantile models [20, 24]. 

This study actually revealed statistically significant 
associations between a couple of factors that were 
considered and severe childhood stunting in Namibia.  

Firstly, severely stunted children in Namibia are those 
belonging to male headed households, residing in rural areas, 
whose mothers are lowly educated, frequently suffering from 
diarrhoea, with HIV+ status, inadequate vitamin A 
supplementation, inadequate vaccination coverage, not 
exclusively breastfed, belonging to households with poor 
sources of drinking water,  and belonging to households 
with lower wealth indexes. In particular, severely stunted 
children in Namibia are those whose mothers’ highest 
education level is secondary school or lower. Furthermore, 
we noted a sharp increase in severely stunted children from a 
minimum of 2.7% among rich households to 9.9% surge 
among the richest families. A similar trend was observed 
with a minimum of 7.1% stunted children among mothers 
with secondary education to a sharp increase to 14.3% for 
mothers with higher education. It is interesting that extreme 
riches and extended education of mothers seem to have 
significant effects on severe childhood stunting. This reveals 
that despite Namibia being rated as an upper income country, 
severe childhood stunting is still a problem in the country. 

Secondly, severe childhood stunting in Namibia 
significantly varies with age in a U-shaped nonlinear manner. 
In general, severe childhood stunting in Namibia rapidly 
increases for the first 28 months and thereafter steadily 
decreases up to 59 months. In particular, severe childhood 
stunting in Namibia is critically higher for children with ages 
between 18 and 36 months. 

Thirdly, severe childhood stunting in Namibia 
significantly varies with duration of breastfeeding in an 
inverse U-shaped nonlinear manner. In particular, severe 
childhood stunting in Namibia is critically higher for 
children with too short breastfeeding durations (less than 12 
months) and longer breastfeeding durations (more than 18 
months). 

Lastly, severely stunted children in Namibia are those 
residing in the north especially Ohangwena and Kavango 
regions and as well in the south especially Hardap and Karas 
regions. 

It is worthy to note that no any in-depth analyses of 
childhood stunting in Namibia have ever been reported. 
However, similar studies have ever been done in other 
countries within sub-Sahara Africa and our key findings in 
this study were very similar to key findings in such studies 
like [8, 9]. 

What we see as the most significant strength of this study 
is that we effectively managed to identify one best fitting 
spatial quantile model for severe childhood stunting in 
Namibia at 18th quantile level. Furthermore, we modelled 
severe childhood stunting using the quantile regression 
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approach which is more appropriate than mean regression 
[10, 12, 19, 25-30]. One significant evident weakness of 
mean regression is that it explains the relationship between 
the covariates and average response which is helpless with 
nutritional responses. Quantile regression was more helpful 
because it appropriately captured the effects of the observed 
covariates on severe childhood stunting at 18th quantile level. 
If mean regression was used, the consequence would have 
been modelling average adjusted childhood height for age 
which would indeed be helpless. If we were interested in 
moderate childhood stunting, we would capture effects of 
covariates on childhood stunting at 26th quantile level by 
flexibly fixing the tau parameter at 0.26 (𝜏𝜏 = 0.26) which 
corresponded to a HAZ = –2 (the cut-point for moderate 
childhood stunting according to WHO standards) [7]. 

5. Conclusions 
Using the best fitting fully Bayesian additive quantile 

regression model with structured spatial effects at 18th 
quantile level, we concluded as follows. 

The fixed effects of male household head, rural residence, 
less educated mother, diarrhoea, HIV+ child, and lower 
household wealth had significant negative relationship with 
adjusted childhood height for age (i.e. significant positive 
relationship with severe childhood stunting) whereas more 
educated mother, vitamin A supplementation, adequate 
vaccination coverage, exclusive breastfeeding, improved 
source of drinking water, and highest household wealth had 
significant positive relationship with adjusted childhood 
height for age (i.e. significant negative relationship with 
severe childhood stunting) in Namibia. 

In general, we found that the nonlinear effects of child age 
on adjusted childhood height for age generally followed a 
U-shape relationship with critically lower adjusted 
childhood height for age for children with ages between 18 
and 36 months. We also observed that the nonlinear effects 
of duration of breastfeeding on adjusted childhood height for 
age also generally followed an inverse U-shape relationship 
with critically lower adjusted childhood height for age for 
children with too short breastfeeding durations (less than 12 
months) and longer breastfeeding durations (more than 18 
months).  

We noted a sharp increase in severely stunted children 
from a minimum of 2.7% among rich households to 9.9% 
surge among the richest families. A similar trend was 
observed with a minimum of 7.1% stunted children among 
mothers with secondary education to a sharp increase to  
14.3% for mothers with higher education. It is interesting 
that extreme riches and extended education of mothers seem 
to have significant effects on severe childhood stunting. This 
reveals that despite Namibia being rated as an upper income 
country, childhood stunting is still a problem in the country.   

Furthermore, it was observed that only Ohangwena, 
Kavango, Hardap, and Karas regions depicted significant 
negative structured spatial effects on adjusted childhood 

height for age (significant positive structured spatial effects 
on severe childhood stunting) at 95% nominal level. The rest 
of the regions depicted significant positive spatial effects on 
adjusted childhood height for age (significant negative 
structured spatial effects on severe childhood stunting) at  
95% nominal level. 

We recommend that childhood malnutrition policy makers 
should consider timely interventions based on important 
socio-demographic factors, child age, maternal factors 
including duration of breastfeeding, and spatial variation of 
childhood stunting in Namibia. We further recommend that 
maternity leave be extended to six months to allow optimal 
breastfeeding especially to mothers with busy work 
schedule.  

Abbreviations 
AIDS: Acquired immunodeficiency syndrome; ALD: 

asymmetric Laplace density; DIC: Deviance information 
criterion; GMRF: Gaussian Markov random field; HAZ: 
Height for age Z-score; HIV: Human immunodeficiency 
virus; ICAR: Intrinsic conditional autoregressive; INLA: 
Integrated nested Laplace approximations; MCMC: Markov 
chain and Monte Carlo; MDG: Millennium development 
goal; NDHS: Namibia demographic and health survey; RW2: 
Random walk order 2; UNICEF: United nations children’s 
fund (formerly United nations international children’s 
emergency fund); WFP: World food programme; WHO: 
World health organisation. 

ACKNOWLEDGEMENTS 
Firstly, we acknowledge the permission granted by 

Measure DHS to use the 2013 Namibia DHS data. Lastly, we 
would like to thank all anonymous peer reviewers for their 
careful scrutiny of the original manuscript. 

 

REFERENCES 
[1] Tomkins, A. Watson, F. (1989). Malnutrition and infection: A 

review, ACC/SCN (Paper no. 5). Clinical Nutrition Unit, 
Centre for Human Nutrition, London School of Hygiene and 
tropical Medicine. 

[2] UNICEF (2009). Tracking progress on child and maternal 
nutrition: a survival and development priority. New York: 
United Nations Children’s Fund (UNICEF). 

[3] Martorell, R., Khan, L.K. Schroeder, D.G. (1994). 
Reversibility of stunting: Epidemiological findings in 
children from developing countries. Eur J Clin Nutr, 48, 
45-57. 

[4] UNICEF (1998). The state of the world’s children. New York: 
United Children’s Fund. 

[5] UNICEF/WFP (2006). Global framework for action. United 

 



88 Owen P. L. Mtambo et al.:  Analysis of Severe Childhood Stunting in Namibia  
 

Nations Children’s Fund and World Food Program. 

[6] NDHS (2014). Namibia demographic and health survey 2013 
final reports. Accessed online from: http://dhsprogram.com/
publications/publication-fr298-dhs-final-reports.cfm. 

[7] WHO (2006). Child growth standards: length/height-for-age, 
weight-for-age, weight-for-length, weight-for-height and 
body mass index-for-age: methods and development. Geneva. 

[8] Kandala, N.B., Lang, S., Klasen, S. Fahrmeir, L. (2001). 
Semiparametric analysis of the socio-demographic 
determinants of undernutrition in twoAfrican countries. 
Research in Official Statistics, 4(1), 81-100. 

[9] Khatab, K. Fahrmeir, L., (2008). Geoadditive latent variable 
modelling of child morbidity and malnutrition in Nigeria. 
Munich, Germany. 

[10] Koenker, R., Ng P. Portnoy, S. (1994). Quantile smoothing 
splines. Biometrika, 81(4), 673-680. 

[11] Yu, K., Lu, Z. Stander, J. (2003). Quantile regression: 
Applications and current research areas. The Statistician, 
52(3), 331-350. 

[12] Koenker, R., Hallock, K.F. (1999). Quantile Regression. 
Journal of Economic Perspectives, 15(4), 143-156. 

[13] Yu, K., Moyeed, R.A. (2001). Bayesian quantile regression. 
Statistics and Probability Letters, 54, 437-447. 

[14] Yu, K. Zhang, J. (2005). A three-parameter asymmetric 
Laplace distributionand its extension. Communications in 
Statistics: Theory and methods, 34, 1867-1879. 

[15] Lang, S., Brezger, A. (2004). Bayesian P-splines. Journal of 
Computational and Graphical Statistics, 13, 183-217. 

[16] Wecker, W.E., Ansley, C.F. (1983). The signal extraction 
approach to nonlinear regression and spline smoothing. 
Journal of the American Statistical Association, 78, 81-89. 

[17] Besag, J., Kooperberg, C. (1995). On conditional and intrinsic 
autoregressions. Biometrika, 82, 733-746. 

[18] Rue, H., Held, L. (2005). Gaussian Markov Random Fields: 
Theory and Applications. (Volume 104 of Monographs on 
Statistics and Applied Probability). London: Chapman and 
Hall. 

[19] Kneib, T., Konrath, S., Fahrmeir, L. (2009). 
High-dimensional structured additive regression models: 
Bayesian regularisation, smoothing and predictive 
performance. Technical report, Department of Statistics, 
University of Munich. 

[20] Yu, Y., Havard, R. (2009). Bayesian inference for structured 
additive quantile regression models. Norwegian University 
for Science and Technology. 

[21] Tsionas, E.G. (2003). Bayesian quantile inference. Journal of 
Statistical Computation and Simulation, 73, 659-674. 

[22] Chhikara, R.S., Folks, L. (1989). The inverse Gaussian 
distribution: Theory, methodology, and applications. New 
York: Marcel Dekker. 

[23] Rue, H., Martino, S. (2007). Approximate Bayesian inference 
for hierarchical Gaussian Markov random fields. Journal of 
Statistical Planning and Inference, 137, 3177-3192. 

[24] Rue, H., Martino, S. (2009). Implementing approximate 
Bayesian inference for latent Gaussian models by using 
integrated nested Laplace approximations: A manual for the 
inla program. Technical report, Department of Mathematical 
Sciences, Norwegian University of Science and Technology, 
Trondheim. 

[25] Fenske, N., Kneib, T., Hothorn, T. (2009). Identifying risk 
factors for severe childhood malnutrition by boosting additive 
quantile regression. Technical report, Department of 
Statistics, University of Munich. 

[26] Kneib, T., (2013). Beyond mean regression. Statistical 
Modelling, 13(4), 275-303. 

[27] Rigby, R., Stasinopoulos, D., Voudourisi, V., (2013). 
Discussion: A comparison of GAMLSS with quantile 
regression. Statistical Modelling, 13(4), 335-348.  

[28] Koenker, R., (2013). Discussion: Living beyond our means. 
Statistical Modelling, 13(4), 323-333. 

[29] Harvey, A., (2013). Discussion of ‘Beyond mean regression’. 
Statistical Modelling, 13(4), 363-372.  

[30] Green, P., (2013). Discussion of ‘Beyond mean regression’. 
Statistical Modelling, 13(4), 305-31. 

 

 

http://dhsprogram.com/publications/publication-fr298-dhs-final-reports.cfm
http://dhsprogram.com/publications/publication-fr298-dhs-final-reports.cfm
http://dhsprogram.com/publications/publication-fr298-dhs-final-reports.cfm
http://dhsprogram.com/publications/publication-fr298-dhs-final-reports.cfm

	1. Introduction
	2. Materials and Methods
	3. Results
	4. Discussion
	5. Conclusions
	Abbreviations
	ACKNOWLEDGEMENTS

