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Abstract  When using the linear statistical model, researchers face variety of problems due to non experimental nature i.e 
uncertainity about the nature of the error process, model mis- specifications, dependent regressors etc. The phenomenon of 
correlated errors in linear regression models involving time series data is called autocorrelation. Violation of the assumption 
of independent regressors leads to multicollinearity. Hence, Ordinary ridge estimates are imprecise to be of much use in case 
of autocorrelated regression model with the multicollinearity problem. Objective: To develop a new estimator for the 
regression parameter in the presence of multicollinearity and autocorrelation. To choose an appropriate ridge parameter for 
the proposed estimator using Monte Carlo simulation. Materials and Methods: Monte Carlo simulation study is carried out 
using the Statistical programming language MATLAB version 7.0 to evaluate the performance of the proposed estimator 
based on the Mean squared error (MSE) criterion. Findings: Determined the regions where a particular method for estimating 
ridge parameter performs better among different existing methods. This estimate of ridge parameter is used in the proposed 
estimator. The proposed estimator performs better than the existing estimator under the MSE criterion.  
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1. Introduction 
In a linear regression model there are situations where the 

regressors may be correlated and the error terms may be 
autocorrelated. This phenomenon is known as autocorrelated 
model with multi collinearity. It is well known that when 
there is multicollinearity, the ordinary least square (OLS) 
estimator for regression coefficients or the predictor based 
on these estimates may give poor results [1]. For overcoming 
the problem of multicollinearity several methods are 
available such as Principal component regression, Ridge 
regression and Partial least squares. These methods are 
useful when the errors are non autocorrelated. But in the 
presence of autocorrelated model with multicollinearity, 
appropriate modifications needs to be incorporated in the 
estimation. Accordingly a new estimator called generalized 
ridge estimator is proposed and its performance is compared 
with Ordinary ridge estimator. Ridge estimator involves 
unknown ridge parameter. In the literature several methods 
have been discussed for the choice of ridge parameter. 
Simulation study has been carried out to find the appropriate 
method for estimating the ridge parameter which gives 
minimum MSE for the proposed ridge estimator. 
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2. Materials and Methods 
Consider the multiple linear regression model   

Y=Xβ +ε                      (1) 
where Y is an observational vector of dimension n x 1, X is a 
n x p data matrix of regressors, β is a p x 1 vector of 
regression coefficient and ε is a n x 1 disturbance vector. 
Under the assumption that X is full rank, the errors are non 
autocorrelated and X and ε are independently distributed, the 
Ordinary Least Square (OLS) estimator of β is  
β̂ =(𝑋 ′𝑋)−1 𝑋 ′𝑌  with the covariance matrix of β̂  is 

obtained as cov( β̂ ) = 2σ (X’X) -1. 
It is not necessary that assumptions mentioned above hold 

good in real life situation. The regressors may be nearly 
correlated and the responses may also be correlated. In such 
instances the OLS estimator mentioned above do not possess 
the optimum statistical property. Hence there is a need to 
develop a new estimator which takes care of this situation.  

Ridge Regression: The violation of the assumption of 
independent regressors leads to multicollinearity. If X is less 
than full rank then such a situation is known as perfect 
multicollinearity. In this case OLS estimator does not exist. 
This situation is very rare in practice. In most of the real life 
situations, some regressors are nearly related to the 
remainining regressors. This is known as near 
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multicollinearity. In case of near multicollinearity, rank of 
the regressor matrix X is equal to k and hence OLS estimator 
exist, but they are too imprecise to be of much use [2]. With 
strongly interrelated pairs of regressors, X’X is 
illconditioned and the variance of the OLS estimator 
becomes large. With multicollinearity, the estimated OLS 
coefficients may be statistically insignificant (too large, too 
small and even have wrong sign). Hence interpretation given 
to the regression coefficients may no longer be valid. It may 
be preferable to consider biased estimators of β, if their 
variances are sufficiently smaller than those of OLS 
estimators. One such biased estimator is the “ridge 
estimator”. The ridge estimator (ordinary ridge estimator) of 
β is 

 YXkIXXRR ')'( 1−
∧

+=β              (2) 

where the constant k >0 is known as “ridge” parameter . As 
the constant k increases from zero and continues up to 
infinity, the regression estimates tend towards zero. Though 
these estimators result in biased estimates, for certain 
positive values of k, this estimator yields minimum mean 
squared error (MMSE) compared to OLS. Several methods 
for estimating k has been proposed by Hoerl and Kennard [3], 
Hoerl et al., [4], Mc Donald and Galarneau [5], Hocking   
et al., [6], Saleh and Kibria [7], Khalf and Shukur [8]. From 
example Hoerl and Kennard (1970), the value of k that 

minimises the MSE is 
∧
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the error variance of model (1), max
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α is the maximum 
among elements of α  defined as α =D’β with D being an 
orthogonal matrix.  

Autocorrelation: Autocorrelation is said to exist when 
the successive observations in linear regression model are 
correlated. The existence of autocorrelated errors has been 
rationalized in a variety of ways, as noted by Maddala [9]. 

The successive dependence of the error term is 
represented by 

ttt u+= −1ρεε     t=2,3,…n        (3) 

ut are independent and identically distributed random 
variable with mean zero and variance u

2σ  [10]. When the 
error satisfies the relation (3), the observations follow first 
order autocorrelation. The variance covariance matrix of Y is 
D(Y) = D(ε ) = Ω2σ ≠ I2σ   

Where =2σ u
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Since the covariance matrix of ε is nonspherical (i.e not a 
scalar multiple of the identity matrix), OLS, though unbiased, 
is inefficient relative to generalised least squares by Aitken’s 
theorem. The generalized least squares estimator of β in (1) 
is [10] 

𝛽̂𝐺𝐿𝑆= YXXX 111 ')'( −−− ΩΩ        (4) 

If the parameter ρ in (3) is known then we can write    
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3. Generalised Ridge Type Estimator 
Consider a general linear regressive model (1) with errors 

satisfying relation (3) and the regressors exhibiting near 
multicollinearity. As seen earlier, in case of autocorrelation 
D(ε) = 2σ Ω ≠ 2 Iσ . Hence autocorrelation is a particular 
case of heteroscedasticity. In the case of heteroscedasticity, 
GLS is an appropriate method of estimation as given in (4). 
Further, when there is multicollinearity, often used method is 
the ridge regression as mentioned in (2). Combining these 
two methods, we propose for the autocorrelated model with 
multicollinearity a generalized ridge type estimator 
represented as  𝛽̂𝐺𝑅 = (𝑋′  𝛺−1  𝑋 + 𝑘𝐼)−1 𝑋′   𝛺−1 𝑌  
where

 
1−Ω  is as defined in (5). 

Hence the model under consideration contains the 
unknown parameters k, ρ , 2σ and β. 

In the following [11] we present some existing methods 
for estimating ridge parameter k                       

1. Hoerl and Kennard method      
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 2. Hoerl, Kennard and Baldwin method   
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3. Hocking, Speed and Lynn method 
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For the proposed estimator, iλ ’s are the eigen values of 

( XX 1' −Ω ). 

4. The Monte Carlo Simulation Study 
A simulation study is carried out to find out the 

appropriate estimate for the ridge parameter among (6), (7), 
(8) mentioned above which gives minimum MSE for the 
proposed estimator.  

The data is simulated in accordance with the multiple 
linear regression model given in (1) with the number of 
regressors p=3 and ε satisfying first order auto regressive 
scheme as mentioned in (3). The dependent variable Y is 
generated using the relation Y=Xβ +ε with ttt u+= −1ρεε   
X=[ X0 , X1 , X2 , X3 ], β=[ β0 β1 β2  β3 ]’ =[4 2.5 1.8 0.6]’,   
X0 =[1 1 1….1]’. 

To generate normally distributed random variables X1, X2, 
X3 with specified intercorrelations we use the following 
equations [12, 13]. 
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12λ =corr(X1 ,X2)   13λ =corr(X1, X3)  23λ =corr(X2, X3) 

In equation (3), ut are independent and identically 
distributed normal random variables with mean 0 and 
variance 2

uσ . The autocorrelation coefficient ρ in (3) is 
ranging from -0.9 to -0.1 and the regression parameters are 
fixed as 40 =β , ,5.21 =β  8.12 =β , 6.03 =β .  

The parameters of the model in equation (4) are fixed as 
,40 =β 5.21 =β , 8.12 =β and 3 0.6β = . Taking 

12 13 23( ) ( ) ( )X X Xλ λ λ λ= = =
 sixteen different levels 

of intercorrelation (multicollinearity) among the regressors 
are taken as -0.2, -0.3, -0.4, -0.5, -0.6, -0.7, -0.8, -0.9, 0.2, 0.3, 
0.4, 0.5, 0.6, 0.7, 0.8, 0.9.  With the above setup a sample of 100 observations are 
generated and replicated 1000 times. For each choice of the k, 
the MSE for the generalized ridge estimator is computed. 
The estimator of the ridge parameter (k) which gives 
minimum MSE is recorded for different choice of the 

parameters 0β , 1β , 2β , 3β , ρ , λ  and the results are 
presented in Table 1.  

5. Results and Discussions of the 
Simulation Study  

The first column of Table 1 contains 9 levels of 
autocorrelation and the first row represents different levels of 
intercorrelation between the regressors. The other elements 
in Table 1 represents the choice of the ridge parameter which 
gives minimum MSE for the proposed generalized ridge 
estimator. For example, ρ = -0.3 and λ =+0.2, Hoerl and 
Kennard (HK) estimator of the ridge parameter gives 
minimum MSE. Similarly when ρ = -0.7 and λ = -0.2, 
Hoerl Kennard and Baldwin (B) estimator of the ridge 
parameter gives minimum MSE. 

From the results in Table 1, it is clear that when ρ and 
λ  are negative and very high, the estimator for k proposed 
by Baldwin et al possesses minimum MSE. For the same 
values of λ , when autocorrelation is low, Hoerl and 
Kennard (HK) estimator is superior to Hoerl Kennard and 
Baldwin(B)estimator. Also as multicollinearity is positive 
and increases with the autocorrelation being low, then it is 
observed that Hoerl and Kennard (HK) estimator performs 
better than the other estimators. 

When the intercorrelation among regressors is high and 
autocorrelation is also high, the ridge parameter proposed by 
Hoerl Kennard and Baldwin (B) is superior compared to the 
other estimates. Hence using (B) estimator, the proposed 
generalized ridge estimator (GR) is compared with Ordinary 
ridge estimator (RR) through MSE. Table 2 gives the MSE 
of GR estimator and RR estimator for different choice of λ
and ρ . 

The results in Table 2, depicts that developed Generalised 
ridge estimator (GR) has minimum MSE compared to 
Ordinary ridge (RR) estimator. Therefore in the presence of 
autocorrelation with multicollinearity the proposed ridge 
estimator is superior to ordinary ridge estimator. Hence use 
of ordinary ridge estimator leads to larger MSE if 
autocorrelation is ignored. 

6. Conclusions 
There are a number of articles where multicollinearity and 

autocorrelation are dealt separately. However limited studies 
are available which describes these two problems together. 
Hence in this article, an attempt has been made to address 
these 2 issues. It is observed through simulation that the use 
of ordinary ridge estimator leads to larger MSE if 
autocorrelation is ignored. 

Therefore while conducting research in the field of Social 
Sciences or Epidemiological studies, there is a critical need 
to check data for the existence of multicollinearity between 
the regressors as well as the presence of autocorrelation. This 
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will avoid misinterpretation of the results and will also 
ensure that the emerging problems involving the inter 

relationships between a number of variables of interest may 
be addressed appropriately and effectively. 

 

Table 1.  Performance of the Proposed Estimator when p=3 for Different Choice of Ridge parameter, Different Levels of Correlation Between the 
Regressors ( λ ) and the Autocorrelation (ρ) Ranging from -0.9 to -0.1 

 

ρ  

λ 

-0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 +0.2 +0.3 +0.4 +0.5 +0.6 +0.7 +0.8 +0.9 

-0.9 B B B B HO HO HO B B HO HO HO HO HO HO HO 

-0.8 B B B B HO B B B B B B B B B B HO 

-0.7 B B B B HO B B B B B HK B B B B B 

-0.6 B B B B HK B B HK HK HK HK HK HK B B B 

-0.5 B B B B HK HK HK HK HK B HK HK HK HK B B 

-0.4 B HK HK B B B HK HK HK HK HK HK HK HK B HK 

-0.3 B HK HK HK B B B HK HK HK HK HK HK HK B HK 

-0.2 B HK HK HK B HK HK B HK HK HK HK HK HK B HK 

-0.1 B HK HK HK B HK HK HK HK HK HK HK HK HK B HK 

B= Hoerl, Kennard and Baldwin method; HK= Hoerl and Kennard method; HO= Hocking, Speed and Lynn method  

 

Table 2.  Comparison of the Proposed Generalised Ridge Estimator (GR) with Ordinary Ridge Estimator (RR) for Different Levels of Autocorrelation and 
Inter Correlations between the Regressors 

 λ = -0.9 λ = -0.8 λ = -0.7 λ = -0.6 
 GR RR GR RR GR RR GR RR 

ρ =-0.9 20.8214 28.4813 14.5029 27.6239 15.3571 28.4237 20.3553 31.3304 

ρ =-0.8 11.1806 24.1588 7.3473 23.8725 7.3130 24.7635 10.7937 27.1429 

ρ =-0.7 7.0867 22.997 4.8752 23.0145 4.9123 23.8989 7.2610 25.5912 

ρ =-0.6 5.3110 22.0598 3.8412 22.2421 3.8393 23.1996 5.3256 24.6439 

ρ =-0.5 4.4693 21.6943 3.2457 22.537 3.1545 23.045 4.6707 24.264 

ρ =-0.4 3.9414 21.4783 2.8319 21.8993 2.7390 22.8049 3.9805 24.0389 

ρ =-0.3 3.6534 21.2125 2.5023 21.7106 2.5573 22.8045 3.6053 23.8935 

ρ =-0.2 3.3871 21.0056 2.4467 21.9826 2.3658 22.631 3.3031 23.7467 

ρ =-0.1 3.2545 21.0418 2.2946 21.686 2.2259 22.5208 3.1772 23.8829 

 
 λ = -0.5 λ = -0.4 λ = -0.3 λ = -0.2 
 GR RR GR RR GR RR GR RR 

ρ =-0.9 199.8822 49.1531 20.0921 32.7013 11.6972 28.5534 7.7164 26.1152 

ρ =-0.8 72.0298 41.4491 10.0910 27.9772 5.8495 25.5883 4.1563 24.282 

ρ =-0.7 36.1971 38.7429 6.9372 26.7755 3.9133 24.4849 2.7901 23.3956 

ρ =-0.6 22.6866 37.0179 5.0300 26.1235 3.2329 24.0875 2.2464 23.2887 

ρ =-0.5 19.7516 36.8716 4.2545 25.6171 2.5722 23.9203 1.8807 23.124 

ρ =-0.4 15.4482 35.9579 3.7252 25.3408 2.2708 23.7254 1.6807 22.8259 

ρ =-0.3 14.1846 35.6086 3.3227 25.2213 2.0405 23.5864 1.5831 22.9292 

ρ =-0.2 13.7764 35.7806 3.0278 25.2916 1.9169 23.598 1.3755 22.7732 

ρ =-0.1 13.1096 35.3365 3.000 24.9384 1.8532 23.5199 1.3628 22.6183 
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 λ = +0.9 λ = +0.8 λ = +0.7 λ = +0.6 
 GR RR GR RR GR RR GR RR 

ρ =-0.9 17.0649 10.2150 9.2187 6.6896 7.0452 6.0621 6.0527 5.9508 

ρ =-0.8 9.1292 6.4531 5.1840 4.4913 3.7368 3.9850 3.0471 4.1352 

ρ =-0.7 6.1900 5.5187 3.5447 3.7676 2.6166 3.5976 2.2589 3.7465 

ρ =-0.6 4.7260 4.5195 2.7440 3.4583 1.9908 3.2707 1.8175 3.5057 

ρ =-0.5 3.8366 4.0887 2.2362 3.1312 1.6981 3.0398 1.3938 3.0303 

ρ =-0.4 3.3728 3.9213 2.0145 2.965 1.4777 2.9085 1.2906 3.1830 

ρ =-0.3 3.0877 3.8317 1.7626 2.8131 1.3390 2.8399 1.1633 3.0306 

ρ =-0.2 2.7796 3.7462 1.5580 2.8310 1.2766 2.9517 1.1229 3.0700 

ρ =-0.1 2.6801 3.5996 1.5684 2.8537 1.2086 2.8849 0.9973 3.0282 

 
 λ = +0.5 λ = +0.4 λ = +0.3 λ = +0.2 
 GR RR GR RR GR RR GR RR 

ρ =-0.9 5.3924 5.8605 5.3058 5.8578 5.0683 6.3270 5.1080 7.6828 

ρ =-0.8 2.7493 4.3247 2.6378 4.4834 2.5090 5.1597 2.6232 6.1052 

ρ =-0.7 1.9740 3.6630 1.7006 3.9858 1.7465 4.5226 1.8103 5.7873 

ρ =-0.6 1.5584 3.6442 1.4348 3.9782 1.4740 4.5312 1.4172 5.6275 

ρ =-0.5 1.3255 3.5115 1.1688 3.9152 1.1348 4.1688 1.1615 5.4054 

ρ =-0.4 1.2173 3.3381 1.0653 3.7828 1.0802 4.2253 1.0654 5.3570 

ρ =-0.3 1.0328 3.3645 0.9576 3.4897 0.9507 4.1495 0.9479 5.2651 

ρ =-0.2 1.0310 3.3315 0.9106 3.6045 0.9078 4.0325 0.9053 5.2602 

ρ =-0.1 0.9036 3.1394 0.8536 3.6475 0.8484 4.0621 0.8659 5.4263 
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