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Abstract  In this article, we study the statistical classification of breast cancer of two well-known large breast cancer 
databases. We use various classification rules, such as linear, quadratic, logistic, k nearest neighbor (k-NN), and k rank 
nearest neighbor (k-RNN) rules and compare the performances. We also conduct feature analysis for both data sets using 
logistic regression model.  
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1. Introduction 
According to the Centers for Disease Control (CDC) and 

Prevention, breast cancer is one of the most commonly 
diagnosed cancers and also one of the leading causes of death 
among American women [1]. Common kinds of breast 
cancer include ductal carcinoma, which begins in the cells 
that line the milk ducts in the breast, and lobular carcinoma, 
which begins in the lobes. In 2012 in US, according to CDC 
nearly 41,150 of the 224,147 women and 405 of the 2,125 
men who developed breast cancer died [1]. 

Currently, breast ultrasound, diagnostic mammogram, 
magnetic resonance imaging (MRI), and biopsy are the main 
tests used by doctors to diagnose breast cancer. Although 
some of the important signs of malignancy are captured by 
mammograms, detecting abnormalities based on visual 
analysis of the results is not always reliable. In fact, 
mammography has a 10% false positive rate and misses at 
least 20% of breast cancer cases [2]. Consequently, accurate 
detection of tumors calls for the aid of intelligent systems to 
eliminate visual inspection error. 

When mammographic abnormalities are found, they can 
only be definitively evaluated by a biopsy, which involves 
localizing the questionable area and removing tissues for 
further laboratory examination [3]. The crucial role of 
microscopic indicators in cancer diagnosis provides the 
motivation for the selection of cellular features to build the 
best predictive model.  

In this article, our aim is to find the best breast cancer 
model for each of the two large breast cancer data sets and to 
compare the performance of various classification rules on  
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them. In section 2, we describe methodologies of various 
classification rules, such as linear, quadratic, logistic, k-NN, 
and k-RNN rules. In section 3, we implement the mentioned 
rules on two large data sets and describe the results obtained 
from these rules with error tables and graphical analysis. 
Finally, in Section 4 we make our conclusion.  

2. Methodology 
2.1. Linear and Quadratic Discrimination  

Discrimination is a multivariate technique concerned with 
separating distinct sets of objects and allocating new objects 
to previously defined groups based on a set of features, 

1 2, , , px x x . Suppose there are g  groups, 

1 2, , , gG G G . If associated with each group jG
 

there is 
a probability density function of the measurements of the 
form ( )jf x , where x 1 2( , , , )px x x ′=  , then an 
appropriate rule for the allocation process would be to 
allocate the individual with vector of scores x to jG  if 

( )jf x
{1,2, , }
Max

i g∈
=



( )if x . In this study, we are 

concerned with only two cancer outcomes—malignant and 
benign.  

Let 1π  and 2π  be two multivariate populations, and let 

1( )f x  and 2 ( )f x be the density functions associated with 
the random vector x  for the two populations, respectively. 
The density functions are normally distributed with mean 

ιµ  and covariance matrix, iΣ  for 1, 2i = . If two 

populations have equal covariance, 1 2= =Σ Σ Σ , then the 

joint density of x 1 2( , , , )px x x ′=   for populations iπ  

is 

 



16 Subhash Bagui et al.:  The Statistical Classification of Breast Cancer Data  
 

( )if x
11

2
1

2

( ) ( )1
2

i ie
π

−′− − −
=

x xΣ

Σ

µ µ
. 

Linear discrimination rule [3a]: 

By the linear classification rule, an object 0x  is 

classified into 1π  if  

1 11
1 2 0 1 2 1 22( ) ( ) ( ) 0− −′ ′− − − + ≥µ µ µ µ µ µxΣ Σ , 

and, it is classified to 2π  otherwise.  

Quadratic discrimination rule [3a]: 
The quadratic classification rule is used when two groups 

have unequal covariance, 1 2≠Σ Σ ; an object 0x  is 

classified into 1π  if  

1 1 1 11
0 1 2 0 1 1 2 2 02 ( ) ( ) 0k− − − −′ ′ ′− − + − − ≥µ µx x xΣ Σ Σ Σ ,  

where ( )1

2

1 11 1
1 1 1 2 2 22 2ln ( ).k − −′ ′= + Σ −µ µ µ µΣ

Σ Σ   

If 1,µ 2 ,µ 1,Σ  and 2Σ  are unknown, then they may 
be replaced by their corresponding unbiased sample 
estimates, 1, , ,X Y S  and 2S , respectively. 

The performance of a discriminant function can be 
evaluated by applying the rule to the data and then 
calculating the misclassification rate. A good method for 
estimating the misclassification rate of a discriminant 
function is by cross-validation, in which each record is used 
the same number of times for training and exactly once for 
testing.  

2.2. Logistic Regression   
Logistic regression is appropriate for a multivariable 

model whose outcome variable is binary, i.e. Y = 0 or 1. 
Instead of modeling the expected value of the response 
directly as a linear function of explanatory variables, logistic 
transformation is applied. Let Y = 1 be an event that occurs 
with probability ( ),π x  and let Y = 0 be an event that 
occurs with probability 1 ( ).π− x  The odds of the event  

Y = 1 occurring is given by the ratio 
( )

1 ( )
π
π−

x
x

, and the logit 

is defined as the natural log of the odds. Thus, instead of 
modeling Y as a multiple linear regression function, (as Y
is a binary variable), we model the logit (log of the odds) as a 
multiple linear regression function. This is more appropriate 
because this logit may assume values between  to −∞ ∞  
depending on the range of x . We now have  

ln
( )

1 ( )
π
π−

x
x 0 1 1 p px xβ β β= + + +

. 

Next solving for ( )π x , we obtain ( )π x

0 1 1

0 1 1

exp( )
1 exp( )

p p

p p

x x
x x

β β β
β β β
+ + +

+ + + +=




. The coefficients 0 1, , , pβ β β

 

are estimated using maximum likelihood estimation. 
Logistic regression classification rule [3a]: 
An object x  is assigned to 1π  if the estimated odds is 

greater than 1, i.e. if 

ˆ( )
ˆ1 ( )

π
π−

x
x 0 1 1

ˆ ˆ ˆexp( )p px xβ β β= + + + 1> . 

Equivalently, assign an object x  to 1π  if the logit is 
greater than 0, i.e. if  

ln
ˆ( )

ˆ1 ( )
π
π−

x
x

 0 1 1
ˆ ˆ ˆ

p px xβ β β= + + + 0> . 

2.2.1. Model Selection Procedures 

Testing the model involves obtaining the decomposition 
of the total variation in the response variable into that 
corresponding to variation accounted for by the model and 
the variations of the random deviations from the model.  

Suppose we fit a binary logistic model ln
( )

1 ( )
π
π−

x
x

0 1 1 p px xβ β β= + + +  to a set of data, where ( )π x  
represents the probability of success. An F-statistic can be 
constructed to test the fit of the model. A significant F 
implies that we should reject the hypothesis that the 
regression coefficients β1, β2, … , βq all equal zero, or that 
none of the explanatory variables affects the response 
variable. This is usually not of primary concern; the 
investigator is more interested in assessing whether a subset 
of the explanatory variables can adequately explain the 
variation in the response variable. A more parsimonious 
model is easier to interpret, and it may reduce cost and the 
possibility of measurement error. The two commonly used 
methods for model selection are described below [3b]. 
Forward selection   

The procedure of forward selection of variables begins 
with the fitting of a constant term, the mean, to the 
observations. Next, each of the possible variables is added to 
the model in succession, and the most significant one at a 
predetermined significant level is selected for inclusion. The 
remaining ones are then added in turn, and once again, only 
the most significant is selected. This process is repeated until 
no more variables meet entry criterion. 
Backward elimination 

Backward elimination of variables begins with the full 
model, which contains all the possible explanatory variables. 
Each variable is deleted in turn, and the least significant one 
at a predetermined significant level is removed. This process 
is repeated until the simplest compatible model is obtained. 
Forward selection and backward elimination sometimes 
produce the same model, although this is not necessarily so.   
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2.3. k-NN (Nearest Neighbor) Classification Rule 
The k-NN rule, proposed by Cover and Hart [4], is a 

modified version of Fix and Hodges’s NN rule [5, 6]. Let 

11 2{ , , , }nX X X and 
21 2{ , , , }nY Y Y be training 

samples from two given populations 1π  and 2π , and let 

Z  be an observation known to originate from either 1π  or 

2π  to be classified between 1π  or 2π . Order the 

distances of all observations from Z  using a distance 
function d. For a fixed integer k, the k-NN rule assigns the 
unknown observation Z  to πi if the majority of the k 
nearest neighbors of Z  come from iπ , i = 1, 2. The 
distance functions used in this paper are described below.  

2.3.1. Euclidean Distance 

The Euclidean distance between points 1 2( , , , )px x x  

and 1 2( , , , )py y y is defined as   

1
22

1

p

i i
i

x y
=

 
− 

 
∑ , 

where p is the dimension of the data.   

2.3.2. Minkowski Distance ( q -Norm Distance) 
The Minkowski distance of order q  between points 

1 2( , , , )px x x  and 1 2( , , , )py y y  is defined as 
1

1

p qq
i i

i
x y

=

 
− 

 
∑ . The 2-norm distance is the Euclidean 

distance. 

2.3.3. Mahalanobis Distance 
The Mahalanobis distance is a multivariate measure of the 

separation of a data set from a point in space. It takes into 
account the covariance among the variables in calculating 
distances, thereby correcting for the respective scales of the 
different variables. The Mahalanobis distance between two 
random vectors =x 1 2( , , , )px x x ′

  and =y

1 2( , , , )py y y ′
 from the same distribution with common 

covariance matrix Σ  is defined as 
1( ) ( )−′− −x y x yΣ . If the covariance matrix is the 

identity matrix, then the Mahalanobis distance reduces to the 
Euclidean distance. 

In this article, we apply the k-NN rule exclusively to the 
WBC data set. Due to the computational complexity of this 
rule, we only test a subset of the test set used in k-RNN 
classification. The test set was divided into five strata of 
equal size, and the k-NN rule was then used to classify a 

fixed number of points randomly selected from each group.  

2.4. k-RNN (Rank Nearest Neighbor) Classification Rule 
The k-RNN rule for multivariate data was first introduced 

by Bagui et al. [7]. Suppose we have two multivariate 
populations, an X-population, 1π  and a Y- population, 2π , 

and let us assume that =X 1 2( , , , )px x x ′


p∈R
follows a multivariate distribution with a mean of 1µ  and 

covariance matrix 1Σ  of size p p×  and =Y

1 2( , , , )py y y ′
  follows a multivariate distribution with 

mean 2µ  and covariance matrix 2Σ  of size p p× . Let 

1 2( , , , )pz z z ′= Z p∈R  be an observation known to be 

from either 1π  or  2π   to be classified into 1π  or  2π . 
Suppose that only training data are available from both 
populations, and let 

11 2{ , , , }nX X X  and 

21 2{ , , , }nY Y Y be training samples from the two 

multivariate populations 1π  and 2π , respectively. A score 
function  

1 2 1 2( ; , , , )D Z Σ Σµ µ =
1 1 1 11

1 1 2 2 1 22( ) ( )− − − −′ ′ ′− − −Z Z ZΣ Σ Σ Σµ µ  

is used to obtain the pooled ranks of iX ’s, iY ’s, and Z , 

where ι′µ  denotes the transpose of the mean vector ιµ  and 
1

i
−Σ  denotes the inverse of the covariance matrix iΣ  for i = 

1, 2. This score function D(.) maps from pR
 to 1R , and it 

serves as a quadratic discriminant function between two 
populations. When 1Σ  =  2Σ , the score function serves as 

a linear discriminant function. In the case that 1µ , 2µ , 1Σ , 

and 2Σ  are unknown, they may be replaced by their 

corresponding unbiased sample estimates, 1, , ,X Y S and 

2S , respectively.  

k-RNN classification rule [7] 
After ranking the data in ascending order, consider k 

observations to the left of Z and k observations to the right 
of Z . If there are more X ’s than Y ’s among 2k RNN’s, 
then Z  is classified into the X-population, 1π . Similarly, if 

there are more Y ’s than X ’s, then Z  is classified into 
the Y-population, 2π . If there are exactly k X ’s and k Y ’s, 

then Z  can be classified into either of the two populations 
with probability ½ each.  

The k-RNN is also applied exclusively to the WBC data 
set in this article.  
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2.5. ROC Curve 

The performance of a classification rule can be assessed 
by a receiver operating characteristic (ROC) curve, which is 
a graphical plot of the true positive rate (sensitivity) against 
the false positive rate (1-specificity). The point (0, 1) of the 
ROC space represents perfect classification—all true 
positives and no false positives. A good classification model 
should be as close as possible to this point, whereas a 
completely random guess would give a point along the main 
diagonal connecting the points (0, 0) and (1, 1). The 
maximum area under an ROC curve is 1, and this occurs only 
when the classification model is perfect.  

3. Implementation and Results 
We implement our methodologies on two large breast 

cancer databases, namely the Wisconsin breast cancer (WBC) 
database and the Wisconsin diagnostics breast cancer 
(WDBC) database.  

3.1. Description of the Databases 

Wisconsin Breast Cancer (WBC) database: 
The WBC database was created by Dr. William H. 

Wolberg, a physician at the University of Wisconsin 
Hospital, Madison [8] and donated by Olvi Mangasarian. 
The majority of the 699 cases, each identified by a sample 
code number, were recorded in January, 1989; the remaining 
cases, which include follow-up data in addition to new 
instances, were added to the database from October, 1989 to 
November, 1991.  

WBC [8] is a nine-dimensional data set with the following 
features: (i) Clump thickness; (ii) Uniformity of cell size; (iii) 
Uniformity of cell shape; (iv) Marginal adhesion; (v) Single 
epithelial cell size; (vi) Bare nuclei; (vii) Bland chromatin; 
(viii) Normal nucleoli; and (ix) Mitoses. These attributes 
have been used to represent instances. 

Patients were assigned an integer value from 1 to 10 for 
each of the aforementioned features, and each instance was 
classified as either benign or malignant. Approximately  
65.5% of these instances were benign.   

A missing value for the bare nuclei attribute appeared in 
16 instances, so we decided to exclude these incomplete 
observations. Also, 234 duplicate instances were deleted, 
leaving 449 data points (213 benign cases and 236 malignant 
cases) for our analyses.  

In 1990, Wolberg and Mangasarian [9] reported correct 
classification percentages of 93.5 and 92.2 using two 
different methods on the data set, composed of 369 instances 
at the time. Zhang [10] also studied this data set using 1-NN 
classification and by using only typical instances, with best 
accuracy results of 93.7% and 92.2%.  
Wisconsin Diagnostic Breast Cancer (WDBC) database: 

The WDBC database was obtained from W.H. Wolberg  
et al. of the University of Wisconsin, Madison [11, 12] and 

donated by Nick Street in 1995. Each of the thirty features, 
which describe characteristics of the cell nuclei present, was 
computed from a digitized image of a fine needle aspirate 
(FNA) of a breast mass [13, 14]. Approximately 62.7% (357 
instances) of the 569 instances were diagnosed as benign, 
and the rest, malignant.  

The ten real-valued features that Wolberg et al. [13,14] 
considered for each cell nucleus are: (i) radius (mean of 
distances from center to points on the perimeter; (ii) texture 
(standard deviation of gray-scale values); (iii) perimeter; (iv) 
area; (v) smoothness (local variation in radius lengths); (vi) 
compactness (perimeter^2 / area - 1.0); (vii) concavity 
(severity of concave portions of the contour); (viii) concave 
points (number of concave portions of the contour); (ix) 
symmetry; and (x) fractal dimension (coastline 
approximation – 1.0). 

The authors [13, 14] then computed the mean, standard 
error, and worst mean (mean of the three largest values) of 
these features for each image, resulting in 30 features. 
Bennett and Mangasarian [15] created separating 
hyperplanes that use multisurface method-tree (MSM-T) and 
a classification method involving linear programming to find 
the three best features, which are Worst Area, Worst 
Smoothness, and Mean Texture. The estimated accuracy 
based on these three features was 97.5% using repeated 
10-fold cross-validations.   

3.2. Results 

3.2.1. WBC database 

Let the random variable X ∈  R9 denote the benign 
population and the random variable Y ∈  R9 denote the 
malignant population, both following a multivariate 
distribution. Let us denote the WBC data set by XWBC = XB 
∪ XM, where XB is the set of benign cases and XM is the set of 
malignant cases. Disregarding the duplicate points and those 
with missing values, we have |XWBC| = 449, of which 213 are 
benign cases and 236 malignant cases. For k-RNN and k-NN 
purposes, we also partition XWBC into a training data set, XTr, 
and a test data set, XTe such that XWBC =XTr ∪ XTe and XTr 
∩ XTe = Ø. The training set consists of 106 and 118 cases 
randomly selected from XB and XM, respectively, leaving 225 
points (107 benign and 118 malignant) to be tested.  

Confusion matrices in the tables exhibit the number of 
correct classifications along the diagonal elements and the 
number of false positives and false negatives along the 
off-diagonal elements. We also report the probability of false 
negatives, probability of false positives, and the total 
(average) probability of misclassifications. The average error 
rates are calculated using prior probabilities of 0.4744 and 
0.5256 for benign and malignant classes, respectively.  

Tables 1 and 2 show that linear and quadratic 
discrimination (LD & QD) yield the same average error rate. 
Also, logistic regression (LGR) returns a lower error rate 
than both types of discrimination However, quadratic 
discrimination results in the lowest false negative rate.  

 

 

http://en.wikipedia.org/wiki/Randomness
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Next, we utilize the three model selection procedures 
described in section 2. Forward selection yields a model that 
includes the variables Clump Thickness, Uniformity of Cell 
Size, Marginal Adhesion, Bare Nuclei, Bland Chromatic, 
and Normal Nucleoli. Both backward elimination and 
stepwise selection result in a model that includes the 
aforementioned features but replaces Uniformity of Cell Size 
with Uniformity of Cell Shape. The average error rate for the 
second model is marginally higher, but we favor it for its 
lower false negative rate. We give more weight to the false 
negative rate in our considerations because overlooking a 
malignant case is much more detrimental than 
misdiagnosing a healthy patient.  

Figures 1 and 2 show the ROC curves for the full and 
reduced models, respectively. There is little discrepancy 
between the two curves, and both are close to the top left 
corner of the ROC space. 

From the error rates summarized in Tables 3 and 4, we see 
that the k-NN classifier performs slightly better than the 
k-RNN classifier for the WBC data set. In k-RNN 
classification, the discrepancy between error rates calculated 
from linear and quadratic discrimination diminishes as the 
values of k increase from 1 to 6. In k-NN classification, the 
Mahalanobis distance function outperforms the p-norm 
distances for p = 2, 3, 4.  

Table 1.  Summary of error rates for LD, QD, and LGR methods 

 
Confusion 

Matrix 
Prob. of false positive 

false negative 
Avg. Error 

rate 

LD 
205 8 
16 220 

 

0.0376 
0.0678 

 

0.0534 

    

QD 
196 17 
7 229 

 

0.0798 
0.0297 

 

0.0534 

    

LGR 
203 10 

11 225 
 

0.0469 

0.0466 
 

0.0467 

Table 2.  Summary of classification error with LGR model selection 

Method 
Prob. of false positive 

false negative 
Avg. error 

rate 
Forward 
selection 

0.0704 
0.0424 

 

0.0557 

   
Backward 

elimination 
0.0798 
0.0381 

 

0.0579 

 

 

Figure 1.  ROC curve for full model under LGR 
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Figure 2.  ROC curve for reduced model under LGR 

Table 3.  Error rates from XWBC classification using the k-RNN classifier 

Score function 1k =  2k =  3k =  4k =  5k =  6k =  

Linear 0.1111 0.0711 0.0711 0.0800 0.0800 0.0711 

Quadratic 0.0756 0.0622 0.0667 0.0800 0.0756 0.0711 

Table 4.  Error rates from XWBC classification using the k-NN classifier 

Distance Function 1k =  2k =  3k =  4k =  5k =  6k =  

Euclidean 0.0400 0.0489 0.0444 0.0400 0.0400 0.0311 

Minkowski† 0.0356 0.0444 0.0400 0.0356 0.0356 0.0356 

Minkowski‡ 0.0400 0.0400 0.0400 0.0400 0.0356 0.0311 

Mahalanobis 0.0444 0.0400 0.0356 0.0311 0.0267 0.0222 

† p = 3 
‡ p = 4 

3.2.2. WDBC Database 

In the following tables, we present confusion matrices, 
probability of false negatives, probability of false positives, 
and the total (average) probability of misclassifications as 
described in section 3.2.1. The average error rates are 
calculated using prior probabilities of 0.627 and 0.373 for 
benign and malignant classes, respectively.  

Table 5 shows that quadratic discrimination yields both a 
lower false negative rate and average error rate than linear 
discrimination. Once again, logistic regression performs 
better than both types of discrimination. 

 

Table 5.  Summary of error rates from WDBCfor LD, QD, and LGR 
methods 

 Confusion 
Matrix 

Prob. of false positive 
false negative 

Avg. Error 
rate 

LD 
355 2 
18 194 

 

0.0056 
0.0849 

 

0.0351 

    

QD 
352 5 
10 202 

 

0.0140 
0.0472 

 

0.0264 

    

LGR 
357 0 
0 212 

 

0.0000 
0.0000 

 

0.0000 
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The model under forward selection has lower average 
errors, computed with and without cross-validation, than that 
of the model obtained through backward elimination (Table 
6). This model includes seven features—standard errors of 
Mean Radius and Compactness and worst mean values of 
Radius, Texture, Smoothness, Concavity, and Concave 
Points.  

Figures 3 and 4 show the ROC curves for logistic 
regression of the full and reduced models, respectively. Both 
show higher correct classification rates. 

Table 6.  Summary of classification error from WDBC with LGR model 
selection 

Method Prob. of false positive  
false negative Avg. error rate 

Forward 
selection 

0.0196 
0.0802 

 

0.0422 

   

Backward 
elimination 

0.0280 
0.0849 

 

0.0492 

 

 

Figure 3.  ROC curve for full model under LGR 

 

Figure 4.  ROC curve for reduced model under LGR 
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4. Discussion and Conclusions 
Through empirical study of the two data sets, we 

discovered that the WBC and WDBC models can be reduced 
from 9 and 30 variables to 6 and 7 variables, respectively. 
We also noted that logistic regression yields a lower 
classification error rate than linear and quadratic 
discrimination for both data sets. Furthermore, quadratic 
discrimination outperforms linear discrimination for both 
data sets. This is so because the covariances of the malignant 
and benign populations are unequal.  

Logistic regression resulted in no misclassifications for 
the full WDBC model and a 94.2% accuracy rate for the 
reduced model, which is only slightly lower than the best 
accuracy rate (97.5%) reported by Bennett and Mangasarian.  

The k-RNN classification rule did not perform as well as 
k-NN classification on XWBC, contrary to results from past 
research. The k-NN classification rule returned lower error 
rates than k-RNN for integer values less than 7 and also 
lower error rates than logistic regression for values greater 
than 3. The Mahalanobis distance function resulted in the 
lowest overall error rates as expected, since it is a statistical 
distance that takes into account the pooled covariance.  
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